Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

In traditional medicine, species of the genus L. are used to treat various health conditions, such as eye disorders, respiratory infections, headaches, epilepsy, insomnia, as expectorants, and to promote wound healing.

Objective

The goal of this article was to evaluate the antioxidant and anti-inflammatory activities of three species from genus L. growing in Georgia: , and .

Methods

Initially, fractions containing both aerial and underground parts were air-dried, ground, and extracted with 80% ethanol. The extract was then concentrated by condensation and further dried through freeze-drying. Subsequently, additional chromatographic separations were carried out on Diaion HP-20 using solvents such as water, methanol (50% and 100%), and 100% ethyl acetate to isolate the desired fractions. To identify flavonoids and triterpene glycosides, the study employed thin-layer chromatography (TLC) alongside preliminary phytochemical tests. The antioxidant activity of these species was estimated by cell-free systems using ABTS and DPPH assays. The extracts' anti-inflammatory properties were evaluated using an cell system that isolated neutrophils. The study examined the extracts' impact on reactive oxygen species (ROS) production in neutrophils stimulated with PMA, as well as their effect on the catalytic activity of myeloperoxidase (MPO), a marker of inflammation in neutrophils.

Results

Flavonoids and triterpene glycosides were primarily identified in the 50% and 100% methanol (MeOH) fractions of Primula species through TLC and preliminary phytochemical tests. For each experiment, gallic acid and quercetin served as standards at a concentration of 1 mg/ml, while the tested samples were prepared at concentrations of 5 mg/ml. Based on the IC findings, P. w 3 exhibits the most potent antioxidant and anti-inflammatory properties, as evidenced by the following indicators: ABTS - IC=8.51 ± 0.18; DPPH - IC=34.57 ± 0.47; PMN - IC=0.68 ± 0.04; SIEFED - IC=1.49 ± 0.7; and classical IC=1.89 ± 0.01.

Conclusion

Among the tested fractions, only the fraction of the 3 species prepared in MeOH (50%) showed the best dose-dependent antioxidant and anti-inflammatory activities, especially P.w 3 which is probably related to the high flavonoid content found in this species.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155334830240912072007
2024-09-24
2025-09-07
Loading full text...

Full text loading...

References

  1. BarkatM.A. GoyalA. BarkatH.A. SalauddinM. PottooF.H. AnwerE.T. Herbal Medicine: Clinical Perspective and Regulatory Status.Comb. Chem. High Throughput Screen.202124101573158210.2174/1386207323999201110192942 33176638
    [Google Scholar]
  2. PatarkalashviliT. Forest biodiversity of Georgia and endangered plant species.Annals Agrarian Sci.201717334935110.1016/j.aasci.2017.06.002
    [Google Scholar]
  3. The World Flora Online (WFO). Primulaceae Batsch ex Borkh. 1797Available From: http://www.worldfloraonline.org/taxon/wfo-7000000497
  4. MskhiladzeL. Microstructural Features of Primula woronowii Losinsk., Primula macrocalyx Bunge. and Primula saguramica Gavr. from Georgian Flora. 2023 Available Fromhttps://www.researchhub.com/paper/4309210/microstructural-features-of-primula-woronowii-losinsk-primula-macrocalyx-bunge-and-primula-saguramica-gavr-from-georgian-flora/conversation
    [Google Scholar]
  5. AlamF. DinK.M. SarfrazM. QudoosA. MalikS. Genus Primula and its role in phytomedicine; a systematic review.Phytomedicine Plus20244110051010.1016/j.phyplu.2023.100510
    [Google Scholar]
  6. ColomboP.S. FlaminiG. RodondiG. GiulianiC. SantagostiniL. FicoG. Phytochemistry of European Primula species.Phytochemistry201714313214410.1016/j.phytochem.2017.07.005 28806605
    [Google Scholar]
  7. LiX. Unusual Flavones from Primula macrocalyx as Inhibitors of OAT1 and OAT3 and as Antifungal Agents against Candida rugosa.Sci. Rep.2019919230
    [Google Scholar]
  8. BudzianowskiJ. WollenweberE. Rare flavones from the glandular leaf exudate of the Oxlip, Primula elatior L.Nat. Prod. Commun.2007231934578X070020010.1177/1934578X0700200308
    [Google Scholar]
  9. EMA. Assessment report on Primula veris L. and/or Primula elatior (L.) Hill, flos. 2012. Available From:https://www.pharmacompass.com/pAssets/pdf/pubchem/primula-veris-l.pdf
  10. EMA. Assessment report on Primulaveris L. and/or Primulaelatior (L.) Hill, radix.2012
  11. PiettaP.G. Flavonoids as Antioxidants.J. Nat. Prod.20006371035104210.1021/np9904509 10924197
    [Google Scholar]
  12. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  13. Pérez de la LastraJ.M. Nitration of flavonoids and tocopherols as potential modulators of nitrosative stress—a study based on their conformational structures and energy content.Stresses20222221323010.3390/stresses2020015
    [Google Scholar]
  14. WalkerE.H. PacoldM.E. PerisicO. StephensL. HawkinsP.T. WymannM.P. WilliamsR.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.Mol. Cell20006490991910.1016/S1097‑2765(05)00089‑4 11090628
    [Google Scholar]
  15. ShibaY. KinoshitaT. ChumanH. TaketaniY. TakedaE. KatoY. NaitoM. KawabataK. IshisakaA. TeraoJ. KawaiY. Flavonoids as substrates and inhibitors of myeloperoxidase: Molecular actions of aglycone and metabolites.Chem. Res. Toxicol.20082181600160910.1021/tx8000835 18620432
    [Google Scholar]
  16. TimilsenaY.P. PhosanamA. StockmannR. Perspectives on Saponins: Food Functionality and Applications.Int. J. Mol. Sci.202324171353810.3390/ijms241713538 37686341
    [Google Scholar]
  17. BarbosaA.D.P. An overview on the biological and pharmacological activities of saponins.Int. J. Pharm. Pharm. Sci.201464750
    [Google Scholar]
  18. ShiJ. ArunasalamK. YeungD. KakudaY. MittalG. JiangY. Saponins from edible legumes: Chemistry, processing, and health benefits.J. Med. Food200471677810.1089/109662004322984734 15117556
    [Google Scholar]
  19. ShibataS. Saponins with biological and pharmacological activity.New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity197717719610.1007/978‑3‑642‑66682‑7_7
    [Google Scholar]
  20. MeshramM.A. BhiseU.O. MakhalP.N. KakiV.R. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR.Eur. J. Med. Chem.202122511380410.1016/j.ejmech.2021.113804 34479036
    [Google Scholar]
  21. BukvickiD. KovtonyukN.K. LeginA.A. KepplerB.K. BreckerL. AsakawaY. Valant-VetscheraK. Hunting for bis-bibenzyls in Primula veris subsp. macrocalyx (Bunge) Lüdi: Organ-specific accumulation and cytotoxic activity.Phytochem. Lett.202144909710.1016/j.phytol.2021.06.014
    [Google Scholar]
  22. DymockW. WardenC.J. Hand HooperD. 1890
  23. JägerA.K. GauguinB. AdsersenA. GudiksenL. Screening of plants used in Danish folk medicine to treat epilepsy and convulsions.J. Ethnopharmacol.20061051-229430010.1016/j.jep.2005.10.015 16293381
    [Google Scholar]
  24. SaqibN. Phytochemical studies of some Primulaceous and leguminous plants., P.hD. Thesis, University of Karachi,1980
    [Google Scholar]
  25. BudniakL. VasendaM. SlobodianiukL. Determination of flavonoids and hydroxycinnamic acids in tablets with thick extract of Primula denticulata SMITH.Pharmacol OnLine2021212441253
    [Google Scholar]
  26. KahramanC. SariS. Küpeli AkkolE. Tatli CankayaI. Bioactive saponins of Primula vulgaris Huds. promote wound healing through inhibition of collagenase and elastase enzymes: In vivo, in vitro and in silico evaluations.Chem. Biodivers.20221912e20220058210.1002/cbdv.202200582 36310134
    [Google Scholar]
  27. KosenkovaY.S. PolovinkaM.P. KomarovaN.I. KorchaginaD.V. KurochkinaN.Y. CheremushkinaV.A. SalakhutdinovN.F. Riccardin C, a bisbibenzyl compound from Primula macrocalyx.Chem. Nat. Compd.200743671271310.1007/s10600‑007‑0241‑8
    [Google Scholar]
  28. KosenkovaY.S. PolovinkaM.P. KomarovaN.I. KorchaginaD.V. MorozovS.V. VyalkovA.I. KurochkinaN.Y. CheremushkinaV.A. SalakhutdinovN.F. Fatty-acid composition and secondary metabolites from slightly polar extracts of the aerial part of Primula macrocalyx.Chem. Nat. Compd.200844556456810.1007/s10600‑008‑9145‑5
    [Google Scholar]
  29. TalrejaS. TiwariD.S. Complete Overview On Primula Vulgaris.Int. J. Life Sci. Pharma Res.20231327728610.22376/ijlpr.2023.13.6.P277‑P286
    [Google Scholar]
  30. Pharmacology in ancient Georgia and the ways of its further development from ancient times to XX century. Sokrat Salukvadze,1987188
  31. Zaza Panaskerteli-Tsitsishvili, healing book, karabadine”, publishing house.TbilisiSoviet Georgia1978623
    [Google Scholar]
  32. Glatthaar-SaalmüllerB. RauchhausU. RodeS. HaunschildJ. SaalmüllerA. Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret® against viruses causing respiratory infections.Phytomedicine20111911710.1016/j.phymed.2011.10.010
    [Google Scholar]
  33. MargineanuC. CucuV. GrecuL. PârvuC. The anticandida action of the saponine from Primula (author’s transl) Planta Med.,1976301353810.1055/s‑0028‑1097690 785496
    [Google Scholar]
  34. DemirS. TuranI. AliyaziciogluR. YamanS.O. AliyaziciogluY. Primula vulgaris extract induces cell cycle arrest and apoptosis in human cervix cancer cells.J. Pharm. Anal.20188530731110.1016/j.jpha.2018.05.003
    [Google Scholar]
  35. SufkaK.J. RoachJ.T. ChamblissW.G.Jr BroomS.L. FeltensteinM.W. WyandtC.M. ZengL. Anxiolytic properties of botanical extracts in the chick social separation-stress procedure.Psychopharmacology (Berl.)2001153221922410.1007/s002130000571 11205422
    [Google Scholar]
  36. BrondaniD.J. NascimentoC.R. de M Moreira, D.R.; Lima Leite, A.C.; de Souza, I.A.; Bieber, L.W. Synthesis and Antitumour Activity of the Primin (2-methoxy-6-n-pentyl-1,4-benzoquinone) and Analogues.Med. Chem.20073436937210.2174/157340607781024410 17627574
    [Google Scholar]
  37. Najmus-SaqibQ. AlamF. AhmadM. Antimicrobial and cytotoxicity activities of the medicinal plant Primula macrophylla.J. Enzyme Inhib. Med. Chem.200924369770110.1080/14756360802333406 18686139
    [Google Scholar]
  38. BhattH. SaklaniS. UpadhayayK. Anti-oxidant and anti-diabetic activities of ethanolic extract of Primula denticulata flowers.Indones. J. Pharm.20162727410.14499/indonesianjpharm27iss2pp74
    [Google Scholar]
  39. AhmadV.U. ShahM.G. Macrophyllicinin, a saponin from Primula macrophylla.J. Nat. Prod.19935691580158510.1021/np50099a018 8254351
    [Google Scholar]
  40. Ruiz-LópezN. HaslamR.P. Venegas-CalerónM. LarsonT.R. GrahamI.A. NapierJ.A. SayanovaO. The synthesis and accumulation of stearidonic acid in transgenic plants: A novel source of ‘heart‐healthy’ omega‐3 fatty acids.Plant Biotechnol. J.20097770471610.1111/j.1467‑7652.2009.00436.x 19702757
    [Google Scholar]
  41. MatsM.N. SavchenkoO.N. Mechanism of the contraceptive action of the triterpene glycosides from the rock jasmine Androsace septentrionalis L.Farmakol. Toksikol.19864923839 3086118
    [Google Scholar]
  42. Wekipedia. Georgian Soviet Encyclopedia. 1986. Available From:https://en.wikipedia.org/wiki/Georgian_Soviet_Encyclopedia
  43. BurdonR.H. Laboratory Techniques in Biochemistry and Molecular Biology.AmsterdamElsevier1991
    [Google Scholar]
  44. HarborneJ.B. Phytochemical methods: A guide to modern techniques of plant analysis.2nd edLondonChapman and Hall19985484
    [Google Scholar]
  45. KokateK.C. Practical pharmacognosy.4th edDelhiVallabh Prakashan1997218
    [Google Scholar]
  46. WagnerH. Plant Drug Analysis, A Thin Layer Chromatography Atlas.,1996
  47. MillerN.J. Rice-EvansC. DaviesM.J. GopinathanV. MilnerA. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.Clin. Sci. (Lond.)199384440741210.1042/cs0840407 8482045
    [Google Scholar]
  48. FranckT. Mouithys-MickaladA. RobertT. GhittiG. Deby-DupontG. NevenP. SerteynD. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: A structure/redox potential relationship study.Chem. Biol. Interact.2013206219420310.1016/j.cbi.2013.09.009 24060682
    [Google Scholar]
  49. WagnerH. Phenolic Compounds: Structure, Classification, and Antioxidant Power.Bioactive Compounds: Health Benefits and Potential Applications.Sawston, United KingdomWoodhead Publishing201910.1016/B978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  50. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  51. BondetV. Brand-WilliamsW. BersetC. Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method.Lebensm. Wiss. Technol.199730660961510.1006/fstl.1997.0240
    [Google Scholar]
  52. EtsèK.S. EtsèK.D. NyssenP. Mouithys-MickaladA. Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives.Chem. Biol. Interact.202134410951310.1016/j.cbi.2021.109513 33974901
    [Google Scholar]
  53. BenbarekH. Deby-DupontG. DebyC. CaudronI. Mathy-HartertM. LamyM. SerteynD. Experimental model for the study by chemiluminescence of the activation of isolated equine leucocytes.Res. Vet. Sci.1996611596410.1016/S0034‑5288(96)90112‑5 8819196
    [Google Scholar]
  54. KimJ.A. NeupaneG.P. LeeE.S. JeongB.S. ParkB.C. ThapaP. NADPH oxidase inhibitors: A patent review.Expert Opin. Ther. Pat.201121811471158
    [Google Scholar]
  55. GoelG. MakkarH.P.S. FrancisG. BeckerK. Phorbol esters: Structure, biological activity, and toxicity in animals.Int. J. Toxicol.200726427928810.1080/10915810701464641 17661218
    [Google Scholar]
  56. PaganiA. GaetaS. SavchenkoA.I. WilliamsC.M. AppendinoG. An improved preparation of phorbol from croton oil.Beilstein J. Org. Chem.2017131361136710.3762/bjoc.13.133 28781702
    [Google Scholar]
  57. FranckT. KohnenS. de la RebièreG. Deby-DupontG. DebyC. NiestenA. SerteynD. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase.Vet. Immunol. Immunopathol.20091303-424325010.1016/j.vetimm.2009.02.015 19328559
    [Google Scholar]
  58. FranckT. KohnenS. Deby-DupontG. GrulkeS. DebyC. SerteynD. A specific method for measurement of equine active myeloperoxidase in biological samples and in in vitro tests.J. Vet. Diagn. Invest.200618432633410.1177/104063870601800402 16921870
    [Google Scholar]
  59. AslamK. NawchooI.A. BhatM.A. GanieA.H. AslamN. Ethno-pharmacological review of genus Primula.Int. J. Adv. Res. (Indore)2014242934
    [Google Scholar]
  60. ArteagaJ.F. Ruiz-MontoyaM. PalmaA. Alonso-GarridoG. PintadoS. Rodríguez-MelladoJ.M. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles.Molecules20121755126513810.3390/molecules17055126 22555300
    [Google Scholar]
  61. LiangN. KittsD. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action.Molecules20141911191801920810.3390/molecules191119180 25415479
    [Google Scholar]
  62. NoroozisharafA. Samizadeh LahijiH. HatamzadehA. BakhshiD. Phytochemical attributes of endemic endangered primrose (Primula heterochroma Stapf.) accessions grown in Iran.Physiol. Mol. Biol. Plants201521457358110.1007/s12298‑015‑0328‑9 26600683
    [Google Scholar]
  63. TarapatskyyM. GumiennaA. SowaP. KapustaI. PuchalskiC. Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification.Molecules202126499710.3390/molecules26040997 33668513
    [Google Scholar]
  64. DerochetteS. FranckT. Mouithys-MickaladA. Deby-DupontG. NevenP. SerteynD. Intra- and extracellular antioxidant capacities of the new water-soluble form of curcumin (NDS27) on stimulated neutrophils and HL-60 cells.Chem. Biol. Interact.20132011-3495710.1016/j.cbi.2012.12.010 23291280
    [Google Scholar]
  65. WolfeK.L. LiuR.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements.J. Agric. Food Chem.200755228896890710.1021/jf0715166 17902627
    [Google Scholar]
  66. MalleE. FurtmüllerP.G. SattlerW. ObingerC. Myeloperoxidase: A target for new drug development?Br. J. Pharmacol.2007152683885410.1038/sj.bjp.0707358 17592500
    [Google Scholar]
  67. LiY. ZhuH. KuppusamyP. RoubaudV. ZweierJ.L. TrushM.A. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems.J. Biol. Chem.199827342015202310.1074/jbc.273.4.2015 9442038
    [Google Scholar]
  68. PortoB.N. SteinR.T. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing?Front. Immunol.2016731110.3389/fimmu.2016.00311 27574522
    [Google Scholar]
  69. SeibelJ. WonnemannM. WerzO. LehnerM.D. A tiered approach to investigate the mechanism of anti-inflammatory activity of an herbal medicinal product containing a fixed combination of thyme herb and primula root extracts.Clin. Phytosci.201841410.1186/s40816‑018‑0062‑2
    [Google Scholar]
  70. GonzálezR. BallesterI. López-PosadasR. SuárezM.D. ZarzueloA. Martínez-AugustinO. MedinaF.S.D. Effects of flavonoids and other polyphenols on inflammation.Crit. Rev. Food Sci. Nutr.201151433136210.1080/10408390903584094 21432698
    [Google Scholar]
  71. CizM. DenevP. KratchanovaM. VasicekO. AmbrozovaG. LojekA. Flavonoids inhibit the respiratory burst of neutrophils in mammals.Oxid. Med. Cell. Longev.201220121610.1155/2012/181295 22577489
    [Google Scholar]
  72. RibeiroD. FreitasM. LimaJ.L.C. FernandesE. Flavonoids inhibit the production of cytokines/chemokines and induce apoptosis in human neutrophils.Free Radic. Biol. Med.201475Suppl. 1S4610.1016/j.freeradbiomed.2014.10.806 26461385
    [Google Scholar]
  73. DaviesM.J. Myeloperoxidase-derived oxidation: Mechanisms of biological damage and its prevention.J. Clin. Biochem. Nutr.201048181910.3164/jcbn.11‑006FR 21297906
    [Google Scholar]
  74. Delporte, C.; Franck, T.; Noyon, C.; Dufour, D.; Rousseau, A.; Madhoun, P.; Desmet, J.M.; Serteyn, D.; Raes, M.; Nortier, J.; Vanhaeverbeek, M.; Moguilevsky, N.; Nève, J.; Vanhamme, L.; Van Antwerpen, P.; Zouaoui Boudjeltia, K. Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC–MS/MS after hydrolysis assisted by microwave: Application to the study of myeloperoxidase activity during hemodialysis. Talanta,20129960360910.1016/j.talanta.2012.06.044 22967600
    [Google Scholar]
  75. FranckT. KohnenS. BoudjeltiaK.Z. Van AntwerpenP. BosseloirA. NiestenA. GachO. NysM. Deby-DupontG. SerteynD. A new easy method for specific measurement of active myeloperoxidase in human biological fluids and tissue extracts.Talanta200980272372910.1016/j.talanta.2009.07.052 19836543
    [Google Scholar]
  76. NyssenP. FranckT. SerteynD. Mouithys-MickaladA. HoebekeM. Propofol metabolites and derivatives inhibit the oxidant activities of neutrophils and myeloperoxidase.Free Radic. Biol. Med.202219116417510.1016/j.freeradbiomed.2022.08.039 36064069
    [Google Scholar]
/content/journals/npj/10.2174/0122103155334830240912072007
Loading
/content/journals/npj/10.2174/0122103155334830240912072007
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test