Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Managing acne presents a multifaceted challenge for teenagers, impacting their physical appearance and emotional well-being. The multifactorial nature of acne, which involves hyperactive oil glands, follicular hyperkeratinization, bacterial activity, and inflammation, emphasizes the importance of effective treatment strategies. This review provides a comprehensive overview of the role of natural bio-actives and their Nano-formulations in addressing acne. Additionally, this review highlights numerous anti-acne formulations composed of natural components and the methods used to formulate Nano-formulations with anti-acne properties. Potential mechanisms of action for natural elements used in Nano-formulations, such as aloe Vera, green tea extract, grape extract, cucumber extract, lavender essential oil, and tea tree oil, are explored. These natural components contain phytoconstituents that play key roles in skin repair and the treatment of several skin conditions, such as acne, aging, UV-induced skin damage, surgical wounds, psoriasis, and eczema. Furthermore, the review discusses patents filed for acne treatment using natural components and addresses challenges in formulating anti-acne products such as quality, availability, cost, and method validations.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155335494240910160558
2024-09-23
2025-09-04
Loading full text...

Full text loading...

References

  1. YanH.M. ZhaoH.J. GuoD.Y. ZhuP.Q. ZhangC.L. JiangW. Gut microbiota alterations in moderate to severe acne vulgaris patients.J. Dermatol.201845101166117110.1111/1346‑8138.14586 30101990
    [Google Scholar]
  2. KushwahaP. SaxenaS. ShuklaB. A recent overview on dermatological applications of liposomes.Recent Pat. Nanotechnol.202115431032110.2174/1872210514666201021145233 33087038
    [Google Scholar]
  3. ChenL.W. ChungH.L. WangC.C. SuJ.H. ChenY.J. LeeC.J. Anti-acne effects of cembrene diterpenoids from the cultured soft coral Sinularia flexibilis.Mar. Drugs2020181048710.3390/md18100487 32992719
    [Google Scholar]
  4. VasamM. KorutlaS. BoharaR.A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances.Biochem. Biophys. Rep.20233610157810.1016/j.bbrep.2023.101578 38076662
    [Google Scholar]
  5. LiuY. SunQ. XuH. MaG. WuP. Serum level changes of inflammatory cytokines in patients with moderate to severe acne vulgaris treated with dual-wavelength laser.Chinese J. Plastic Reconstruct. Surg.202352475210.1016/j.cjprs.2023.05.001
    [Google Scholar]
  6. HanR. BlenckeH.M. ChengH. LiC. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris.Peptides201899364310.1016/j.peptides.2017.11.001 29108811
    [Google Scholar]
  7. NakyaiW. PabuprapapW. SroimeeW. AjavakomV. YingyongnarongkulB. SuksamrarnA. Anti-acne vulgaris potential of the ethanolic Extract of Mesua ferrea L. Flowers.Cosmetics20218410710.3390/cosmetics8040107
    [Google Scholar]
  8. DoanL. VoN.K.H. TranH.T.M. Initial study on physiochemical property and antibacterial activity against skin-infecting bacteria of silver nanoparticles biologically produced using crude melanin from Xylaria sp.Cosmetics202310615010.3390/cosmetics10060150
    [Google Scholar]
  9. NascimentoT. GomesD. SimõesR. da Graça MiguelM. Tea tree oil: Properties and the therapeutic approach to acne—a review.Antioxidants2023126126410.3390/antiox12061264 37371994
    [Google Scholar]
  10. HaniadkaR. KambleP.S. AzmidhaA. Review on the Use of Aloe vera (Aloe) in Dermatology.Bioactive Dietary Factors and Plant Extracts in Dermatology; Watson, R.R. ZibadiS. Totowa, NJHumana Press201312513310.1007/978‑1‑62703‑167‑7_13
    [Google Scholar]
  11. HekmatpouD. MehrabiF. RahzaniK. AminiyanA. The effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review.Iran. J. Med. Sci.20194411910.30476/ijms.2019.40612 30666070
    [Google Scholar]
  12. VallianouN. Honey and its anti-inflammatory, anti-bacterial and anti-oxidant properties. 4Gen.Med. Open Access20140204100013210.4172/2327‑5146.1000132
    [Google Scholar]
  13. SamarghandianS. FarkhondehT. SaminiF. Honey and Health: A review of recent clinical research.Pharmacognosy Res.20179212112710.4103/0974‑8490.204647 28539734
    [Google Scholar]
  14. KimS. ParkT.H. KimW.I. ParkS. KimJ.H. ChoM.K. The effects of green tea on acne vulgaris: A systematic review and meta‐analysis of randomized clinical trials.Phytother. Res.202135137438310.1002/ptr.6809 32812270
    [Google Scholar]
  15. VasanthS. DubeyA. G S, R.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin c-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris.AAPS PharmSciTech20202126110.1208/s12249‑019‑1518‑5 31915948
    [Google Scholar]
  16. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.1077195 26528921
    [Google Scholar]
  17. GopinathH. KarthikeyanK. Turmeric: A condiment, cosmetic and cure.Indian J. Dermatol. Venereol. Leprol.2018841162110.4103/ijdvl.IJDVL_1143_16 29243674
    [Google Scholar]
  18. BooY.C. Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation.Antioxidants2021108131510.3390/antiox10081315 34439563
    [Google Scholar]
  19. Kola-MustaphaA.T. RajiM.A. AdedejiO. AmbroseG.O. Network pharmacology and molecular modeling to elucidate the potential mechanism of neem oil against Acne vulgaris.Molecules2023286284910.3390/molecules28062849 36985821
    [Google Scholar]
  20. GadH.A. RobertsA. HamziS.H. GadH.A. TouissI. AltyarA.E. KensaraO.A. AshourM.L. Jojoba Oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity.Polymers (Basel)20211311171110.3390/polym13111711 34073772
    [Google Scholar]
  21. MukherjeeP.K. NemaN.K. MaityN. SarkarB.K. Phytochemical and therapeutic potential of cucumber.Fitoterapia20138422723610.1016/j.fitote.2012.10.003 23098877
    [Google Scholar]
  22. NeubertR.H.H. Potentials of new nanocarriers for dermal and transdermal drug delivery.Eur. J. Pharm. Biopharm.20117711210.1016/j.ejpb.2010.11.003 21111043
    [Google Scholar]
  23. PriyaS. DesaiV.M. SinghviG. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery.ACS Omega202381748610.1021/acsomega.2c05976 36643539
    [Google Scholar]
  24. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.008 19447208
    [Google Scholar]
  25. VolianiV. Nanomaterials and neoplasms: Towards clinical applications.SingaporePan Stanford Publishing202110.1201/9780429027819
    [Google Scholar]
  26. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules25092193 32397080
    [Google Scholar]
  27. Beck-BroichsitterM. MerkelO.M. KisselT. Controlled pulmonary drug and gene delivery using polymeric nano-carriers.J. Control. Release2012161221422410.1016/j.jconrel.2011.12.004 22192571
    [Google Scholar]
  28. KowalczukA. TrzcinskaR. TrzebickaB. MüllerA.H.E. DworakA. TsvetanovC.B. Loading of polymer nanocarriers: Factors, mechanisms and applications.Prog. Polym. Sci.2014391438610.1016/j.progpolymsci.2013.10.004
    [Google Scholar]
  29. PathakC. VaidyaF.U. PandeyS.M. Mechanism for Development of Nanobased Drug Delivery System.Applications of Targeted Nano Drugs and Delivery Systems.AmsterdamElsevier2019356710.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  30. MandalD. PaulP. BhowmikM. Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment.Multifunctional Theranostic Nanomedicines in Cancer.AmsterdamElsevier202120123210.1016/B978‑0‑12‑821712‑2.00003‑7
    [Google Scholar]
  31. KothamasuP. KanumurH. RavurN. MadduC. ParasuramrajamR. ThangavelS. Nanocapsules: The weapons for novel drug delivery systems.Bioimpacts201222718110.5681/bi.2012.011 23678444
    [Google Scholar]
  32. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  33. YadavH.K.S. AlmokdadA.A. ShalufS.I.M. Polymer-Based Nanomaterials for Drug-Delivery Carriers.Nanocarriers for Drug Delivery.AmsterdamElsevier201953155610.1016/B978‑0‑12‑814033‑8.00017‑5
    [Google Scholar]
  34. ZhangY. HuangY. LiS. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery.AAPS PharmSciTech201415486287110.1208/s12249‑014‑0113‑z 24700296
    [Google Scholar]
  35. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules22091401 28832535
    [Google Scholar]
  36. MittalP. SaharanA. VermaR. AltalbawyF.M.A. AlfaidiM.A. BatihaG.E.S. AkterW. GautamR.K. UddinM.S. RahmanM.S. Dendrimers: A new race of pharmaceutical nanocarriers.BioMed Res. Int.2021202111110.1155/2021/8844030 33644232
    [Google Scholar]
  37. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  38. RajputR. NarkhedeJ. NaikJ.B. Nanogels as nanocarriers for drug delivery: A review.ADMET DMPK20208111510.5599/admet.724 35299773
    [Google Scholar]
  39. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.2021878383110.3389/fnut.2021.783831 34926557
    [Google Scholar]
  40. AbbasiH. KouchakM. MirveisZ. HajipourF. KhodarahmiM. RahbarN. HandaliS. What we need to know about liposomes as drug nanocarriers: An updated review.Adv. Pharm. Bull.202213172310.34172/apb.2023.009 36721822
    [Google Scholar]
  41. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  42. XingH. HwangK. LuY. Recent developments of liposomes as nanocarriers for theranostic applications.Theranostics2016691336135210.7150/thno.15464 27375783
    [Google Scholar]
  43. ReddyM.S. Niosomes: A nanocarrier drug delivery system.GSC Biol. Pharm. Sci.202322212012710.30574/gscbps.2023.22.2.0062
    [Google Scholar]
  44. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. GangadharappaH.V. PardakhtyA. MehrbaniM. Dell’AgliM. NematollahiM.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S318416 34703224
    [Google Scholar]
  45. SinglaC. Phytosomes: System for delivering bioactive plant extracts and phytoconstituents.Int. J. Med. Pharmaceut. Sci.2019722510.31782/IJMPS.2020.10301
    [Google Scholar]
  46. KadriyaA. FalahM. Nanoscale phytosomes as an emerging modality for cancer therapy.Cells20231215199910.3390/cells12151999 37566078
    [Google Scholar]
  47. AlbashR. BadawiN.M. HamedM.I.A. RagaieM.H. MohammedS.S. ElbeshR.M. DarwishK.M. LashkarM.O. ElhadyS.S. MosallamS. Exploring the Synergistic effect of bergamot essential oil with spironolactone loaded nano-phytosomes for treatment of acne vulgaris: In vitro optimization, in silico studies, and clinical evaluation.Pharmaceuticals (Basel)202316112810.3390/ph16010128 36678625
    [Google Scholar]
  48. SimrahH.A. HafeezA. UsmaniS.A. IzharM.P. Transfersome, an ultra-deformable lipid-based drug nanocarrier: An updated review with therapeutic applications.Naunyn Schmiedebergs Arch. Pharmacol.2024397263967310.1007/s00210‑023‑02670‑8 37597094
    [Google Scholar]
  49. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  50. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  51. HallanS.S. SguizzatoM. MarianiP. CortesiR. HuangN. SimelièreF. MarchettiN. DrechslerM. RuzgasT. EspositoE. Design and characterization of ethosomes for transdermal delivery of caffeic acid.Pharmaceutics202012874010.3390/pharmaceutics12080740 32781717
    [Google Scholar]
  52. GrossiL.N. BrazW.R. da SilvaN.P. CazarimE.L.C.C. PalmieriM.G.S. TavaresG.D. PittellaF. Ethosomes as delivery system for treatment of melanoma: A mini-review.Oncologie202325545545910.1515/oncologie‑2023‑0177
    [Google Scholar]
  53. EmanetM. CiofaniG. Ethosomes as promising transdermal delivery systems of natural‐derived active compounds.Adv. NanoBiomed Res.2023310230002010.1002/anbr.202300020
    [Google Scholar]
  54. AscensoA. BatistaC. CardosoP. MendesT. PraçaF. BentleyV. RaposoS. SimõesS. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S86186 26425085
    [Google Scholar]
  55. ChowdaryP. PadmakumarA. RenganA.K. Exploring the potential of transethosomes in therapeutic delivery: A comprehensive review. MedComm – Biomater.Appl.201524e5910.1002/mba2.59
    [Google Scholar]
  56. SivadasanD. SultanM.H. AlqahtaniS.S. JavedS. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications.Biomedicines2023114111410.3390/biomedicines11041114 37189732
    [Google Scholar]
  57. OliveiraC. FerreiraC.J.O. SousaM. ParisJ.L. GasparR. SilvaB.F.B. TeixeiraJ.A. Ferreira-SantosP. BotelhoC.M. A versatile nanocarrier—cubosomes, characterization, and applications.Nanomaterials (Basel)20221213222410.3390/nano12132224 35808060
    [Google Scholar]
  58. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  59. KhanS. SharmaA. JainV. An overview of nanostructured lipid carriers and its application in drug delivery through different routes.Adv. Pharm. Bull.202313344646010.34172/apb.2023.056 37646052
    [Google Scholar]
  60. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  61. El MaghrabyG.M. ArafaM.F. EssaE.A. Phase transition microemulsions as drug delivery systems.Applications of Nanocomposite Materials in Drug Delivery.AmsterdamElsevier201878780310.1016/B978‑0‑12‑813741‑3.00034‑0
    [Google Scholar]
  62. SuhailN. AlzahraniA.K. BashaW.J. KizilbashN. ZaidiA. AmbreenJ. KhachfeH.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery.Front. Nanotechnol.2021375488910.3389/fnano.2021.754889
    [Google Scholar]
  63. SultanaN. AkhtarJ. Nanoemulgel: For Promising Topical and Systemic Delivery.Drug Development Life Cycle. BadruddeenA.M. LondonIntechOpen2022
    [Google Scholar]
  64. PandeyP. GulatiN. MakhijaM. PurohitD. DurejaH. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability.Recent Pat. Nanotechnol.202014427629310.2174/1872210514666200604145755 32496999
    [Google Scholar]
  65. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech,20155212312710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  66. PreetiS.S. SambhakarS. MalikR. BhatiaS. Al HarrasiA. RaniC. SaharanR. KumarS. Geeta; Sehrawat, R. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs.Scientifica (Cairo)2023202312510.1155/2023/6640103 37928749
    [Google Scholar]
  67. ThakurM. SharmaA. ChandelM. Modern applications and current status of green nanotechnology in environmental industry.Green Functionalized Nanomaterials for Environmental Applications.AmsterdamElsevier202225928110.1016/B978‑0‑12‑823137‑1.00010‑5
    [Google Scholar]
  68. SardoiwalaM.N. KaundalB. Roy ChoudhuryS. Development of Engineered Nanoparticles Expediting Diagnostic and Therapeutic Applications Across Blood–Brain Barrier.Handbook of Nanomaterials for Industrial Applications.AmsterdamElsevier201869670910.1016/B978‑0‑12‑813351‑4.00038‑9
    [Google Scholar]
  69. ChotaA. GeorgeB.P. AbrahamseH. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach.Int. J. Mol. Sci.2023245480810.3390/ijms24054808 36902238
    [Google Scholar]
  70. ZhangY. WangG. YangL. WangF. LiuA. Recent advances in gold nanostructures based biosensing and bioimaging.Coord. Chem. Rev.201837012110.1016/j.ccr.2018.05.005
    [Google Scholar]
  71. ChinchulkarS.A. PatraP. DehariyaD. Gold nanoparticle–based biosensing applications and fundamentals of sensor technology: Principles and novel designs.Fundamentals of Sensor Technology.AmsterdamElsevier202366972310.1016/B978‑0‑323‑88431‑0.00014‑4
    [Google Scholar]
  72. HammamiI. AlabdallahN.M. jomaa, A.A.; kamoun, M. Gold nanoparticles: Synthesis properties and applications.J. King Saud Univ. Sci.202133710156010.1016/j.jksus.2021.101560
    [Google Scholar]
  73. QinL. ZengG. LaiC. HuangD. XuP. ZhangC. ChengM. LiuX. LiuS. LiB. YiH. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing.Coord. Chem. Rev.201835913110.1016/j.ccr.2018.01.006
    [Google Scholar]
  74. YaqoobS.B. AdnanR. Rameez KhanR.M. RashidM. Gold, Silver, and Palladium Nanoparticles: A chemical tool for biomedical applications.Front Chem.2020837610.3389/fchem.2020.00376 32582621
    [Google Scholar]
  75. JeevanandamJ. KrishnanS. HiiY.S. PanS. ChanY.S. AcquahC. DanquahM.K. RodriguesJ. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites.J. Nanostructure Chem.202212580983110.1007/s40097‑021‑00465‑y 35070207
    [Google Scholar]
  76. LeeS.H. JunB.H. Silver Nanoparticles: Synthesis and application for nanomedicine.Int. J. Mol. Sci.201920486510.3390/ijms20040865 30781560
    [Google Scholar]
  77. BurdușelA.C. GherasimO. GrumezescuA.M. MogoantăL. FicaiA. AndronescuE. Biomedical applications of silver nanoparticles: An up-to-date overview.Nanomaterials (Basel)20188968110.3390/nano8090681 30200373
    [Google Scholar]
  78. ShevchenkoN. SteinhartM. TomšíkE. Single-step preparation of mono-dispersed sulfur nanoparticles for detention of copper.J. Nanopart. Res.2019211124610.1007/s11051‑019‑4673‑4
    [Google Scholar]
  79. ShankarS. PangeniR. ParkJ.W. RhimJ.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect.Mater. Sci. Eng. C20189250851710.1016/j.msec.2018.07.015 30184776
    [Google Scholar]
  80. ShankarS. JaiswalL. RhimJ.W. New insight into sulfur nanoparticles: Synthesis and applications.Crit. Rev. Environ. Sci. Technol.202151202329235610.1080/10643389.2020.1780880
    [Google Scholar]
  81. XuJ. WangL. Carbon Nanomaterials.Nano-Inspired Biosensors for Protein Assay with Clinical Applications.AmsterdamElsevier201933810.1016/B978‑0‑12‑815053‑5.00001‑5
    [Google Scholar]
  82. MaruyamaT. Carbon nanotubes.Handbook of Carbon-Based Nanomaterials.AmsterdamElsevier202129931910.1016/B978‑0‑12‑821996‑6.00009‑9
    [Google Scholar]
  83. MurjaniB.O. KaduP.S. BansodM. VaidyaS.S. YadavM.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges.Carbon Lett.20223251207122610.1007/s42823‑022‑00364‑4
    [Google Scholar]
  84. DeviS. KumarM. TiwariA. TiwariV. KaushikD. VermaR. BhattS. SahooB.M. BhattacharyaT. AlshehriS. GhoneimM.M. BabalghithA.O. BatihaG.E-S. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  85. SinghS. DhawanA. KarhanaS. BhatM. DindaA.K. Quantum dots: An emerging tool for point-of-care testing.Micromachines (Basel)20201112105810.3390/mi11121058 33260478
    [Google Scholar]
  86. Sumanth KumarD. Jai KumarB. MaheshH.M. Quantum Nanostructures (QDs): An overview.Synthesis of Inorganic Nanomaterials.AmsterdamElsevier2018598810.1016/B978‑0‑08‑101975‑7.00003‑8
    [Google Scholar]
  87. RapalliV.K. KaulV. WaghuleT. GorantlaS. SharmaS. RoyA. DubeyS.K. SinghviG. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition.Eur. J. Pharm. Sci.202015210543810.1016/j.ejps.2020.105438 32598913
    [Google Scholar]
  88. Najafi-TaherR. GhaemiB. AmaniA. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: Permeation, antibacterial and safety assessments.Eur. J. Pharm. Sci.201812014215110.1016/j.ejps.2018.04.029 29684425
    [Google Scholar]
  89. SankarC. MuthukumarS. ArulkumaranG. ShaliniS. SundaraganapathyR. samuel, S. Formulation and characterization of liposomes containing clindamycin and green tea for anti acne.Res. J. Pharm. Technol.20191212597710.5958/0974‑360X.2019.01038.2
    [Google Scholar]
  90. Tri WahyuniS. RahmasariD. Sandi NugrohoR. Enhanced Antibacterial Activity of Piper betle Extract Niosome Serum Gel and Its Irritation Effects; KnE Med.DubaiUnited Arab202310.18502/kme.v3i2.13050
    [Google Scholar]
  91. KhanP. AkhtarN. KhanH.M.S. TasneemR. ZakaH.S. AkhtarN. SharifA. Assessment of Brassica oleraceae L. (Brassicaceae) extract loaded ethosomal gel as a versatile vesicular carrier system for dermocosmetic application: A noninvasive split‐faced study.J. Cosmet. Dermatol.202221127153716210.1111/jocd.15436 36204972
    [Google Scholar]
  92. AmalyuriA.G. RevenyJ. DalimuntheA. Antibacterial potential of ethanol extract of Tamarind Seed Bark (Tamarindus indica L.) and formulation of anti-acne nanogel. Int. J. Sci.Technol. Manag.20223359860410.46729/ijstm.v3i3.522
    [Google Scholar]
  93. KiromahN.Z.W. SugihartiniN. NuraniL.H. Development and characterization of clove oil microemulsion.Pharmacia202370123324110.3897/pharmacia.70.e98096
    [Google Scholar]
  94. AbdelhamedF.M. AbdeltawabN.F. ElRakaibyM.T. ShammaR.N. MoneibN.A. Antibacterial and anti-inflammatory activities of Thymus vulgaris essential oil nanoemulsion on acne vulgaris.Microorganisms2022109187410.3390/microorganisms10091874 36144477
    [Google Scholar]
  95. KaireyL. AgnewT. BowlesE.J. BarklaB.J. WardleJ. LaucheR. Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health—A systematic review of randomized controlled trials.Front. Pharmacol.202314111607710.3389/fphar.2023.1116077 37033604
    [Google Scholar]
  96. KamelR. AfifiS.M. AbdouA.M. EsatbeyogluT. AbouSamraM.M. Nanolipogel loaded with tea tree oil for the management of burn: GC-MS analysis, in vitro and in vivo evaluation.Molecules20222719614310.3390/molecules27196143 36234697
    [Google Scholar]
  97. FitrianiE.W. AvantiC. RosanaY. SuriniS. Development of nanostructured lipid carrier containing tea tree oil: Physicochemical properties and stability.J. Pharm. Pharmacogn. Res.202311339140010.56499/jppres23.1581_11.3.391
    [Google Scholar]
  98. JalesS.T.L. BarbosaR.M. de AlbuquerqueA.C. DuarteL.H.V. da SilvaG.R. MeirellesL.M.A. da SilvaT.M.S. AlvesA.F. ViserasC. RaffinF.N. MouraT.F.A.L. Development and characterization of aloe vera mucilaginous-based hydrogels for psoriasis treatment.J. Comp. Sci.20226823110.3390/jcs6080231
    [Google Scholar]
  99. SindhuR.K. GuptaR. WadheraG. KumarP. Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications.Gels2022829710.3390/gels8020097 35200478
    [Google Scholar]
  100. ZengL. WangH. ShiW. ChenL. ChenT. ChenG. WangW. LanJ. HuangZ. ZhangJ. ChenJ. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy.J. Nanobiotechnology202119143910.1186/s12951‑021‑01195‑7 34930289
    [Google Scholar]
  101. PrasanthM.I. SivamaruthiB.S. ChaiyasutC. TencomnaoT. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy.Nutrients201911247410.3390/nu11020474 30813433
    [Google Scholar]
  102. Kamal SenapatiK. Nutraceuticals of Tea (Camellia sinensis) for Human Health.Bioactive compounds in nutraceutical and functional food for good human health; Sharma, K.; Mishra, K.; Kamal Senapati, K., Eds.; IntechOpen: London202110.5772/intechopen.96506
    [Google Scholar]
  103. KalakondaP. DebbetaN.K. KathiR. Facile synthesis of silver nanoparticles using green tea leaf extract and evolution of antibacterial activity.Preprint202310.21203/rs.3.rs‑2961633/v1
    [Google Scholar]
  104. Tran KhacK. Hoang PhuH. Tran ThiH. Dinh ThuyV. Do ThiH. Biosynthesis of silver nanoparticles using tea leaf extract (camellia sinensis) for photocatalyst and antibacterial effect.Heliyon2023910e2070710.1016/j.heliyon.2023.e20707 37860560
    [Google Scholar]
  105. KhanA. MishraA. HasanS.M. UsmaniA. UbaidM. KhanN. SaidurrahmanM. Biological and medicinal application of Cucumis sativus Linn. – review of current status with future possibilities.J. Complement. Integr. Med.202219484385410.1515/jcim‑2020‑0240 34047145
    [Google Scholar]
  106. MossaA.T.H. MohafrashS.M.M. ZiedanE.S.H.E. AbdelsalamI.S. SahabA.F. Development of eco-friendly nanoemulsions of some natural oils and evaluating of its efficiency against postharvest fruit rot fungi of cucumber.Ind. Crops Prod.202115911304910.1016/j.indcrop.2020.113049
    [Google Scholar]
  107. SoleymaniS. IranpanahA. NajafiF. BelwalT. RamolaS. AbbasabadiZ. MomtazS. FarzaeiM.H. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders.Arch. Dermatol. Res.2019311857758810.1007/s00403‑019‑01930‑z 31115657
    [Google Scholar]
  108. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.2009143226246 19803548
    [Google Scholar]
  109. TrapaniA. GuerraL. CorboF. CastellaniS. SannaE. CapobiancoL. MonteduroA.G. MannoD.E. MandracchiaD. Di GioiaS. ConeseM. Cyto/biocompatibility of dopamine combined with the antioxidant grape seed-derived polyphenol compounds in solid lipid nanoparticles.Molecules202126491610.3390/molecules26040916 33572331
    [Google Scholar]
  110. BiałońM. Krzyśko-ŁupickaT. Nowakowska-BogdanE. WieczorekP.P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota.Molecules20192418327010.3390/molecules24183270 31500359
    [Google Scholar]
  111. CiminoC. MaurelO.M. MusumeciT. BonaccorsoA. DragoF. SoutoE.M.B. PignatelloR. CarboneC. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems.Pharmaceutics202113332710.3390/pharmaceutics13030327 33802570
    [Google Scholar]
  112. GangulyR. KumarS. BasuM. KunwarA. DuttaD. AswalV.K. Micellar solubilization of Lavender oil in aqueous P85/P123 systems: Investigating the associated micellar structural transitions, therapeutic properties and existence of double cloud points.J. Mol. Liq.202133811664310.1016/j.molliq.2021.116643
    [Google Scholar]
  113. TamarkinD. EiniMeir Hazot, Yohan Compositions and methods for treating rosacea and acne. US Patent 10849847B2,2020
    [Google Scholar]
  114. JosephA.L.II JosephC. Botanical antioxidant compositions and methods of preparation and use thereof. US Patent 9326932B2,2016
    [Google Scholar]
  115. GanD. CarleT. HinesM. Skin lightening compositions. US Patent 20060216254A1,2006
    [Google Scholar]
  116. JohnsonF. GolubL. Curcumin analogues as zinc chelators and their uses. US Patent 10669227B2,2010
    [Google Scholar]
  117. GrossDennis F. Skin care products containing multiple enhancers.2010
    [Google Scholar]
  118. HinesM. FlorenceT. Botanical anti-acne formulations. CN Patent 105816498A,2016
    [Google Scholar]
  119. JohnsonP.A. Cosmetic composition having pomace olive oil. US Patent 7887857B12015
    [Google Scholar]
  120. KimS. Sugar-based surfactant microemulsions containing essential oils for cosmetic and pharmaceutical use. WO Patent 2009029046A1,2009
    [Google Scholar]
  121. TamarkinD. FriedmanD. ZivE. Substantially non-aqueous foamable petrolatum based pharmaceutical and cosmetic compositions and their uses. US Patent 9682021B2,2017
    [Google Scholar]
  122. TamarkinD. GazalElana Keynan, Rita Method for healing of an infected acne lesion without scarring. US Patent 10517882B22019
    [Google Scholar]
  123. SinghV. RedhuR. VermaR. MittalV. KaushikD. Anti-acne Treatment using Nanotechnology based on Novel Drug Delivery System and Patents on Acne Formulations: A Review.Recent Pat. Nanotechnol.202115433135010.2174/1872210514999201209214011 33302844
    [Google Scholar]
  124. SinghN. SinghM. PanwarS. An overview of Novel Drug Delivery Systems for Acne.Int. J. Res. Devel. Pharm. Life Sci.20198411210.21276/IJRDPL.2278‑0238.2019.8(4).1‑12
    [Google Scholar]
  125. KurokawaI. LaytonA.M. OgawaR. Updated treatment for acne: Targeted therapy based on pathogenesis.Dermatol. Ther. (Heidelb.)20211141129113910.1007/s13555‑021‑00552‑6 34115308
    [Google Scholar]
  126. CruzS. VecerekN. ElbulukN. Targeting inflammation in acne: Current treatments and future prospects.Am. J. Clin. Dermatol.202324568169410.1007/s40257‑023‑00789‑1 37328614
    [Google Scholar]
/content/journals/npj/10.2174/0122103155335494240910160558
Loading
/content/journals/npj/10.2174/0122103155335494240910160558
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bio-actives; nano carriers; phytoconstituents; propionibacterium acne; sebum; Skin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test