Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Southern Asia boasts a diverse array of species, renowned for their antimicrobial, antioxidant, and anti-inflammatory properties. These plants, also native to the American tropics, have played a significant role in traditional medicine and culinary practices. Notably, L., L., and L. are recognized for their bioactive compounds, particularly alkaloids, which contribute to their beneficial properties. In recent decades, there has been increased focus on studying these plants for their potential anticancer effects, encompassing both direct cytotoxic effects and indirect modulation of the tumor microenvironment. Major scientific literature databases were consulted using appropriate keywords to present a comprehensive and proportionate analysis of the anticancer potential of the three species, including valuable insights into their therapeutic perspectives, molecular mechanisms, and broader applications in cancer treatment. Numerous pharmacological trials on the bioactive components and extracts have underscored their clinical significance, revealing multifaceted actions such as antiproliferative effects, antiangiogenic properties, immunomodulation, antimetastatic activity, induction of apoptosis, and modulation of various signaling pathways in both malignant and non-malignant disorders. Among the explored compounds, piperine and piperlongumine, prominent alkaloids within the genus, have demonstrated notable efficacy in restricting the growth of cancer cells and tumors. This article emphasizes the biomedical and pharmacological findings related to the anticancer properties of the three species, with a focus on their mechanism of action. These insights could open avenues for future clinical scenarios and therapeutic utilization of bioactive substances and extracts derived from these species.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155337404240906071903
2024-09-18
2025-12-28
Loading full text...

Full text loading...

References

  1. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. MatowaP.R. GundidzaM. GwanzuraL. NhachiC.F.B. A survey of ethnomedicinal plants used to treat cancer by traditional medicine practitioners in Zimbabwe.BMC Compl. Med. Ther.202020127810.1186/s12906‑020‑03046‑8
    [Google Scholar]
  4. TavakoliJ. MiarS. Majid ZadehzareM. AkbariH. Evaluation of effectiveness of herbal medication in cancer care: a review study.Iran. J. Cancer Prev.20125144156
    [Google Scholar]
  5. DuttaT. NandyS. DeyA. Urban ethnobotany of Kolkata, India: a case study of sustainability, conservation and pluricultural use of medicinal plants in traditional herbal shops.Environ. Dev. Sustain.202224112071240[Internet].10.1007/s10668‑021‑01493‑y
    [Google Scholar]
  6. Traditional medicine2023Available from: https://www.who.int/news-room/questions-and-answers/item/traditional-medicine (accessed on 16-8-2024)
  7. SabapatiM. PaleiN.N.; C K, A.K.; Molakpogu, R.B. Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies.Drug Dev. Ind. Pharm.201945457758610.1080/03639045.2019.1569027 30663427
    [Google Scholar]
  8. AsiimweJ.B. NagendrappaP.B. AtukundaE.C. KamatenesiM.M. NamboziG. ToloC.U. OgwangP.E. SarkiA.M. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis.Evid. Based Complement. Alternat. Med.2021202111810.1155/2021/9963038 34055029
    [Google Scholar]
  9. AliM. WaniS.U.D. SalahuddinM. S N, M.; K, M.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach.Heliyon202392e1368410.1016/j.heliyon.2023.e13684 36865478
    [Google Scholar]
  10. ÁvalosY. CanalesJ. Bravo-SaguaR. CriolloA. LavanderoS. QuestA.F.G. Tumor suppression and promotion by autophagy.BioMed Res. Int.2014201460398010.1155/2014/603980
    [Google Scholar]
  11. OziomaJ.E.O. ChinweA.N.O. Herbal medicines in african traditional medicine.Herbal Medicine.IntechOpen201910.5772/intechopen.80348
    [Google Scholar]
  12. WelzA.N. Emberger-KleinA. MenradK. Why people use herbal medicine: insights from a focus-group study in Germany.BMC Complement. Altern. Med.20181819210.1186/s12906‑018‑2160‑6 29544493
    [Google Scholar]
  13. YadavV. KrishnanA. VohoraD. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research.J. Ethnopharmacol.202024711225510.1016/j.jep.2019.112255
    [Google Scholar]
  14. Durant-ArchiboldA.A. SantanaA.I. GuptaM.P. Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review.J. Ethnopharmacol.2018217638210.1016/j.jep.2018.02.008 29428241
    [Google Scholar]
  15. JaramilloM.A. ManosP.S. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae).Am. J. Bot.200188470671610.2307/2657072 11302858
    [Google Scholar]
  16. ParamaD. RanaV. GirisaS. VermaE. DaimaryU.D. ThakurK.K. KumarA. KunnumakkaraA.B. The promising potential of piperlongumine as an emerging therapeutics for cancer.Exploration of Targeted Anti-tumor Therapy20212432335410.37349/etat.2021.00049 36046754
    [Google Scholar]
  17. TurriniE. SestiliP. FimognariC. Overview of the anticancer potential of the “King of Spices” Piper nigrum and its main constituent piperine.Toxins20201274710.3390/toxins12120747
    [Google Scholar]
  18. ArunA. AnsariM.I. PopliP. JaiswalS. MishraA.K. DwivediA. HajelaK. KonwarR. New piperidine derivative DTPEP acts as dual-acting anti-breast cancer agent by targeting ERα and downregulating PI3K/Akt-PKCα leading to caspase-dependent apoptosis.Cell Prolif.2018516e1250110.1111/cpr.12501
    [Google Scholar]
  19. MitraS. AnandU. JhaN.K. ShekhawatM.S. SahaS.C. NongdamP. RengasamyK.R.R. ProćkówJ. DeyA. Anticancer Applications and Pharmacological Properties of Piperidine and Piperine: A Comprehensive Review on Molecular Mechanisms and Therapeutic Perspectives.Front. Pharmacol.20221277241810.3389/fphar.2021.772418 35069196
    [Google Scholar]
  20. MohamadN. RahmanA. Sheikh Abdul KadirS.H. Hydroxychavicol as a potential anticancer agent (Review).Oncol. Lett.20222513410.3892/ol.2022.13620 36589673
    [Google Scholar]
  21. de Souza GrineviciusV.M.A. KviecinskiM.R. Santos MotaN.S.R. OuriqueF. Porfirio Will CastroL.S.E. AndreguettiR.R. Gomes CorreiaJ.F. FilhoD.W. PichC.T. PedrosaR.C. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells.J. Ethnopharmacol.201618913914710.1016/j.jep.2016.05.020 27178634
    [Google Scholar]
  22. PrashantA. RangaswamyC. YadavA. ReddyV. SowmyaM.N. MadhunapantulaS. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines.Int. J. Appl. Basic Med. Res.201771677210.4103/2229‑516X.198531 28251112
    [Google Scholar]
  23. GrineviciusV.M.A.S. AndradeK.S. OuriqueF. MickeG.A. FerreiraS.R.S. PedrosaR.C. Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction.J. Supercrit. Fluids20171289410110.1016/j.supflu.2017.05.009
    [Google Scholar]
  24. GrineviciusV.M.A.S. AndradeK.S. MotaN.S.R.S. BretanhaL.C. FelipeK.B. FerreiraS.R.S. PedrosaR.C. CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract.Food Chem. Toxicol.201913211064410.1016/j.fct.2019.110644 31252023
    [Google Scholar]
  25. SriwiriyajanS. NinpeshT. SukpondmaY. NasomyonT. GraidistP. Cytotoxicity screening of plants of genus Piper in breast cancer cell lines.Trop. J. Pharm. Res.201413692110.4314/tjpr.v13i6.14
    [Google Scholar]
  26. SriwiriyajanS. TedasenA. LailerdN. BoonyaphiphatP. NitiruangjaratA. DengY. GraidistP. Anticancer and cancer prevention effects of piperine-free piper nigrum extract on n-nitrosomethylurea-induced mammary tumorigenesis in rats.Cancer Prev. Res. (Phila.)201691748210.1158/1940‑6207.CAPR‑15‑0127 26511488
    [Google Scholar]
  27. DengY. SriwiriyajanS. TedasenA. HiransaiP. GraidistP. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J. Ethnopharmacol.2016188879510.1016/j.jep.2016.04.047 27155135
    [Google Scholar]
  28. Mad-adamN. MadlaS. LailerdN. HiransaiP. GraidistP. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity.Foods20231210205310.3390/foods12102053 37238871
    [Google Scholar]
  29. RajaW. DubeyA. BandheL.K. PandeyS. Anticarcinogenic Activity of Piper Nigrum Extract and Its Active Component Piperine against 7, 12-Dimethylbenz (a) Anthracene Induced Mouse Skin Carcinogenesis.European Journal of Molecular Biology and Biochemistry [Internet]20163101106
    [Google Scholar]
  30. NgoQ.M.T. CaoT.Q. HoangL.S. HaM.T. WooM.H. MinB.S. Cytotoxic activity of alkaloids from the fruits of piper nigrum.Nat. Prod. Commun.201813111934578X180130110.1177/1934578X1801301114[Internet].
    [Google Scholar]
  31. SriwiriyajanS. SukpondmaY. SrisawatT. MadlaS. GraidistP. (−)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.Biomed. Pharmacother.20179273274310.1016/j.biopha.2017.05.130 28586745
    [Google Scholar]
  32. YooE.S. ChooG.S. KimS.H. WooJ.S. KimH.J. ParkY.S. KimB.S. KimS.K. ParkB.K. ChoS.D. NamJ.S. ChoiC.S. CheJ.H. JungJ.Y. Antitumor and Apoptosis-inducing Effects of Piperine on Human Melanoma Cells.Anticancer Res.20193941883189210.21873/anticanres.13296 30952729
    [Google Scholar]
  33. TharmalingamN. KimS.H. ParkM. WooH.J. KimH.W. YangJ.Y. RheeK.J. KimJ.B. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells.Infect. Agent. Cancer2014914310.1186/1750‑9378‑9‑43 25584066
    [Google Scholar]
  34. HwangY.P. YunH.J. KimH.G. HanE.H. ChoiJ.H. ChungY.C. JeongH.G. Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression.Toxicol. Lett.2011203191910.1016/j.toxlet.2011.02.013 21354279
    [Google Scholar]
  35. LiH. KrstinS. WangS. WinkM. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin.Molecules201823355710.3390/molecules23030557 29498663
    [Google Scholar]
  36. de AlmeidaG.C. OliveiraL.F.S. PredesD. FokoueH.H. KusterR.M. OliveiraF.L. MendesF.A. AbreuJ.G. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells.Sci. Rep.20201011168110.1038/s41598‑020‑68574‑2 32669593
    [Google Scholar]
  37. CardosoL.P. de SousaS.O. Gusson-ZanetoniJ.P. de Melo Moreira SilvaL.L. FrigieriB.M. HenriqueT. TajaraE.H. OlianiS.M. Rodrigues-LisoniF.C. Piperine Reduces Neoplastic Progression in Cervical Cancer Cells by Downregulating the Cyclooxygenase 2 Pathway.Pharmaceuticals (Basel)202316110310.3390/ph16010103 36678600
    [Google Scholar]
  38. El-ShehawyA.A. ElmetwalliA. El-FarA.H. MosallamS.A.E.R. SalamaA.F. BabalghithA.O. MahmoudM.A. MohanyH. GaberM. El-SewedyT. Thymoquinone, piperine, and sorafenib combinations attenuate liver and breast cancers progression: epigenetic and molecular docking approaches.BMC Complementary Medicine and Therapies20232316910.1186/s12906‑023‑03872‑6 36870998
    [Google Scholar]
  39. RamosI.N.F. da SilvaM.F. LopesJ.M.S. CruzJ.N. AlvesF.S. do RegoJ.A.R. CostaM.L. AssumpçãoP.P. Barros BrasilD.S. KhayatA.S. Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer.Molecules20232814558710.3390/molecules28145587 37513459
    [Google Scholar]
  40. RehmanM.U. RashidS. ArafahA. QamarW. AlsaffarR.M. AhmadA. AlmatroudiN.M. AlqahtaniS.M.A. RashidS.M. AhmadS.B. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats.Biology (Basel)20209930210.3390/biology9090302 32967203
    [Google Scholar]
  41. ZhangM. QiuB. SunM. WangY. WeiM. GongY. YanM. Preparation of Black pepper (Piper nigrum L.) essential oil nanoparticles and its antitumor activity on triple negative breast cancer in vitro. J. Food Biochem.20224612e1440610.1111/jfbc.14406 36121189
    [Google Scholar]
  42. FattahA. MorovatiA. NiknamZ. MashouriL. AsadiA. Tvangar RiziS. AbbasiM. ShakeriF. AbazariO. The synergistic combination of cisplatin and piperine induces apoptosis in mcf-7 cell line.Iran. J. Public Health20215051037104710.18502/ijph.v50i5.6121 34183962
    [Google Scholar]
  43. SrivastavaS. DewanganJ. MishraS. DivakarA. ChaturvediS. WahajuddinM. KumarS. RathS.K. Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway.Phytomedicine20218415348410.1016/j.phymed.2021.153484 33667839
    [Google Scholar]
  44. MuW.W. LiP.X. LiuY. YangJ. LiuG.Y. The potential role of the 5,6-dihydropyridin-2(1 H)-one unit of piperlongumine on the anticancer activity.RSC Advances20201069421284213610.1039/D0RA08778E 35516728
    [Google Scholar]
  45. KumarS. AgnihotriN. Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer.Mol. Cell. Biochem.202147641765178110.1007/s11010‑020‑04044‑7 33433833
    [Google Scholar]
  46. ChenS.Y. HuangH.Y. LinH.P. FangC.Y. Piperlongumine induces autophagy in biliary cancer cells via reactive oxygen species-activated Erk signaling pathway.Int. J. Mol. Med.20194451687169610.3892/ijmm.2019.4324 31485612
    [Google Scholar]
  47. BilgenT. SeberS. SirinD.Y. YetisyigitT. Piperlongumine increases the apoptotic effect of doxorubicin and paclitaxel in a cervical cancer cell line.Niger. J. Clin. Pract.202023338639110.4103/njcp.njcp_80_19 32134040
    [Google Scholar]
  48. KumarS. AgnihotriN. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer.Biomed. Pharmacother.20191091462147710.1016/j.biopha.2018.10.182 30551398
    [Google Scholar]
  49. RawatL. HegdeH. HotiS.L. NayakV. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells.Biomed. Pharmacother.202012811024310.1016/j.biopha.2020.110243 32470748
    [Google Scholar]
  50. HanS.S. SonD.J. YunH. KamberosN.L. JanzS. Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leuk. Res.201337214615410.1016/j.leukres.2012.11.009 23237561
    [Google Scholar]
  51. KarkiK. HedrickE. KasiappanR. JinU.H. SafeS. Piperlongumine induces Reactive Oxygen Species (ROS)-dependent downregulation of specificity protein transcription factors.Cancer Prev. Res. (Phila.)201710846747710.1158/1940‑6207.CAPR‑17‑0053 28673967
    [Google Scholar]
  52. KungF.P. LimY.P. ChaoW.Y. ZhangY.S. YuH.I. TaiT.S. LuC.H. ChenS.H. LiY.Z. ZhaoP.W. YenY.P. LeeY.R. Piperlongumine, a potent anticancer phytotherapeutic, induces cell cycle arrest and apoptosis in vitro and in vivo through the ros/akt pathway in human thyroid cancer cells.Cancers (Basel)20211317426610.3390/cancers13174266 34503074
    [Google Scholar]
  53. ZhangQ. ChenW. LvX. WengQ. ChenM. CuiR. LiangG. JiJ. Piperlongumine, a novel TrxR1 inhibitor, induces apoptosis in hepatocellular carcinoma cells by ROS-mediated ER stress.Front. Pharmacol.201910118010.3389/fphar.2019.01180 31680962
    [Google Scholar]
  54. ShiC. HuangK. SotoJ. SankaranR. KaliaV. OnwumereO. YoungM. EinbondL. RedentiS. Piperlongumine inhibits proliferation and oncogenic MYCN expression in chemoresistant metastatic retinoblastoma cells directly and through extracellular vesicles.Biomed. Pharmacother.202316111455410.1016/j.biopha.2023.114554 36940616
    [Google Scholar]
  55. PiskaK. KoczurkiewiczP. WnukD. KarnasE. BuckiA. Wójcik-PszczołaK. JamrozikM. MichalikM. KołaczkowskiM. PękalaE. Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells – The involvement of carbonyl reductase 1 inhibition.Chem. Biol. Interact.2019300404810.1016/j.cbi.2019.01.003 30611789
    [Google Scholar]
  56. AlamB. MajumderR. AkterS. LeeS.H. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.Oncol. Lett.20159286386810.3892/ol.2014.2738 25624910
    [Google Scholar]
  57. YogeswariS. BinduK.H. KamalrajS. AshokkumarV. JayabaskaranC. Antidiabetic, Antithrombin and Cytotoxic bioactive compounds in five cultivars of Piper betle L.Environmental Technology & Innovation20202010114010.1016/j.eti.2020.101140
    [Google Scholar]
  58. AbrahimN.N. KanthimathiM.S. Abdul-AzizA. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.BMC Complement. Altern. Med.201212122010.1186/1472‑6882‑12‑220 23153283
    [Google Scholar]
  59. BoonthaS. TaowkaenJ. PhakwanT. WorauaichaT. KamonnateP. BuranratB. PitaksuteepongT. Evaluation of antioxidant and anticancer effects of Piper betle L (Piperaceae) leaf extract on MCF-7 cells, and preparation of transdermal patches of the extract.Trop. J. Pharm. Res.20211861265127210.4314/tjpr.v18i6.17
    [Google Scholar]
  60. ParanjpeR. GundalaS.R. LakshminarayanaN. SagwalA. AsifG. PandeyA. AnejaR. Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management.Carcinogenesis20133471558156610.1093/carcin/bgt066 23430955
    [Google Scholar]
  61. FathilahA.R. SujataR. NorhanomA.W. AdenanM.I. Antiproliferative activity of aqueous extract of Piper betle L. and Psidium guajava L. on KB and HeLa cell lines.J. Med. Plants Res.20104
    [Google Scholar]
  62. VeettilS.R. Anuradha SunilE. MukundaA. MohanA. JohnS. PynadathM.K. Anticancer effect of Piper betle leaf extract on KB cell lines-an in vitro study.Oral Maxillofac Pathol J [Internet]2022132831
    [Google Scholar]
  63. KangralkarV.A. KulkarniA.R. In vitro antitumor activity of alcoholic extract of piper betel leaf.Res. J. Pharm. Biol. Chem. Sci.20134
    [Google Scholar]
  64. WuP.F. TsengH.C. ChyauC.C. ChenJ.H. ChouF.P. Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo. Food Funct.20145123320332810.1039/C4FO00810C 25371988
    [Google Scholar]
  65. NgP.L. RajabN.F. ThenS.M. Mohd YusofY.A. Wan NgahW.Z. PinK.Y. LooiM.L. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.J. Zhejiang Univ. Sci. B201415869270010.1631/jzus.B1300303 25091987
    [Google Scholar]
  66. MurineL.U. CellH. InL. Evaluation of Cytotoxic Activity of Piper betle Linn. Using Murine and Human Cell Lines In Vitro.Int. J. Sci. Eng. Res.20134
    [Google Scholar]
  67. SakpalK.D. PawarA.D. IN VITRO STUDY OF AQUEOUS EXTRACT OF NAGAVALLI (PIPER BETLE LINN.) ON SCC 29B CELL LINE.World Journal of Pharmaceutical Researchwww. wjpr.net2021Internet10.17605/OSF.IO/SJ7GZ
    [Google Scholar]
  68. M.D D, P.S A, N A, N.C A, Carmel A. Anti- cancer Activity (Oral) of Betel Leaf Extract by in-vitro.International Journal of Life-Sciences Scientific Research.2016210.21276/ijlssr.2016.2.4.14
    [Google Scholar]
  69. LooiM.L. WongA.K.H. GnapragasanS.A. JapriA.Z. RajedadramA. PinK.Y. Anti-migratory effects of Piper betle leaf aqueous extract on cancer cells and its microtubule targeting properties.J. Zhejiang Univ. Sci. B202021974574810.1631/jzus.B2000278 32893531
    [Google Scholar]
  70. AzhagumeenaC. PadmaP.R. SumathiS. Effect of Piper betle leaf extract and Syzygium aromaticum flower extract and their active component eugenol on the survival of lung adenocarcinoma cells (A549).Int. J. Pharm. Sci. Res.202112
    [Google Scholar]
  71. RaoA.R. SinhaA. SelvanR.S. Inhibitory action of Piper betle on the initiation of 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in rats.Cancer Lett.198526220721410.1016/0304‑3835(85)90028‑X 3919938
    [Google Scholar]
  72. AtiyaA. SalimM.A. SinhaB.N. Ranjan LalU. Two new anticancer phenolic derivatives from leaves of Piper betle Linn.Nat. Prod. Res.202135235021502910.1080/14786419.2020.1762186 32375527
    [Google Scholar]
  73. YuF.S. YangJ.S. YuC.S. ChiangJ.H. LuC.C. ChungH.K. YuC.C. WuC.C. HoH.C. ChungJ.G. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice.Environ. Toxicol.2013281160160810.1002/tox.20756 24150866
    [Google Scholar]
  74. AtiyaA. SinhaB.N. Ranjan LalU. New chemical constituents from the Piper betle Linn. (Piperaceae).Nat. Prod. Res.20183291080108710.1080/14786419.2017.1380018 28978254
    [Google Scholar]
  75. PreethiR. PadmaP.R. Green synthesis of silver nanobioconjugates from Piper betle leaves and its anticancer activity on A549 cells.Asian J. Pharm. Clin. Res.20169
    [Google Scholar]
  76. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.00010 29497610
    [Google Scholar]
  77. TripathiA.K. RayA.K. MishraS.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials.Beni. Suef Univ. J. Basic Appl. Sci.20221111610.1186/s43088‑022‑00196‑1 35127957
    [Google Scholar]
  78. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: a changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc2602 19238148
    [Google Scholar]
  79. GreenshieldsA.L. DoucetteC.D. SuttonK.M. MaderaL. AnnanH. YaffeP.B. KnickleA.F. DongZ. HoskinD.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells.Cancer Lett.201535712914010.1016/j.canlet.2014.11.017
    [Google Scholar]
  80. SiddiquiS. AhamadM.S. JafriA. AfzalM. ArshadM. Piperine Triggers Apoptosis of Human Oral Squamous Carcinoma Through Cell Cycle Arrest and Mitochondrial Oxidative Stress.Nutr. Cancer201769579179910.1080/01635581.2017.1310260 28426244
    [Google Scholar]
  81. SiL. YangR. LinR. YangS. Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway.Biosci. Rep.2018383BSR2018050310.1042/BSR20180503 29717031
    [Google Scholar]
  82. LiH. HuangK. LiuX. LiuJ. LuX. TaoK. WangG. WangJ. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3 β/NF- B signaling pathway.Oxid. Med. Cell. Longev.2014201424186410.1155/2014/241864
    [Google Scholar]
  83. LinY. XuJ. LiaoH. LiL. PanL. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway.Tumour Biol.20143543305331010.1007/s13277‑013‑1433‑4 24272201
    [Google Scholar]
  84. ChaiJ. DuC. WuJ.W. KyinS. WangX. ShiY. Structural and biochemical basis of apoptotic activation by Smac/DIABLO.Nature2000406679885586210.1038/35022514 10972280
    [Google Scholar]
  85. LiM.X. DewsonG. Mitochondria and apoptosis: emerging concepts.F1000Prime Rep.201574210.12703/P7‑42 26097715
    [Google Scholar]
  86. SamykuttyA. ShettyA.V. DakshinamoorthyG. BartikM.M. JohnsonG.L. WebbB. ZhengG. ChenA. KalyanasundaramR. MunirathinamG. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells.PLoS One201386e6588910.1371/journal.pone.0065889 23824300
    [Google Scholar]
  87. YaffeP.B. DoucetteC.D. WalshM. HoskinD.W. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells.Exp. Mol. Pathol.201394110911410.1016/j.yexmp.2012.10.008 23063564
    [Google Scholar]
  88. YaffeP.B. Power CoombsM.R. DoucetteC.D. WalshM. HoskinD.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress.Mol. Carcinog.201554101070108510.1002/mc.22176 24819444
    [Google Scholar]
  89. OuyangD. ZengL. PanH. XuL. WangY. LiuK. HeX. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy.Food Chem. Toxicol.20136042443010.1016/j.fct.2013.08.007
    [Google Scholar]
  90. MöhlerH. PfirmanR.W. FreiK. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (Review).Int. J. Oncol.20144541329133610.3892/ijo.2014.2566 25175943
    [Google Scholar]
  91. GunasekaranV. ElangovanK. Niranjali DevarajS. Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study.Food Chem. Toxicol.201710510611810.1016/j.fct.2017.03.029
    [Google Scholar]
  92. FuD.J. LiuS.M. YangJ.J. LiJ. Novel piperidine derivatives as colchicine binding site inhibitors induce apoptosis and inhibit epithelial-mesenchymal transition against prostate cancer PC3 cells.J. Enzyme Inhib. Med. Chem.20203511403141310.1080/14756366.2020.1783664 32588683
    [Google Scholar]
  93. YadavV.R. SahooK. AwasthiV. Preclinical evaluation of 4‐[3,5‐bis(2‐chlorobenzylidene)‐4‐oxo‐piperidine‐1‐yl]‐4‐oxo‐2‐butenoic acid, in a mouse model of lung cancer xenograft.Br. J. Pharmacol.201317071436144810.1111/bph.12406 24102070
    [Google Scholar]
  94. BillenL.P. Shamas-DinA. AndrewsD.W. Bid: a Bax-like BH3 protein.Oncogene200827S1Suppl. 1S93S10410.1038/onc.2009.47 19641510
    [Google Scholar]
  95. LagisettyP. VilekarP. SahooK. AnantS. AwasthiV. CLEFMA—An anti-proliferative curcuminoid from structure–activity relationship studies on 3,5-bis(benzylidene)-4-piperidones.Bioorg. Med. Chem.201018166109612010.1016/j.bmc.2010.06.055 20638855
    [Google Scholar]
  96. KasinskiA.L. DuY. ThomasS.L. ZhaoJ. SunS.Y. KhuriF.R. WangC.Y. ShojiM. SunA. SnyderJ.P. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin.Mol. Pharmacol.20087465466110.1124/mol.108.046201
    [Google Scholar]
  97. WangM. LiK. ZouZ. LiL. ZhuL. WangQ. GaoW. WangY. HuangW. LiuR. YaoK. LiuQ. Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells.Oncol. Lett.20181644847485410.3892/ol.2018.9289 30250550
    [Google Scholar]
  98. ParveenS. KumarS. PalS. YadavN.P. RajawatJ. BanerjeeM. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery.Int. J. Pharm.202364312321210.1016/j.ijpharm.2023.123212 37429561
    [Google Scholar]
  99. LiuJ.M. PanF. LiL. LiuQ.R. ChenY. XiongX.X. ChengK. YuS.B. ShiZ. YuA.C.H. ChenX.Q. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation.Biochem. Biophys. Res. Commun.20134371879310.1016/j.bbrc.2013.06.042 23796709
    [Google Scholar]
  100. RajL. IdeT. GurkarA.U. FoleyM. SchenoneM. LiX. TollidayN.J. GolubT.R. CarrS.A. ShamjiA.F. SternA.M. MandinovaA. SchreiberS.L. LeeS.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS.Nature2011475735523123410.1038/nature10167 21753854
    [Google Scholar]
  101. SinghN. KumarS. SinghP. RajH.G. PrasadA.K. ParmarV.S. GhoshB. Piper longum Linn. Extract inhibits TNF-α-induced expression of cell adhesion molecules by inhibiting NF-κB activation and microsomal lipid peroxidation.Phytomedicine200815428429110.1016/j.phymed.2007.06.007 17689945
    [Google Scholar]
  102. ZhangC. HeL.J. ZhuY.B. FanQ.Z. MiaoD.D. ZhangS.P. ZhaoW.Y. LiuX.P. Piperlongumine inhibits Akt phosphorylation to reverse resistance to cisplatin in human non-small cell lung cancer cells via ROS regulation.Front. Pharmacol.201910117810.3389/fphar.2019.01178 31680961
    [Google Scholar]
  103. JinH.O. LeeY.H. ParkJ.A. LeeH.N. KimJ.H. KimJ.Y. KimB. HongS.E. KimH.A. KimE.K. NohW.C. KimJ.I. ChangY.H. HongS.I. HongY.J. ParkI.C. LeeJ.K. Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells.J. Cancer Res. Clin. Oncol.2014140122039204610.1007/s00432‑014‑1777‑1 25023940
    [Google Scholar]
  104. SalehiB. ZakariaZ.A. GyawaliR. IbrahimS.A. RajkovicJ. ShinwariZ.K. KhanT. Sharifi-RadJ. OzleyenA. TurkdonmezE. ValussiM. TumerT.B. Monzote FidalgoL. MartorellM. SetzerW.N. Piper species: A comprehensive review on their phytochemistry, biological activities and applications.Molecules2019247136410.3390/molecules24071364 30959974
    [Google Scholar]
  105. WahnouH. LiagreB. SolV. El AttarH. AttarR. OudghiriM. DuvalR.E. LimamiY. Polyphenol-based nanoparticles: A promising frontier for enhanced colorectal cancer treatment.Cancers20231515382610.3390/cancers15153826
    [Google Scholar]
  106. BenayadS. WahnouH. El KebbajR. LiagreB. SolV. OudghiriM. SaadE.M. DuvalR.E. LimamiY. The promise of piperine in cancer chemoprevention.Cancers202315548810.3390/cancers15225488
    [Google Scholar]
  107. LaiL.H. FuQ.H. LiuY. JiangK. GuoQ.M. ChenQ.Y. YanB. WangQ.Q. ShenJ.G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model.Acta Pharmacologica Sinica201233452353010.1038/aps.2011.209
    [Google Scholar]
  108. DoM.T. KimH.G. ChoiJ.H. KhanalT. ParkB.H. TranT.P. JeongT.C. JeongH.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.Food Chem.20131412591259910.1016/j.foodchem.2013.04.125
    [Google Scholar]
  109. EndahE. WulandariF. PutriY. JenieR.I. MeiyantoE. Piperine increases pentagamavunon-1 anti-cancer activity on 4T1 breast cancer through mitotic catastrophe mechanism and senescence with sharing targeting on mitotic regulatory proteins.Iran. J. Pharm. Res.20222112382010.5812/ijpr.123820
    [Google Scholar]
  110. SongL. WangY. ZhenY. LiD. HeX. YangH. ZhangH. LiuQ. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition.Biotechnol. Lett.202042102049205810.1007/s10529‑020‑02923‑z 32500474
    [Google Scholar]
  111. XiaY. KhoiP.N. YoonH.J. LianS. JooY.E. ChayK.O. KimK.K. JungY.D. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells.Mol. Cell. Biochem.20153981-214715610.1007/s11010‑014‑2214‑0 25234193
    [Google Scholar]
  112. ZhangJ. ZhuX. LiH. LiB. SunL. XieT. ZhuT. ZhouH. YeZ. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression.Int. Immunopharmacol.2015241505810.1016/j.intimp.2014.11.012 25479727
    [Google Scholar]
  113. JafriA. SiddiquiS. RaisJ. AhmadM.S. KumarS. JafarT. AfzalM. ArshadM. Induction of apoptosis by piperine in human cervical adenocarcinoma via ros mediated mitochondrial pathway and caspase-3 activation.EXCLI J.201910.17179/excli2018‑1928
    [Google Scholar]
/content/journals/npj/10.2174/0122103155337404240906071903
Loading
/content/journals/npj/10.2174/0122103155337404240906071903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test