Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Natural substances are gaining interest as anticancer agents nowadays due to the adverse effects of synthetic drugs. Among various natural substances, lycopene has emerged as a strong antioxidant agent and has been found to be effective against prostate, breast, colon, ovarian, liver, endometrial cancers, . This article reviews the therapeutic potential and proposed mechanism of action of lycopene against breast and gynecological cancer from 2005 to now. Experimental studies suggest that lycopene can inhibit tumor growth by regulating various signaling pathways for cell growth, arresting the cell cycle, and inducing cell apoptosis. Lycopene is reported to combat breast cancer specifically mechanisms, such as regulation of expression of p53 and Bax, suppression of cyclin D, inhibiting the activation of ERK and Akt signaling pathway, and gynecological cancer various signaling pathways such as STAT3, Nrf2, and NF-κB, down-regulation of ITGB1, ITGA5, FAK, MMP9, and EMT markers, .

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155331365241118061443
2025-01-03
2025-12-25
Loading full text...

Full text loading...

References

  1. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  2. KrishnaiahD. NithyanandamR. SarbatlyR. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.Crit. Rev. Food Sci. Nutr.201454444947310.1080/10408398.2011.58703824236997
    [Google Scholar]
  3. CaseiroM. AscensoA. CostaA. Creagh-FlynnJ. JohnsonM. SimõesS. Lycopene in human health.Lebensm. Wiss. Technol.202012710932310.1016/j.lwt.2020.109323
    [Google Scholar]
  4. KongK.W. KhooH.E. PrasadK.N. IsmailA. TanC.P. RajabN.F. Revealing the power of the natural red pigment lycopene.Molecules201015295998710.3390/molecules1502095920335956
    [Google Scholar]
  5. AghelN. RamezaniZ. AmirfakhrianS. Isolation and quantification of lycopene from tomato cultivated in dezfoul, Iran.Jundishapur J. Nat. Pharm. Prod.201161915
    [Google Scholar]
  6. AmorimA.G.N. VasconcelosA.G. SouzaJ. OliveiraA. GullónB. de Souza de Almeida LeiteJ.R. PintadoM. Bio-availability, anticancer potential, and chemical data of lycopene: an overview and technological prospecting.Antioxidants202211236010.3390/antiox1102036035204241
    [Google Scholar]
  7. BhuvaneswariV. NaginiS. Lycopene: a review of its potential as an anticancer agent.Curr. Med. Chem. Anticancer Agents20055662763510.2174/15680110577457466716305484
    [Google Scholar]
  8. ImranM. GhoratF. Ul-HaqI. Ur-RehmanH. AslamF. HeydariM. ShariatiM.A. OkuskhanovaE. YessimbekovZ. ThiruvengadamM. HashempurM.H. RebezovM. Lycopene as a natural antioxidant used to prevent human health disorders.Antioxidants20209870610.3390/antiox908070632759751
    [Google Scholar]
  9. KalpanaS.J. KulsangeM.G. Lycopene estimation from selected fruits and Vegetables.Int. J. Res. Biosci. Agric. Technol.201527263265
    [Google Scholar]
  10. GeB. WangW. GaoY. ChenX. Optimization of extraction of lycopene from carrot and determination of its antioxidant activity.J. Food Meas. Charact.20231755497550510.1007/s11694‑023‑02046‑9
    [Google Scholar]
  11. PriamF. MarcelinO. MarcusR. JôL.F. Smith-RavinE.J. Lycopene extraction from Psidium guajava L. and evaluation of its antioxidant properties using a modified DPPH test.IOSR J. Environ. Sci. Toxicol. Food Technol.2017114677310.9790/2402‑1104016773
    [Google Scholar]
  12. MalviyaN. Isolation and quantification of lycopene from watermelon, tomato and papaya.Res. J. Recent Sci.20142502
    [Google Scholar]
  13. GrabowskaM. WawrzyniakD. RolleK. ChomczyńskiP. OziewiczS. JurgaS. BarciszewskiJ. Let food be your medicine: Nutraceutical properties of lycopene.Food Funct.20191063090310210.1039/C9FO00580C31120074
    [Google Scholar]
  14. Sotomayor-GerdingD. OomahB.D. AcevedoF. MoralesE. BustamanteM. SheneC. RubilarM. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability.Food Chem.201619946347010.1016/j.foodchem.2015.12.00426775996
    [Google Scholar]
  15. HaT.V.A. KimS. ChoiY. KwakH.S. LeeS.J. WenJ. OeyI. KoS. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract.Food Chem.201517811512110.1016/j.foodchem.2015.01.04825704691
    [Google Scholar]
  16. WuX. LiM. XiaoZ. DagliaM. DraganS. DelmasD. VongC.T. WangY. ZhaoY. ShenJ. NabaviS.M. SuredaA. CaoH. Simal-GandaraJ. WangM. SunC. WangS. XiaoJ. Dietary polyphenols for managing cancers: What have we ignored?Trends Food Sci. Technol.202010115016410.1016/j.tifs.2020.05.017
    [Google Scholar]
  17. LiangX. MaC. YanX. LiuX. LiuF. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene.Trends Food Sci. Technol.20199318519610.1016/j.tifs.2019.08.019
    [Google Scholar]
  18. Roldán-GutiérrezJ.M. Dolores Luque de CastroM. Lycopene: The need for better methods for characterization and determination.Trends Analyt. Chem.200726216317010.1016/j.trac.2006.11.013
    [Google Scholar]
  19. AgarwalA. DurairajanayagamD. OngC. PrashastP. Lycopene and male infertility.Asian J. Androl.201416342042510.4103/1008‑682X.12638424675655
    [Google Scholar]
  20. KelkelM. SchumacherM. DicatoM. DiederichM. Antioxidant and anti-proliferative properties of lycopene.Free Radic. Res.201145892594010.3109/10715762.2011.56416821615277
    [Google Scholar]
  21. MartínezA. Melendez-MartínezA.J. Lycopene, oxidative cleavage derivatives and antiradical activity.Comput. Theor. Chem.20161077929810.1016/j.comptc.2015.11.001
    [Google Scholar]
  22. IpB.C. HuK.Q. LiuC. SmithD.E. ObinM.S. AusmanL.M. WangX.D. Lycopene metabolite, apo-10′-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice.Cancer Prev. Res. (Phila.)20136121304131610.1158/1940‑6207.CAPR‑13‑017824085778
    [Google Scholar]
  23. SongX. LuoY. MaL. HuX. Simal-GandaraJ. WangL.S. BajpaiV.K. XiaoJ. ChenF. Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent.Semin. Cancer Biol.20217333134610.1016/j.semcancer.2021.03.02833794344
    [Google Scholar]
  24. MoranN.E. CichonM.J. RiedlK.M. GraingerE.M. SchwartzS.J. NovotnyJ.A. ErdmanJ.W. ClintonS.K. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults.Am. J. Clin. Nutr.201510261436144910.3945/ajcn.114.10314326561629
    [Google Scholar]
  25. LiW. YalcinM. LinQ. ArdawiM.S.M. MousaS.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery.J. Control. Release201724811712410.1016/j.jconrel.2017.01.00928077264
    [Google Scholar]
  26. ZhaoY. XinZ. LiN. ChangS. ChenY. GengL. ChangH. ShiH. ChangY.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism.Free Radic. Biol. Med.201812411110.1016/j.freeradbiomed.2018.05.08229807160
    [Google Scholar]
  27. FanY. XieX. ZhangB. ZhangZ. Absorption and antioxidant activity of lycopene nanoliposomes in vivo.Curr. Top. Nutraceutical Res.201194131
    [Google Scholar]
  28. JainS. WinuprasithT. SuphantharikaM. Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion.Food Hydrocoll.202010410573010.1016/j.foodhyd.2020.105730
    [Google Scholar]
  29. Salvia-TrujilloL. McClementsD.J. Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size.Food Chem.201621029530410.1016/j.foodchem.2016.04.12527211650
    [Google Scholar]
  30. WangH. WangS. ZhuH. WangS. XingJ. Inclusion complexes of lycopene and β-cyclodextrin: Preparation, characterization, stability and antioxidant activity.Antioxidants20198831410.3390/antiox808031431426339
    [Google Scholar]
  31. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  32. SatoH. ShibataM. ShimizuT. ShibataS. ToriumiH. EbineT. KuroiT. IwashitaT. FunakuboM. KayamaY. AkazawaC. WajimaK. NakagawaT. OkanoH. SuzukiN. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion.Neuroscience201324834535810.1016/j.neuroscience.2013.06.01023774632
    [Google Scholar]
  33. Navarro-YepesJ. Zavala-FloresL. AnandhanA. WangF. SkotakM. ChandraN. LiM. PappaA. Martinez-FongD. Del RazoL.M. Quintanilla-VegaB. FrancoR. Antioxidant gene therapy against neuronal cell death.Pharmacol. Ther.2014142220623010.1016/j.pharmthera.2013.12.00724333264
    [Google Scholar]
  34. PacherP. BeckmanJ.S. LiaudetL. Nitric oxide and peroxynitrite in health and disease.Physiol. Rev.200787131542410.1152/physrev.00029.200617237348
    [Google Scholar]
  35. GenestraM. Oxyl radicals, redox-sensitive signalling cascades and antioxidants.Cell. Signal.20071991807181910.1016/j.cellsig.2007.04.00917570640
    [Google Scholar]
  36. HalliwellB. Biochemistry of oxidative stress.Biochem. Soc. Trans.20073551147115010.1042/BST035114717956298
    [Google Scholar]
  37. JaswirI. NoviendriD. HasriniR.F. OctaviantiF. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry.J. Med. Plants Res.201153371197131
    [Google Scholar]
  38. ZuorroA. LavecchiaR. MediciF. PigaL. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace.Food Bioprocess Technol.20136123499350910.1007/s11947‑012‑1003‑6
    [Google Scholar]
  39. Ben-DorA. SteinerM. GheberL. DanilenkoM. DubiN. LinnewielK. ZickA. SharoniY. LevyJ. Carotenoids activate the antioxidant response element transcription system.Mol. Cancer Ther.20054117718610.1158/1535‑7163.177.4.115657364
    [Google Scholar]
  40. UppalaP.T. DissmoreT. LauB.H.S. AndachtT. RajaramS. Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: A proteomic analysis.Phytother. Res.201327459560110.1002/ptr.476422718574
    [Google Scholar]
  41. FornelliF. LeoneA. VerdescaI. MinerviniF. ZacheoG. The influence of lycopene on the proliferation of human breast cell line (MCF-7).Toxicol. In Vitro200721221722310.1016/j.tiv.2006.09.02417140762
    [Google Scholar]
  42. XuJ. LiY. HuH. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis.Mol. Cell. Probes20194610141910.1016/j.mcp.2019.07.00231279748
    [Google Scholar]
  43. Trejo-SolísC. Pedraza-ChaverríJ. Torres-RamosM. Jiménez-FarfánD. Cruz SalgadoA. Serrano-GarcíaN. Osorio-RicoL. SoteloJ. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition.Evid. Based Complement. Alternat. Med.2013201370512110.1155/2013/70512123970935
    [Google Scholar]
  44. PengS.J. LiJ. ZhouY. TuoM. QinX.X. YuQ. ChengH. LiY.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.Genet. Mol. Res.20171621310.4238/gmr1602943428407181
    [Google Scholar]
  45. VasconcelosA.G. AmorimA.G.N. dos SantosR.C. SouzaJ.M.T. de SouzaL.K.M. AraújoT.S.L. NicolauL.A.D. de Lima CarvalhoL. de AquinoP.E.A. da Silva MartinsC. RopkeC.D. SoaresP.M.G. KuckelhausS.A.S. MedeirosJ.V.R. LeiteJ.R.S.A. Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice.Food Res. Int.201799Pt 295996810.1016/j.foodres.2017.01.01728847433
    [Google Scholar]
  46. KohM.S. HwangJ.S. MoonA.R. Lycopene inhibits proliferation, invasion and migration of human breast cancer cells.Biomol. Ther. (Seoul)2010181929810.4062/biomolther.2010.18.1.092
    [Google Scholar]
  47. ChenM.L. LinY.H. YangC.M. HuM.L. Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways.Mol. Nutr. Food Res.201256688989910.1002/mnfr.20110068322707264
    [Google Scholar]
  48. HuangC.S. ShihM.K. ChuangC.H. HuM.L. Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells.J. Nutr.200513592119212310.1093/jn/135.9.211916140886
    [Google Scholar]
  49. RaghuH. SodadasuP.K. MallaR.R. GondiC.S. EstesN. RaoJ.S. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells.BMC Cancer201010164710.1186/1471‑2407‑10‑64721106094
    [Google Scholar]
  50. NusseR. VarmusH. Three decades of Wnts: A personal perspective on how a scientific field developed.EMBO J.201231122670268410.1038/emboj.2012.14622617420
    [Google Scholar]
  51. PreetR. MohapatraP. DasD. SatapathyS.R. ChoudhuriT. WyattM.D. KunduC.N. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC.Carcinogenesis201334227728610.1093/carcin/bgs35123129580
    [Google Scholar]
  52. TakeshimaM. OnoM. HiguchiT. ChenC. HaraT. NakanoS. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines.Cancer Sci.2014105325225710.1111/cas.1234924397737
    [Google Scholar]
  53. VelmuruganB. NaginiS. Combination chemoprevention of experimental gastric carcinogenesis by s-allylcysteine and lycopene: modulatory effects on glutathione redox cycle antioxidants.J. Med. Food20058449450110.1089/jmf.2005.8.49416379561
    [Google Scholar]
  54. ZhangB. GuY. Low expression of ERK signaling pathway affecting proliferation, cell cycle arrest and apoptosis of human gastric HGC-27 cells line.Mol. Biol. Rep.20144163659366910.1007/s11033‑014‑3230‑624554029
    [Google Scholar]
  55. CuiL. XuF. WuK. LiL. QiaoT. LiZ. ChenT. SunC. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ1.Eur. J. Pharmacol.202088117323010.1016/j.ejphar.2020.17323032553810
    [Google Scholar]
  56. NgocN.B. LvP. ZhaoW.E. Suppressive effects of lycopene and β-carotene on the viability of the human esophageal squamous carcinoma cell line EC109.Oncol. Lett.201815567276732[PMID: 29731858
    [Google Scholar]
  57. TangF.Y. PaiM.H. WangX.D. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model.J. Agric. Food Chem.201159169011902110.1021/jf201764421744871
    [Google Scholar]
  58. LinM.C. WangF.Y. KuoY.H. TangF.Y. Cancer chemopreventive effects of lycopene: Suppression of MMP-7 expression and cell invasion in human colon cancer cells.J. Agric. Food Chem.20115920113041131810.1021/jf202433f21923160
    [Google Scholar]
  59. LiB-H. JiangL-N. LiuY-B. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression.Asian J. Androl.2019211808510.4103/aja.aja_70_1830198495
    [Google Scholar]
  60. JhouB.Y. SongT.Y. LeeI. HuM.L. YangN.C. Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by downregulation of NADPH oxidase 4 protein expression.J. Agric. Food Chem.201765326893690310.1021/acs.jafc.7b0303628723216
    [Google Scholar]
  61. HwangE.S. LeeH.J. Inhibitory effects of lycopene on the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells.Exp. Biol. Med. (Maywood)2006231332232710.1177/15353702062310031316514180
    [Google Scholar]
  62. YeM. WuQ. ZhangM. HuangJ. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.Mol. Med. Rep.20161442953295810.3892/mmr.2016.559727510325
    [Google Scholar]
  63. TaoA. WangX. LiC. Effect of Lycopene on oral squamous cell carcinoma cell growth by inhibiting IGF1 pathway.Cancer Manag. Res.20211372373210.2147/CMAR.S28392733531840
    [Google Scholar]
  64. Cancer facts & figures 2023.2023Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html
  65. GoyalP.K. KhuranaS. MittalA. Hydrogel-bound cytotoxic drug delivery system for breast cancer.Health Sci. Rev. (Oxf.)20239100140
    [Google Scholar]
  66. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  67. SahinK. OrhanC. SahinN. KucukO. Anticancer properties of lycopene.Bioactive Molecules in Food. MérillonJ.M. RamawatK.G. ChamSpringer201993596910.1007/978‑3‑319‑78030‑6_88
    [Google Scholar]
  68. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  69. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  70. SahinK. YeniceE. TuzcuM. OrhanC. MizrakC. OzercanI.H. SahinN. YilmazB. BilirB. OzpolatB. KucukO. Lycopene protects against spontaneous ovarian cancer formation in laying hens.J. Cancer Prev.2018231253610.15430/JCP.2018.23.1.2529629346
    [Google Scholar]
  71. HolzapfelN.P. ShokoohmandA. WagnerF. LandgrafM. ChampS. HolzapfelB.M. ClementsJ.A. HutmacherD.W. LoessnerD. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load.Am. J. Cancer Res.20177613221336[PMID: 28670494
    [Google Scholar]
  72. AktepeO.H. Şahi̇nT.K. GünerG. ArikZ. YalçinŞ. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor-kappa B (NF-κB) pathway.Turk. J. Med. Sci.202151136837410.3906/sag‑2005‑41332718121
    [Google Scholar]
  73. DehnaviM.K. Ebrahimpour-KoujanS. LotfiK. AzadbakhtL. The association between circulating carotenoids and risk of breast cancer: A systematic review and dose–response meta-analysis of prospective studies.Adv. Nutr.202415110013510.1016/j.advnut.2023.10.00738436219
    [Google Scholar]
  74. VoskuilD.W. VrielingA. KorseC.M. BeijnenJ.H. BonfrerJ.M.G. van DoornJ. KaasR. OldenburgH.S.A. RussellN.S. RutgersE.J.T. VerhoefS. van LeeuwenF.E. van’t VeerL.J. RookusM.A. Effects of lycopene on the insulin-like growth factor (IGF) system in premenopausal breast cancer survivors and women at high familial breast cancer risk.Nutr. Cancer200860334235310.1080/0163558070186177718444168
    [Google Scholar]
  75. LiX. XuJ. Meta-analysis of the association between dietary lycopene intake and ovarian cancer risk in postmenopausal women.Sci. Rep.201441488510.1038/srep0488524810584
    [Google Scholar]
  76. LiuQ. LooW.T.Y. SzeS.C.W. TongY. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NF-κB, cyclinD and MMP-1 transcription.Phytomedicine2009161091692210.1016/j.phymed.2009.04.00819524420
    [Google Scholar]
  77. ZongH. WangF. FanQ. WangL. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways.Mol. Biol. Rep.20123944803480810.1007/s11033‑011‑1273‑521947854
    [Google Scholar]
  78. BachmeierB.E. MohrenzI.V. MirisolaV. SchleicherE. RomeoF. HöhnekeC. JochumM. NerlichA.G. PfefferU. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NF-κB.Carcinogenesis200829477978910.1093/carcin/bgm24817999991
    [Google Scholar]
  79. DebG. ThakurV.S. LimayeA.M. GuptaS. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells.Mol. Carcinog.201554648549910.1002/mc.2212124481780
    [Google Scholar]
  80. HsuY.C. LiouY.M. The anti‐cancer effects of (−)‐Epigalocathine‐3‐gallate on the signaling pathways associated with membrane receptors in MCF‐7 cells.J. Cell. Physiol.2011226102721273010.1002/jcp.2262321792929
    [Google Scholar]
  81. ChungM.H. KimD.H. NaH.K. KimJ.H. KimH.N. HaegemanG. SurhY.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells.Mutat. Res.2014768748310.1016/j.mrfmmm.2014.04.00324742714
    [Google Scholar]
  82. PonsD.G. Nadal-SerranoM. Blanquer-RosselloM.M. Sastre-SerraJ. OliverJ. RocaP. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio.J. Cell. Biochem.2014115594995810.1002/jcb.2473724375531
    [Google Scholar]
  83. WangY. LeeK.W. ChanF.L. ChenS. LeungL.K. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells.Toxicol. Sci.2006921717710.1093/toxsci/kfj19016611627
    [Google Scholar]
  84. LiY. LiuJ. LiuX. XingK. WangY. LiF. YaoL. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9.Appl. Biochem. Biotechnol.2006135318119210.1385/ABAB:135:3:18117299206
    [Google Scholar]
  85. IritiM. KubinaR. CochisA. SorrentinoR. VaroniE.M. Kabała-DzikA. AzzimontiB. DziedzicA. RimondiniL. WojtyczkaR.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells.Phytother. Res.201731101529153810.1002/ptr.587828752532
    [Google Scholar]
  86. LinT.H. HsuW.H. TsaiP.H. HuangY.T. LinC.W. ChenK.C. TsaiI.H. KandaswamiC.C. HuangC.J. ChangG.D. LeeM.T. ChengC.H. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial–mesenchymal transition signaling.Food Funct.2017841558156810.1039/C6FO00551A28277581
    [Google Scholar]
  87. GaoX. WangB. WeiX. MenK. ZhengF. ZhouY. ZhengY. GouM. HuangM. GuoG. HuangN. QianZ. WeiY. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer.Nanoscale20124227021703010.1039/c2nr32181e23044718
    [Google Scholar]
  88. LiuY. GongW. YangZ.Y. ZhouX.S. GongC. ZhangT.R. WeiX. MaD. YeF. GaoQ.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer.Apoptosis201722454455710.1007/s10495‑016‑1334‑228188387
    [Google Scholar]
  89. DeepikaM.S. ThangamR. SheenaT.S. SasirekhaR. SivasubramanianS. BabuM.D. JeganathanK. ThirumuruganR. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis.Biomed. Pharmacother.20191091181119510.1016/j.biopha.2018.10.17830551368
    [Google Scholar]
  90. HussainA. HarishG. PrabhuS.A. MohsinJ. KhanM.A. RizviT.A. SharmaC. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression.Cancer Epidemiol.2012366e387e39310.1016/j.canep.2012.07.00522884883
    [Google Scholar]
  91. XuH. GongZ. ZhouS. YangS. WangD. ChenX. WuJ. LiuL. ZhongS. ZhaoJ. TangJ. Liposomal curcumin targeting endometrial Cancer through the NF-κB pathway.Cell. Physiol. Biochem.201848256958210.1159/00049188630021217
    [Google Scholar]
  92. SeoJ. KimB. DhanasekaranD.N. TsangB.K. SongY.S. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells.Cancer Lett.20163711303710.1016/j.canlet.2015.11.02126607901
    [Google Scholar]
  93. LiuQ. ZhuD. HaoB. ZhangZ. TianY. Luteolin promotes the sensitivity of cisplatin in ovarian cancer by decreasing PRPA1-medicated autophagy.Cell. Mol. Biol.2018646172210.14715/cmb/2018.64.6.429808795
    [Google Scholar]
  94. ZhaoB. HuM. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells.Oncol. Lett.2013661749175510.3892/ol.2013.163224843386
    [Google Scholar]
  95. HeZ. ChenA.Y. RojanasakulY. RankinG.O. ChenY.C. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells.Oncol. Rep.201635129129710.3892/or.2015.4354
    [Google Scholar]
  96. WangS. MengX. DongY. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction.Int. J. Oncol.20175041330134010.3892/ijo.2017.389028259944
    [Google Scholar]
  97. AchiwaY. HasegawaK. UdagawaY. Effect of ursolic acid on MAPK in cyclin D1 signaling and RING-type E3 ligase (SCF E3s) in two endometrial cancer cell lines.Nutr. Cancer20136571026103310.1080/01635581.2013.81029224083669
    [Google Scholar]
  98. ZhangJ. WangW. QianL. ZhangQ. LaiD. QiC. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition.Oncol. Rep.20153452375238410.3892/or.2015.421326323892
    [Google Scholar]
  99. YuH.C. ChenL.J. ChengK.C. LiY.X. YehC.H. ChengJ.T. Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog.Phytother. Res.201226570971510.1002/ptr.361822016029
    [Google Scholar]
  100. FanL. MaY. LiuY. ZhengD. HuangG. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.Eur. J. Pharmacol.2014743798810.1016/j.ejphar.2014.09.01925242120
    [Google Scholar]
/content/journals/npj/10.2174/0122103155331365241118061443
Loading
/content/journals/npj/10.2174/0122103155331365241118061443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test