Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Paper sheet materials and written compositions are complex multi-component mixtures, including dyes, solvents and resins, preservatives, and antioxidants, ., complex organic mixtures that change over time. Technical examination of materials and documents is in demand in the judicial and archival industry. Determining the actual date of appearance of a particular inscription on a sheet of paper is one of the most important and complex expert tasks. The task is divided into two components: analysis of the processes of temporary degradation of paper pulp and processes of temporary degradation of organic writing materials.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155322800240911053346
2024-09-20
2025-09-08
Loading full text...

Full text loading...

References

  1. Olegovna ErshovaK. Valerievna KochemirovskaiaS. CieslaR. Pavlovna KirillovaN. Anatolyevich MokhorovD. Alekseevich KochemirovskyV. Physicochemical analysis of the age of handwritten inscriptions on documents: Trends and prospects.Expert Syst. Appl.2022205111768310.1016/j.eswa.2022.117683
    [Google Scholar]
  2. WeyermannC. AlmogJ. BüglerJ. CantuA.A. Minimum requirements for application of ink dating methods based on solvent analysis in casework.Forensic Sci. Int.20112101-3526210.1016/j.forsciint.2011.01.034 21377304
    [Google Scholar]
  3. Beck-CandanedoS. RomanM. GrayD.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions.Biomacromolecules2005621048105410.1021/bm049300p 15762677
    [Google Scholar]
  4. MιχοπούλουA. Skin care products-cosmetics for ethnic skin and hair.Available from2022[https://polynoe.lib.uniwa.gr/xmlui/handle/11400/2754?locale-attribute=
    [Google Scholar]
  5. FazioE. CorsaroC. MallamaceD. Paper aging and degradation monitoring by the non-destructive two-dimensional micro-Raman mapping.Spectrochim. Acta A Mol. Biomol. Spectrosc.2020228811766010.1016/j.saa.2019.117660 31740118
    [Google Scholar]
  6. FazioE. TrussoS. PonterioR.C. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation.Appl. Surf. Sci.20132723641
    [Google Scholar]
  7. HuX. LiuY. DuanY. HanJ. LiZ. HanT. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718471210.1016/j.saa.2017.04.079 28475959
    [Google Scholar]
  8. KaszowskaZ. MalekK. Staniszewska-SlezakE. NiedzielskaK. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.Spectrochim. Acta A Mol. Biomol. Spectrosc.201616971510.1016/j.saa.2016.06.012 27314909
    [Google Scholar]
  9. BillaE. KoutsoulaE. KoukiosE.G. Fluorescence analysis of paper pulps.Bioresour. Technol.1999671253310.1016/S0960‑8524(99)00097‑8
    [Google Scholar]
  10. CalviniP. GorassiniA. MerlaniA.L. On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation.Cellulose200815219320310.1007/s10570‑007‑9162‑8
    [Google Scholar]
  11. GorshkovaK.O. TumkinI.I. MyundL.A. TverjanovichA.S. MereshchenkoA.S. PanovM.S. KochemirovskyV.A. The investigation of dye aging dynamics in writing inks using Raman spectroscopy.Dyes Pigments201613123924510.1016/j.dyepig.2016.04.009
    [Google Scholar]
  12. GorshkovaK.O. RossinskayaE.R. KirillovaN.P. FogelA.A. KochemirovskaiaS.V. KochemirovskyV.A. Investigation of the new possibility of mathematical processing of Raman spectra for dating documents.Sci. Justice202060545146510.1016/j.scijus.2020.06.007 32873385
    [Google Scholar]
  13. Determination of the remoteness ofan event comprising the production of a cellulose-containing object for protecting an article for falsification. U.S 2015/0064427,2015
  14. GrechukhaN. GorshkovaK. PanovM. TumkinI. KirillovaE. LukianovV. KirillovaN. KochemirovskyV. Analysis of the aging processes of writing ink: Raman spectroscopy versus gas chromatography aspects.Appl. Sci. (Basel)201771099110.3390/app7100991
    [Google Scholar]
  15. ChiriuD. RicciP.C. CappelliniG. CarbonaroC.M. Ancient and modern paper: Study on ageing and degradation process by means of portable NIR μ-Raman spectroscopy.Microchem. J.2018138263410.1016/j.microc.2017.12.024
    [Google Scholar]
  16. SamynP. Lateral mapping of poly(styrene-co-maleimide) nanoparticle coatings on paper by confocal Raman microscopy.Vib. Spectrosc.201788273910.1016/j.vibspec.2016.09.025
    [Google Scholar]
  17. DupontA. EgasseC. MorinA. VasseurF. Comprehensive characterisation of cellulose- and lignocellulose-degradation products in aged papers: Capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives.Carbohydr. Polym.200768111610.1016/j.carbpol.2006.07.005
    [Google Scholar]
  18. SparrmanT. SvenningssonL. Sahlin-SjövoldK. NordstiernaL. WestmanG. BerninD. A revised solid-state NMR method to assess the crystallinity of cellulose.Cellulose201926178993900310.1007/s10570‑019‑02718‑0
    [Google Scholar]
  19. CalcerradaM. García-RuizC. Analysis of questioned documents: A review.Anal. Chim. Acta201585314316610.1016/j.aca.2014.10.057 25467455
    [Google Scholar]
  20. AsakaraK. IwamotoM. IsogaiA. Influences of fatty acid anhydride components present in AKD wax on emulsion stability and paper sizing performance. Appita: Technology, Innovation, Manufacturing.Environment2006594285290
    [Google Scholar]
  21. San RománI. BartoloméL. AlonsoM.L. AlonsoR.M. EzcurraM. DATINK pilot study: An effective methodology for ballpoint pen ink dating in questioned documents.Anal. Chim. Acta201589210511410.1016/j.aca.2015.08.038 26388480
    [Google Scholar]
  22. NiY. HeN. LüY. ZouN. SongH. LiH. ZhaoP. Study of ink aging: Targeting triethylene glycol in carbon-based black gel ink strokes on paper.Forensic Sci. Int.202031111029610.1016/j.forsciint.2020.110296 32344206
    [Google Scholar]
  23. KoenigA. BüglerJ. KirschD. KöhlerF. WeyermannC. Ink dating using thermal desorption and gas chromatography/mass spectrometry: comparison of results obtained in two laboratories.J. Forensic Sci.201560s1S152S16110.1111/1556‑4029.12603 25389038
    [Google Scholar]
  24. LociciroS. DujourdyL. MazzellaW. MargotP. LockE. Dynamic of the ageing of ballpoint pen inks: quantification of phenoxyethanol by GC-MS.J. Forensic Sci.200444316517110.1016/S1355‑0306(04)71709‑8
    [Google Scholar]
  25. KoenigA. MagnolonS. WeyermannC. A comparative study of ballpoint ink ageing parameters using GC/MS.Forensic Sci. Int.20152529310610.1016/j.forsciint.2015.03.027 25989257
    [Google Scholar]
  26. Ortiz-HerreroL. de Almeida AssisA.C. BartoloméL. AlonsoM.L. MagureguiM.I. AlonsoR.M. Seixas de MeloJ.S. A novel, non-invasive, multi-purpose and comprehensive method to date inks in real handwritten documents based on the monitoring of the dye ageing processes.Chemom. Intell. Lab. Syst.202020710418710.1016/j.chemolab.2020.104187
    [Google Scholar]
  27. IslekD.S. IsatE. CengizS. Determining malpractice by ink aging method.Medicine201761136138
    [Google Scholar]
  28. IslekD.S. IsatE. CengizS. The structure and age determination of the writings written with ballpoint pen.Medicine201871166169
    [Google Scholar]
  29. SauzierG. McGannJ. LewisS.W. van BronswijkW. A study into the ageing and dating of blue ball tip inks on paper using in situ visible spectroscopy with chemometrics.Anal. Methods201810475613562110.1039/C8AY01418C
    [Google Scholar]
  30. Díaz-SantanaO. Conde-HardissonF. Vega-MorenoD. Comparison of the main dating methods for six ball-point pen inks.Microchem. J.201813855056110.1016/j.microc.2018.01.045
    [Google Scholar]
  31. LideD.R. CRC handbook of chemistry and physics.CRC press2004
    [Google Scholar]
  32. CammengaH.K. SchulzeF.W. TheuerlW. Vapor pressure and evaporation coefficient of glycerol.J. Chem. Eng. Data197722213113410.1021/je60073a004
    [Google Scholar]
  33. MohammadzadehA. BarlettaM. GisarioA. Manufacturing of cellulose-based paper: dynamic water absorption before and after fiber modifications with hydrophobic agents.Appl. Phys. Mater. Sci. Process.2020126538310.1007/s00339‑020‑03577‑4
    [Google Scholar]
  34. KupczakA. BrataszŁ. Kryściak-CzerwenkaJ. KozłowskiR. Moisture sorption and diffusion in historical cellulose-based materials.Cellulose20182552873288410.1007/s10570‑018‑1772‑9
    [Google Scholar]
  35. NilssonL. WilhelmssonB. StenstromS. The diffusion of water vapour through pulp and paper.Dry. Technol.19931161205122510.1080/07373939308916896
    [Google Scholar]
  36. BlomstedtM. KontturiE. VuorinenT. Optimising CMC sorption in order to improve tensile stiffness of hardwood pulp sheets.Nord. Pulp Paper Res. J.200722333634210.3183/npprj‑2007‑22‑03‑p336‑342
    [Google Scholar]
  37. RezazadehE. VaysiR. SoltaniM. NajafiA. EbadiS.E. Comparison of the internal functionalization and surface modification methods of chemi-mechanical pulp handsheets using nanocellulose, chitosan, and DTPA.BioResources20221722810282610.15376/biores.17.2.2810‑2826
    [Google Scholar]
  38. OlssonA.M. SalménL. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy.Carbohydr. Res.2004339481381810.1016/j.carres.2004.01.005 14980824
    [Google Scholar]
  39. WistaraN. YoungR.A. Properties and treatments of pulps from recycled paper. Part I. Physical and chemical properties of pulps.Cellulose19996429132410.1023/A:1009221125962
    [Google Scholar]
  40. WellischE. HaganL. MarkerL. SweetingO.J. Interaction of cellulose with small molecules. Glycerol and ethylene carbonate.J. Appl. Polym. Sci.19603933133710.1002/app.1960.070030910
    [Google Scholar]
  41. PaudelS. RegmiS. JanaswamyS. Effect of glycerol and sorbitol on cellulose-based biodegradable films.Food Packag. Shelf Life20233710109010.1016/j.fpsl.2023.101090
    [Google Scholar]
  42. ZhangQ. TanX. WangW. YuQ. ChenX. MiaoC. GuoY. ZhangY. ZhuangX. SunY. KongX. YuanZ. A novel recyclable alkaline biphasic 2-phenoxyethanol/water system for rice straw biorefinery under mild conditions.ACS Sustain. Chem.& Eng.20208207649765510.1021/acssuschemeng.0c01075
    [Google Scholar]
  43. ZhangQ. DaiC. TanX. HeX. ZhangK. XuX. ZhuangX. Biphasic fractionation of lignocellulosic biomass based on the combined action of pretreatment severity and solvent effects on delignification.Bioresour. Technol.202336912847710.1016/j.biortech.2022.128477 36509300
    [Google Scholar]
  44. SinghalR. NagpalA.K. MathurG.N. Study of ethyl cellulose—benzoic acid interactions in matrices for controlled drug release by DSC.J. Therm. Anal. Calorim.1999581293810.1023/A:1010183301617
    [Google Scholar]
  45. LarssonA. SteniusP. Sorption of small organic molecules by cellulose from hexane solutions.Nord. Pulp Paper Res. J.198723879110.3183/npprj‑1987‑02‑03‑p087‑091
    [Google Scholar]
  46. SakellariouP. RoweR.C. WhiteE.F.T. Polymer/polymer interaction in blends of ethyl cellulose with both cellulose derivatives and polyethylene glycol 6000.Int. J. Pharm.1986341-29310310.1016/0378‑5173(86)90014‑1
    [Google Scholar]
  47. Berger-KarinC. HendriksU. Geyer-LippmannJ. Comparison of natural and artificial aging of ballpoint inks.J. Forensic Sci.200853498999210.1111/j.1556‑4029.2008.00770.x 18489551
    [Google Scholar]
  48. AthiraA.S. KiruthikaR. IngaladalN. KrishnakumarK.A. RaveenaN.K. GopikaB. LankalapalliR.S. NMR-based phytochemical profiling of palmyra palm syrup infused with dry ginger, black pepper, and long pepper.Current Nutraceut.202341110
    [Google Scholar]
  49. ChandiokK. MondalP.R. Role of microscopy in forensic science research and investigation.Indian Inter. J.Foren. Med. Toxicol.2017153555810.5958/0974‑4487.2017.00010.4
    [Google Scholar]
  50. TrosmanE. A. BezhanishviliG. S. Determining the limitation period for the fulfillment of details.Theory pract. foren. expertise,20132308088
    [Google Scholar]
  51. ElvinM. The effect of humidity and temperature on paper properties.2021Available fromhttps://nvlpubs.nist.gov/nistpubs/Legacy/circ/nbscircular445.pdf
    [Google Scholar]
  52. AginskyV.N. Measuring ink extractability as a function of age-why the relative aging approach is unreliable and why it is more correct to measure ink volatile components than dyes.JFDE19984214230
    [Google Scholar]
  53. GyslingH.J. Nanoinks in inkjet metallization — Evolution of simple additive-type metal patterning.Curr. Opin. Colloid Interface Sci.201419215516210.1016/j.cocis.2014.03.013
    [Google Scholar]
  54. TrejosT. FloresA. AlmirallJ.R. Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy.Spectrochim. Acta B At. Spectrosc.2010651188489510.1016/j.sab.2010.08.004
    [Google Scholar]
  55. OliveiraT. D. BluntM. J. BijeljicB. Multispecies reactive transport in a microporous rock: Impact of flow heterogeneity and reversibility of reaction. Water Resour. Resea.,20205612
  56. WebsterC.E. DragoR.S. ZernerM.C. A method for characterizing effective pore sizes of catalysts.J. Phys. Chem. B199910381242124910.1021/jp984055n
    [Google Scholar]
  57. WeyermannC. SpenglerB. The potential of artificial aging for modelling of natural aging processes of ballpoint ink.Forensic Sci. Int.20081801233110.1016/j.forsciint.2008.06.012 18676107
    [Google Scholar]
  58. JayaweeraC.D. AzizN. Reliability of principal component analysis and Pearson correlation coefficient, for application in artificial neural network model development, for water treatment plants.IOP Conf. Series Mater. Sci. Eng.2018458101207610.1088/1757‑899X/458/1/012076
    [Google Scholar]
  59. SchoberP. BoerC. SchwarteL.A. Correlation coefficients: appropriate use and interpretation.Anesth. Analg.201812651763176810.1213/ANE.0000000000002864 29481436
    [Google Scholar]
  60. MokhorovD.A. KochemirovskyV.A. Document dating.St. Petersburg, USAPublishing and Printing Association of Higher Educational Institutions202310.52565/9785911552282
    [Google Scholar]
  61. WeyermannC. KirschD. VeraC.C. SpenglerB. A GC/MS study of the drying of ballpoint pen ink on paper.Forensic Sci. Int.20071682-311912710.1016/j.forsciint.2006.06.076 16901668
    [Google Scholar]
  62. KochemirovskyV. BarovaV. DenisovaY. IschukD. FogelA. KochemirovskaiaS. Influence of the humidity factor on artificial ink aging and document dating.SSRN 4446135202312910.2139/ssrn.4446135
    [Google Scholar]
  63. GerrardW. GerrardW. Henry’s Law and Raoult’s Law.Springer1976295410.1007/978‑1‑4899‑2644‑9_3
    [Google Scholar]
  64. SirroS. ErshovaK. KochemirovskyV. FiksJ. KondrakhinaP. ErmakovS. MokhorovD. KochemirovskaiaS. Recognition of fake paintings of the 20th-century Russian avant-garde using the physicochemical analysis of zinc white.Forensic Chem.20212610036710.1016/j.forc.2021.100367
    [Google Scholar]
  65. CesarattoA. LombardiJ.R. LeonaM. Tracking photo‐degradation of triarylmethane dyes with surface‐enhanced Raman spectroscopy.J. Raman Spectrosc.201748341842410.1002/jrs.5056
    [Google Scholar]
  66. LueckH.B. DanielD.C. McHaleJ.L. Resonance Raman study of solvent effects on a series of triarylmethane dyes.J. Raman Spectrosc.199324636337010.1002/jrs.1250240605
    [Google Scholar]
  67. DohertyB. VagniniM. DufourmantelleK. SgamellottiA. BrunettiB. MilianiC. A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412129230510.1016/j.saa.2013.10.069 24252295
    [Google Scholar]
  68. Zięba‐PalusJ. MichalskaA. Characterization of blue pigments used in automotive paints by Raman spectroscopy.J. For. Sci.2014594943949
    [Google Scholar]
  69. SingerB.W. GardinerD.J. DerowJ.P. Analysis of white and blue pigments from watercolours by Raman microscopy.Paper Conservator1993171131910.1080/03094227.1993.9638401
    [Google Scholar]
  70. HoangD.A. HoangH.M. TuM.B. Application of Raman spectroscopy in relative blue ballpoint pen ink dating for forensic document analysis – a case report.J. Sci. Technol.2023627710.55401/jst.v6i2.1910
    [Google Scholar]
  71. ColettiF. RomaniM. CeresG. ZammitU. GuidiM.C. Evaluation of microscopy techniques and ATR-FTIR spectroscopy on textile fibers from the Vesuvian area: A pilot study on degradation processes that prevent the characterization of bast fibers.J. Archaeol. Sci. Rep.20213610279410.1016/j.jasrep.2021.102794
    [Google Scholar]
  72. TanJ. FuX. LuY. ChenB. DingY. Investigating the moisture sorption behavior of naturally and artificially aged bamboo paper with multi-analytical techniques.J. Cult. Herit.202361657510.1016/j.culher.2023.03.004
    [Google Scholar]
  73. MokhorovD. AnisimovD. KochemirovskyV. Examenation of the prescriptions of a document as a way to identify malfeasance.Reliability: Theor. Appl.20231875619631
    [Google Scholar]
  74. HoutmanC.J. AtallaR.H. Cellulose-lignin interactions (a computational study).Plant Physiol.1995107397798410.1104/pp.107.3.977 12228416
    [Google Scholar]
  75. DernovayaL.I. EltekovY.A. Retention and heats of adsorption of hydrocarbons and aliphatic alcohols on cellulose.J. Chromatogr. A198845526326910.1016/S0021‑9673(01)82124‑5
    [Google Scholar]
  76. YangY. XuJ. KongY. ZhouJ. WangX. Breakthrough of lignin valorization: A novel alcohol-dichoromethane binary mixture solvent for lignin dissolution with excellent properties.Int. J. Biol. Macromol.202322521922610.1016/j.ijbiomac.2022.10.252 36343839
    [Google Scholar]
  77. AlianN.A. El-SawyM.M. HamzaS.F. BoraiA.A. ShakerN.O. Synthesis and characteristics of cellulosic polymers from agricultural environmental pollutant wastes.J. Am. Sci.201612112839
    [Google Scholar]
  78. WangY. WangX. XieY. ZhangK. Functional nanomaterials through esterification of cellulose: a review of chemistry and application.Cellulose20182573703373110.1007/s10570‑018‑1830‑3
    [Google Scholar]
  79. PingShao L.; Gäfvert, E.; Karlberg, A.T.; Nilsson, U.; Nilsson, J.L.G. The allergenicity of glycerol esters and other esters of rosin (colophony).Contact Dermat.199328422923410.1111/j.1600‑0536.1993.tb03408.x 8508634
    [Google Scholar]
  80. BrunelleR.L. The State of the Art.J. Forensic Sci.1992371113124
    [Google Scholar]
  81. CantúA.A. ProughR.S. On the Relative Aging of Ink—The Solvent Extraction technique.J. Forensic Sci.198732511168J10.1520/JFS11168J
    [Google Scholar]
  82. RettieG.H. HaynesC.G. Thin‐layer chromatography and its application to dyes.J. Soc. Dyers Colour.1964801262964010.1111/j.1478‑4408.1964.tb02573.x
    [Google Scholar]
  83. NeumannC. RamotowskiR. GenessayT. Forensic examination of ink by high-performance thin layer chromatography—The United States Secret Service Digital Ink Library.J. Chromatogr. A20111218192793281110.1016/j.chroma.2010.12.070 21196010
    [Google Scholar]
  84. PoonN.L. HoS.S. LiC.K. Differentiation of coloured inks of inkjet printer cartridges by thin layer chromatography and high performance liquid chromatography. j.Foren. Sci. Societ.2005454187194
    [Google Scholar]
  85. BarkerJ. RamotowskiR. NwokoyeJ. The effect of solvent grade on thin layer chromatographic analysis of writing inks.Forensic Sci. Int.201626613914710.1016/j.forsciint.2016.05.003 27262685
    [Google Scholar]
  86. HoferR. Yahaya BakoA.S. Migration of luminescent ink components, a new approach for ink dating.Forensic Chem.20162758110.1016/j.forc.2016.10.006
    [Google Scholar]
  87. WurzbacherJ.A. GebaldC. PiatkowskiN. SteinfeldA. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.Environ. Sci. Technol.201246169191919810.1021/es301953k 22823525
    [Google Scholar]
  88. ZhangY. ZhuW. ZhangC. PeoplesJ. LiX. FelicelliA.L. ShanX. WarsingerD.M. Borca-TasciucT. RuanX. LiT. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric.Nano Lett.20222272618262610.1021/acs.nanolett.1c04143 35364813
    [Google Scholar]
  89. KaurM. KaurO. BadruR. KaushalS. SinghP. Ionic liquid assisted c-c bond formation.Curr. Org. Chem.202024161853187510.2174/1385272824999200801022221
    [Google Scholar]
  90. BahrmannH. HahnH.D. MayerD. FreyG.D. Ullmann’s encyclopedia of industrial chemistry; wILEY,2013
  91. YalkowskyS.H. HeY. JainP. Handbook of aqueous solubility data.CRC press201610.1201/EBK1439802458
    [Google Scholar]
  92. Soviet Encyclopedia, V. 1 benzyl alcohol.Chem. Encycloped.198811623
    [Google Scholar]
  93. KotA. NamiesńikJ. The role of speciation in analytical chemistry.Trends Analyt. Chem.2000192-3697910.1016/S0165‑9936(99)00195‑8
    [Google Scholar]
  94. EganW.J. MorganS.L. MerrilR.A. BartickE.G. TaylorJ.H. Forensic discrimination of photocopy and printer toners, Part II.Anal. Bioanal. Chem.20033761279128510.1007/s00216‑003‑2074‑z 12910333
    [Google Scholar]
  95. VermaN. KumarR. SharmaV. Analysis of laser printer and photocopier toners by spectral properties and chemometrics.Spectrochim. Acta A Mol. Biomol. Spectrosc.2018196404810.1016/j.saa.2018.02.001 29428895
    [Google Scholar]
  96. AdamC.D. SherrattS.L. ZholobenkoV.L. Classification and individualisation of black ballpoint pen inks using principal component analysis of UV–vis absorption spectra.Forensic Sci. Int.20081741162510.1016/j.forsciint.2007.02.029 17418989
    [Google Scholar]
  97. GálL. OravecM. GemeinerP. ČeppanM. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis–NIR fibre optics reflection spectra.Forensic Sci. Int.201525728529210.1016/j.forsciint.2015.09.011 26448533
    [Google Scholar]
  98. KherA. MulhollandM. ReedyB. MaynardP. Classification of document papers by infrared spectroscopy and multivariate statistical techniques.Appl. Spectrosc.20015591192119810.1366/0003702011953199
    [Google Scholar]
  99. KherA. StewartS. MulhollandM. Forensic classification of paper with infrared spectroscopy and principal components analysis.J. Near Infrared Spectrosc.200513422522910.1255/jnirs.540
    [Google Scholar]
  100. AginskyV.N. Forensic examination of “slightly soluble” ink pigments using thin-layer chromatography.J. Forensic Sci.19933851131113310.1520/JFS13516J
    [Google Scholar]
  101. AginskyV.N. Some new ideas for dating ballpoint inks—a feasibility study.J. Forensic Sci.19933851111113010.1520/JFS13515J
    [Google Scholar]
  102. AginskyV.N. Determination of the age of ballpoint pen ink by gas and densitometric thin-layer chromatography.J. Chromatogr. A1994678111912510.1016/0021‑9673(94)87081‑0 8118555
    [Google Scholar]
  103. DaiT. HuangJ. WuH. LiH. Enzyme cocktails catalyzed bioconversion of lignocellulosic biomass into bioethanol.Curr. Org. Chem.20242812810.2174/0113852728286031240101074227
    [Google Scholar]
  104. KoenigA. WeyermannC. Ink dating, part I: Statistical distribution of selected ageing parameters in a ballpoint inks reference population.Sci. Justice2018581173010.1016/j.scijus.2017.08.002 29332691
    [Google Scholar]
  105. HarveyD. Modern analytical chemistry.McGraw Hill2000
    [Google Scholar]
/content/journals/npj/10.2174/0122103155322800240911053346
Loading
/content/journals/npj/10.2174/0122103155322800240911053346
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; Degradation; organic components; paper pulp; resins; writing compositions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test