Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Carnosic acid (CA), a polyphenolic diterpene naturally found in , has demonstrated a wide range of pharmacological activities according to scientific research, making it a key candidate for new therapeutic product development. The aim of this manuscript is to present an updated review of the literature on the latest research findings about carnosic acid, emphasizing its most relevant biological functions. Accordingly, this work highlights the main reported pharmacological activities, such as antioxidant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, anticancer, and neuroprotective properties. We conducted a systematic search of bibliographic databases for peer-reviewed literature based on a specific review question, utilizing scientific databases including PubMed, Scopus, Science Direct, and Google Scholar published since 1990. Numerous studies have highlighted the extensive therapeutic applications of carnosic acid. Among others, carnosic acid was found to have antioxidant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, anticancer, and neuroprotective activities. Further, carnosic acid displayed low toxicity levels and few side effects. CA shows great promise as a therapeutic agent in the prevention and treatment of many diseases, such as numerous cancers, infectious diseases, and newly emerging illnesses like Alzheimer’s and Parkinson’s diseases. In recent times, there has been a significant push to improve PBMs, proposing their application as natural drugs for several pathological conditions, with a focus on their anti-inflammatory and antioxidant capabilities. Carnosic acid exhibits antidiabetic, antimicrobial, antiobesity, and neuroprotective effects, as well as antitumor, anti-infectious, CNS, and endocrine system activities. However, further research on its precise pharmacological mechanisms is required before it can be reliably used to treat human diseases.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155332776240909060924
2024-09-20
2025-09-09
Loading full text...

Full text loading...

References

  1. BahriS. JameleddineS. ShlyonskyV. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms.Biomed. Pharmacother.20168456958210.1016/j.biopha.2016.09.067 27694001
    [Google Scholar]
  2. SteinerM. PrielI. GiatJ. LevyJ. SharoniY. DanilenkoM. Carnosic acid inhibits proliferation and augments differentiation of human leukemic cells induced by 1,25-dihydroxyvitamin D3 and retinoic acid.Nutr. Cancer2001411-213514410.1080/01635581.2001.9680624 12094616
    [Google Scholar]
  3. GonzálezM.A. Aromatic abietane diterpenoids: their biological activity and synthesis.Nat. Prod. Rep.201532568470410.1039/C4NP00110A 25643290
    [Google Scholar]
  4. ChanE.W.C. WongS.K. TangahJ. InoueT. ChanH.T. Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves.J. Integr. Med.202018318919510.1016/j.joim.2020.02.006 32115383
    [Google Scholar]
  5. Macías AlonsoM. Carnosic Acid and its Derivatives: Diterpenes of Biological Interest.Biomed. J. Sci. Tech. Res.201916410.26717/BJSTR.2019.16.002877
    [Google Scholar]
  6. del BañoM.J. LorenteJ. CastilloJ. Benavente-GarcíaO. MarínM.P. Del RíoJ.A. OrtuñoA. IbarraI. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. postulation of a biosynthetic pathway.J. Agric. Food Chem.200452164987499210.1021/jf040078p 15291464
    [Google Scholar]
  7. LuisJ.C. JohnsonC.B. Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity.Span. J. Agric. Res.20053110611210.5424/sjar/2005031‑130
    [Google Scholar]
  8. IorioR. CelenzaG. PetriccaS. Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation.Antioxidants2022116119910.3390/antiox11061199 35740096
    [Google Scholar]
  9. DoolaegeE.H.A. RaesK. De VosF. VerhéR. De SmetS. Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats.Plant Foods Hum. Nutr.201166219620210.1007/s11130‑011‑0233‑5 21751091
    [Google Scholar]
  10. Romo VaqueroM. García VillalbaR. LarrosaM. Yáñez-GascónM.J. FromentinE. FlanaganJ. RollerM. Tomás-BarberánF.A. EspínJ.C. García-ConesaM.T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats.Mol. Nutr. Food Res.201357101834184610.1002/mnfr.201300052 23625681
    [Google Scholar]
  11. WangQ.L. LiH. LiX.X. CuiC.Y. WangR. YuN.X. ChenL.X. Acute and 30-day oral toxicity studies of administered carnosic acid.Food Chem. Toxicol.201250124348435510.1016/j.fct.2012.08.057 22981909
    [Google Scholar]
  12. ChenX. HuangM. LiuD. LiY. LuoQ. PhamK. WangM. ZhangJ. ZhangR. PengZ. WuX. Absorption and Transport Characteristics and Mechanisms of Carnosic Acid.Biology (Basel)20211012127810.3390/biology10121278 34943193
    [Google Scholar]
  13. LoussouarnM. Krieger-LiszkayA. SvilarL. BilyA. BirtićS. HavauxM. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms.Plant Physiol.201717531381139410.1104/pp.17.01183 28916593
    [Google Scholar]
  14. AndradeJ.M. FaustinoC. GarciaC. LadeirasD. ReisC.P. RijoP. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity.Future Sci. OA201844FSO28310.4155/fsoa‑2017‑0124 29682318
    [Google Scholar]
  15. LiQ. LiuL. SunH. CaoK. Carnosic acid protects against lipopolysaccharide induced acute lung injury in mice.Exp. Ther. Med.20191853707371410.3892/etm.2019.8042 31611929
    [Google Scholar]
  16. MirzaF.J. ZahidS. HolsingerR.M.D. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action.Molecules2023285230610.3390/molecules28052306 36903551
    [Google Scholar]
  17. ParkM.Y. MunS.T. Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice.Nutr. Res. Pract.20137429430110.4162/nrp.2013.7.4.294 23964317
    [Google Scholar]
  18. DubeyI. SalujaM.S. GilhotraR.M. ChhajedM. Evaluation of Polyherbal Anticancer Tablets: A Review.J. Pharm. Technol. Res. Manag.201861677910.15415/jptrm.2018.61006
    [Google Scholar]
  19. El-HuneidiW. BajboujK. MuhammadJ.S. VinodA. ShafarinJ. KhoderG. SalehM.A. TaneeraJ. Abu-GharbiehE. Carnosic Acid Induces Apoptosis and Inhibits Akt/mTOR Signaling in Human Gastric Cancer Cell Lines.Pharmaceuticals (Basel)202114323010.3390/ph14030230 33800129
    [Google Scholar]
  20. KhellaK.F. Abd El MaksoudA.I. HassanA. Abdel-GhanyS.E. ElsanhotyR.M. AladhadhM.A. Abdel-HakeemM.A. Carnosic Acid Encapsulated in Albumin Nanoparticles Induces Apoptosis in Breast and Colorectal Cancer Cells.Molecules20222713410210.3390/molecules27134102 35807348
    [Google Scholar]
  21. KosakaK. MimuraJ. ItohK. SatohT. ShimojoY. KitajimaC. MaruyamaA. YamamotoM. ShirasawaT. Role of Nrf2 and p62/ZIP in the neurite outgrowth by carnosic acid in PC12h cells.J. Biochem.20101471738110.1093/jb/mvp149 19762340
    [Google Scholar]
  22. de OliveiraM.R. FerreiraG.C. SchuckP.F. Dal BoscoS.M. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells.Chem. Biol. Interact.201524239640610.1016/j.cbi.2015.11.003 26577515
    [Google Scholar]
  23. de OliveiraM.R. FerreiraG.C. SchuckP.F. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway.Toxicol. In Vitro201632415410.1016/j.tiv.2015.12.005 26686574
    [Google Scholar]
  24. MinK. JungK.J. KwonT.K. Carnosic Acid Induces Apoptosis Through Reactive Oxygen Species-mediated Endoplasmic Reticulum Stress Induction in Human Renal Carcinoma Caki Cells.J. Cancer Prev.201419317017810.15430/JCP.2014.19.3.170 25337586
    [Google Scholar]
  25. GrewalA.K. AroraS. SinghT.G. Role of Protein Kinase C in Diabetic Complications.J. Pharm. Technol. Res. Manag.201972879510.15415/jptrm.2019.72011
    [Google Scholar]
  26. El-HuneidiW. AnjumS. SalehM.A. BustanjiY. Abu-GharbiehE. TaneeraJ. Carnosic Acid Protects INS-1 β-Cells against Streptozotocin-Induced Damage by Inhibiting Apoptosis and Improving Insulin Secretion and Glucose Uptake.Molecules2022277210210.3390/molecules27072102 35408495
    [Google Scholar]
  27. PranataS. WuS.F.V. AlizargarJ. LiuJ.H. LiangS.Y. LuY.Y. Precision health care elements, definitions, and strategies for patients with diabetes: A literature review.Int. J. Environ. Res. Public Health20211812653510.3390/ijerph18126535 34204428
    [Google Scholar]
  28. BakırelT. BakırelU. KeleşO.Ü. ÜlgenS.G. YardibiH. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits.J. Ethnopharmacol.20081161647310.1016/j.jep.2007.10.039 18063331
    [Google Scholar]
  29. RamadanK.S. KhalilO.A. DanialE.N. AlnahdiH.S. AyazN.O. Hypoglycemic and hepatoprotective activity of Rosmarinus officinalis extract in diabetic rats.J. Physiol. Biochem.201369477978310.1007/s13105‑013‑0253‑8 23625639
    [Google Scholar]
  30. RuntuweneJ. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4.Drug Des. Devel. Ther.20162016121932202
    [Google Scholar]
  31. BoulebdH. Modeling the peroxyl radical scavenging behavior of Carnosic acid: Mechanism, kinetics, and effects of physiological environments.Phytochemistry202119211295010.1016/j.phytochem.2021.112950 34530282
    [Google Scholar]
  32. XiaG. WangX. SunH. QinY. FuM. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway.Free Radic. Biol. Med.201710841843210.1016/j.freeradbiomed.2017.03.023 28343998
    [Google Scholar]
  33. AfonsoM.S. de O Silva, A.M.; Carvalho, E.B.T.; Rivelli, D.P.; Barros, S.B.M.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats.Nutr. Metab. (Lond.)2013101191910.1186/1743‑7075‑10‑19 23374457
    [Google Scholar]
  34. TsaiC.W. LiuK.L. LinY.R. KuoW.C. The mechanisms of carnosic acid attenuates tumor necrosis factor‐α‐mediated inflammation and insulin resistance in 3T3‐L1 adipocytes.Mol. Nutr. Food Res.201458465466410.1002/mnfr.201300356 24668853
    [Google Scholar]
  35. GayaM. RepettoV. ToneattoJ. AnesiniC. Piwien-PilipukG. MorenoS. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program.Biochim. Biophys. Acta, Gen. Subj.2013183063796380610.1016/j.bbagen.2013.03.021 23541989
    [Google Scholar]
  36. PengQ. OboldaA. ZhangM. LiF. Organic light-emitting diodes using a neutral π radical as emitter: The emission from a doublet.Angew. Chem. Int. Ed. Engl.201554247091709510.1002/anie.201500242
    [Google Scholar]
  37. RasoolijaziH. AzadN. JoghataeiM.T. KerdariM. NikbakhtF. SoleimaniM. The protective role of carnosic acid against beta-amyloid toxicity in rats.ScientificWorldJournal20132013191708210.1155/2013/917082 24363627
    [Google Scholar]
  38. BeheraP.K. DeviS. MittalN. Therapeutic potential of gallic acid in obesity: Considerable shift!Obes. Med.20233710047310.1016/j.obmed.2022.100473
    [Google Scholar]
  39. TakahashiT. TabuchiT. TamakiY. KosakaK. TakikawaY. SatohT. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism.Biochem. Biophys. Res. Commun.2009382354955410.1016/j.bbrc.2009.03.059
    [Google Scholar]
  40. NavaneethaKrishnan, S.; Rosales, J.L.; Lee, K-Y. ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals.Oxid. Med. Cell. Longev.2019201911610.1155/2019/9051542
    [Google Scholar]
  41. DickmannL.J. VandenBrinkB.M. LinY.S. In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of carnosic acid, a dietary supplement with antiadipogenic properties.Drug Metab. Dispos.20124071263126710.1124/dmd.112.044909 22531045
    [Google Scholar]
  42. Romo-VaqueroM. A rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype;201410.1002/mnfr.201300524
  43. IbarraA. CasesJ. RollerM. Chiralt-BoixA. CoussaertA. RipollC. Carnosic acid-rich rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and improves cholesterol levels and glycaemia in mice on a high-fat diet.Br. J. Nutr.201110681182118910.1017/S0007114511001620 21676274
    [Google Scholar]
  44. Romo VaqueroM. Yáñez-GascónM.J. García VillalbaR. LarrosaM. FromentinE. IbarraA. RollerM. Tomás-BarberánF. Espín de GeaJ.C. García-ConesaM.T. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid.PLoS One201276e3977310.1371/journal.pone.0039773 22745826
    [Google Scholar]
  45. ZhaoY. SedighiR. WangP. ChenH. ZhuY. SangS. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice.J. Agric. Food Chem.201563194843485210.1021/acs.jafc.5b01246 25929334
    [Google Scholar]
  46. Jakovljević KovačM. PavićV. HuđA. CindrićI. MolnarM. Determination of Suitable Macroporous Resins and Desorbents for Carnosol and Carnosic Acid from Deep Eutectic Solvent Sage (Salvia officinalis) Extract with Assessment of Antiradical and Antibacterial Activity.Antioxidants202110455610.3390/antiox10040556 33918515
    [Google Scholar]
  47. da RosaJ. FacchinB. BastosJ. SiqueiraM. MickeG. DalmarcoE. PizzolattiM. FrödeT. Systemic administration of Rosmarinus officinalis attenuates the inflammatory response induced by carrageenan in the mouse model of pleurisy.Planta Med.201379171605161410.1055/s‑0033‑1351018 24288274
    [Google Scholar]
  48. BackhouseN. RosalesL. ApablazaC. GoïtyL. ErazoS. NegreteR. TheodoluzC. RodríguezJ. DelporteC. Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa.Buddlejaceae. J. Ethnopharmacol.2008116226326910.1016/j.jep.2007.11.025 18164566
    [Google Scholar]
  49. PengC.H. SuJ.D. ChyauC.C. SungT.Y. HoS.S. PengC.C. PengR.Y. Supercritical fluid extracts of rosemary leaves exhibit potent anti-inflammation and anti-tumor effects.Biosci. Biotechnol. Biochem.20077192223223210.1271/bbb.70199 17827696
    [Google Scholar]
  50. Ghasemzadeh RahbardarM. HosseinzadehH. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders.Iran. J. Basic Med. Sci.20202391100111210.22038/IJBMS.2020.45269.10541 32963731
    [Google Scholar]
  51. SatohT. TrudlerD. OhC.K. LiptonS.A. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome.Antioxidants202211112410.3390/antiox11010124 35052628
    [Google Scholar]
  52. ChaeI.G. YuM.H. Im, N.K.; Jung, Y.T.; Lee, J.; Chun, K.S.; Lee, I.S. Effect of Rosemarinus officinalis L. on MMP-9, MCP-1 levels, and cell migration in RAW 264.7 and smooth muscle cells.J. Med. Food2012151087988610.1089/jmf.2012.2162 22985398
    [Google Scholar]
  53. HadadN. LevyR. Combination of EPA with carotenoids and polyphenol synergistically attenuated the transformation of microglia to M1 phenotype via inhibition of NF-κB.Neuromolecular Med.2017192-343645110.1007/s12017‑017‑8459‑5 28779377
    [Google Scholar]
  54. MoranT. WeiJ. CoboM. QianX. DomineM. ZouZ. BoverI. WangL. ProvencioM. YuL. ChaibI. YouC. MassutiB. SongY. VergnenegreA. LuH. Lopez-VivancoG. HuW. RobinetG. YanJ. InsaA. XuX. MajemM. ChenX. de las PeñasR. KarachaliouN. SalaM.A. WuQ. IslaD. ZhouY. BaizeN. ZhangF. GardeJ. GermonpreP. RauhS. ALHusaini, H.; Sanchez-Ronco, M.; Drozdowskyj, A.; Sanchez, J.J.; Camps, C.; Liu, B.; Rosell, R.; Colinet, B.; De Grève, J.; Germonpré, P.; Chen, H.; Chen, X.; Du, J.; Gao, Y.; Hu, J.; Hu, W.; Kong, W.; Li, L.; Li, R.; Li, X.; Liu, B.; Liu, J.; Lu, H.; Qian, X.; Ren, W.; Song, Y.; Wang, L.; Wei, J.; Wen, L.; Wu, Q.; Xiao, X.; Xu, X.; Yan, J.; Yang, J.; Yang, M.; Yang, Y.; Yin, J.; You, C.; Yu, L.; Yue, X.; Zhang, F.; Zhang, J.; Zhou, Y.; Zhu, L.; Zou, Z.; Baize, N.; Bombaron, P.; Chouaid, C.; Dansin, E.; Fournel, P.; Fraboulet, G.; Gervais, R.; Hominal, S.; Kahlout, S.; Lecaer, H.; Lena, H.; LeTreut, J.; Locher, C.; Molinier, O.; Monnet, I.; Oliviero, G.; Robinet, G.; Schoot, R.; Thomas, P.; Vergnènegre, A.; Berchem, G.; Rauh, S.; Al Husaini, H.; Aparisi, F.; Arriola, E.; Ballesteros, I.; Barneto, I.; Bernabé, R.; Blasco, A.; Bosch-Barrera, J.; Bover, I.; Calvo de Juan, V.; Camps, C.; Carcereny, E.; Catot, S.; Cobo, M.; De las Peñas, R.; Dómine, M.; Felip, E.; García-Campelo, M.R.; García-Girón, C.; García-Gómez, R.; Garcia-Sevila, R.; Garde, J.; Gasco, A.; Gil, J.; González-Larriba, J.L.; Hernando-Polo, S.; Jantus, E.; Insa, A.; Isla, D.; Jiménez, B.; Lianes, P.; López-López, R.; López-Martín, A.; López-Vivanco, G.; Macias, J.A.; Majem, M.; Marti-Ciriquian, J.L.; Massuti, B.; Montoyo, R.; Morales-Espinosa, D.; Morán, T.; Moreno, M.A.; Pallares, C.; Parera, M.; Pérez-Carrión, R.; Porta, R.; Provencio, M.; Reguart, N.; Rosell, R.; Rosillo, F.; Sala, M.A.; Sanchez, J.M.; Sullivan, I.; Terrasa, J.; Trigo, J.M.; Valdivia, J.; Viñolas, N.; Viteri, S.; Botia-Castillo, M.; Mate, J.L.; Perez-Cano, M.; Ramirez, J.L.; Sanchez-Rodriguez, B.; Taron, M.; Tierno-Garcia, M.; Mijangos, E.; Ocaña, J.; Pereira, E.; Shao, J.; Sun, X.; O’Brate, R. Two biomarker-directed randomized trials in European and Chinese patients with nonsmall-cell lung cancer: the BRCA1-RAP80 Expression Customization (BREC) studies.Ann. Oncol.201425112147215510.1093/annonc/mdu389 25164908
    [Google Scholar]
  55. HansenD.V. HansonJ.E. ShengM. Microglia in Alzheimer’s disease.J. Cell Biol.2018217245947210.1083/jcb.201709069 29196460
    [Google Scholar]
  56. Lopes-CoelhoF. MartinsF. PereiraS.A. SerpaJ. Anti-Angiogenic Therapy: Current Challenges and Future Perspectives.Int. J. Mol. Sci.2021227376510.3390/ijms22073765 33916438
    [Google Scholar]
  57. López-JiménezA. García-CaballeroM. MedinaM.Á. QuesadaA.R. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary.Eur. J. Nutr.2013521859510.1007/s00394‑011‑0289‑x 22173778
    [Google Scholar]
  58. KanthasamyA.G. KitazawaM. YangY. AnantharamV. KanthasamyA. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): Implications for neurodegeneration in Parkinson’s disease.Mol. Brain200811210.1186/1756‑6606‑1‑12
    [Google Scholar]
  59. GeeL.E. ChenN. Ramirez-ZamoraA. ShinD.S. PilitsisJ.G. The effects of subthalamic deep brain stimulation on mechanical and thermal thresholds in 6 OHDA ‐lesioned rats.Eur. J. Neurosci.20154242061206910.1111/ejn.12992 26082992
    [Google Scholar]
  60. ZhangD. LeeB. NutterA. SongP. DolatabadiN. ParkerJ. Sanz-BlascoS. NewmeyerT. AmbasudhanR. McKercherS.R. MasliahE. LiptonS.A. Protection from cyanide‐induced brain injury by the Nrf2 transcriptional activator carnosic acid.J. Neurochem.2015133689890810.1111/jnc.13074 25692407
    [Google Scholar]
  61. ParkJ.A. KimS. LeeS.Y. KimC.S. KimD.K. KimS.J. ChunH.S. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.Neuroreport200819131301130410.1097/WNR.0b013e32830abc1f 18695511
    [Google Scholar]
  62. ChenJ.H. OuH.P. LinC.Y. LinF.J. WuC.R. ChangS.W. TsaiC.W. Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis.Chem. Res. Toxicol.20122591893190110.1021/tx300171u 22894569
    [Google Scholar]
  63. LinC.Y. ChenJ.H. FuR.H. TsaiC.W. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity.Chem. Res. Toxicol.201427111958196610.1021/tx5003063 25271104
    [Google Scholar]
  64. LinC.Y. TsaiC.W. TsaiC.W. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway. Neuropharmacology,2016110Pt A10911710.1016/j.neuropharm.2016.04.017 27091487
  65. LiuW. WuT.C. HongD.M. HuY. FanT. GuoW.J. XuQ. Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells.Chin. J. Nat. Med.2018161290791510.1016/S1875‑5364(18)30132‑8 30595215
    [Google Scholar]
  66. SinghP. SinghD. GoelR.K. Phytoflavonoids: Antiepileptics for the future.Int. J. Pharm. Pharm. Sci.2014685166
    [Google Scholar]
  67. WuC.R. TsaiC.W. ChangS.W. LinC.Y. HuangL.C. TsaiC.W. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction.Chem. Biol. Interact.2015225404610.1016/j.cbi.2014.11.011 25446857
    [Google Scholar]
  68. NakagawaS. HillebrandG.G. NunezG. Rosmarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol are Potent Quorum Sensing Inhibitors of Staphylococcus aureus Virulence.Antibiotics (Basel)20209414910.3390/antibiotics9040149 32244277
    [Google Scholar]
  69. AbozahraR. AbdelhamidS.M. WenM.M. AbdelwahabI. BarakaK. A Nanoparticles based Microbiological Study on the Effect of Rosemary and Ginger Essential Oils against Klebsiella pneumoniae.Open Microbiol. J.202014120521210.2174/1874285802014010205
    [Google Scholar]
  70. Erkanİ.E. AşcıÖ.A. Studies on Antimicrobial, Antifungal and Antioxidant Properties of Rosemary: A Review.Turk. J. Agricult.20208122708271510.24925/turjaf.v8i12.2708‑2715.3948
    [Google Scholar]
  71. AbramovičH. TerpincP. GeneralićI. SkrozaD. KlančnikA. KatalinićV. Smole MožinaS. Antioxidant and antimicrobial activity of extracts obtained from rosemary (Rosmarinus officinalis) and vine (Vitis vinifera) leaves.Croat. J. Food Sci. Technol.20124118
    [Google Scholar]
  72. SatohT. IzumiM. InukaiY. TsutsumiY. NakayamaN. KosakaK. ShimojoY. KitajimaC. ItohK. YokoiT. ShirasawaT. Carnosic acid protects neuronal HT22 Cells through activation of the antioxidant-responsive element in free carboxylic acid- and catechol hydroxyl moieties-dependent manners.Neurosci. Lett.2008434326026510.1016/j.neulet.2008.01.079 18329808
    [Google Scholar]
  73. MillerD.M. SinghI.N. WangJ.A. HallE.D. Administration of the Nrf2–ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo.Free Radic. Biol. Med.2013571910.1016/j.freeradbiomed.2012.12.011 23275005
    [Google Scholar]
  74. MillerD.M. SinghI.N. WangJ.A. HallE.D. Nrf2–ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.Exp. Neurol.201526410311010.1016/j.expneurol.2014.11.008 25432068
    [Google Scholar]
  75. VakaS.R.K. MurthyS.N. RepkaM.A. NagyT. Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid.J. Pharm. Sci.201110083139314510.1002/jps.22528 21360710
    [Google Scholar]
  76. ChenS. JiB. YanY. HeX. HanK. DaiQ. ZhangM. MoY. WangJ. Carnosic acid attenuates neuropathic pain in rat through the activation of spinal sirtuin1 and down-regulation of p66shc expression.Neurochem. Int.2016939510210.1016/j.neuint.2016.01.004 26804443
    [Google Scholar]
  77. RezaieT. McKercherS.R. KosakaK. SekiM. WheelerL. ViswanathV. ChunT. JoshiR. ValenciaM. SasakiS. TozawaT. SatohT. LiptonS.A. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration.Invest. Ophthalmol. Vis. Sci.201253127847785410.1167/iovs.12‑10793 23081978
    [Google Scholar]
  78. KangK. TarchickM.J. YuX. BeightC. BuP. YuM. Carnosic acid slows photoreceptor degeneration in the Pde6brd10 mouse model of retinitis pigmentosa.Sci. Rep.2016612263210.1038/srep22632 26961159
    [Google Scholar]
  79. NabaviS.F. BraidyN. HabtemariamS. OrhanI.E. DagliaM. ManayiA. GortziO. NabaviS.M. Neuroprotective effects of chrysin: From chemistry to medicine.Neurochem. Int.20159022423110.1016/j.neuint.2015.09.006 26386393
    [Google Scholar]
  80. BaisH.P. WalkerT.S. SchweizerH.P. VivancoJ.M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum.Plant Physiol. Biochem.2002401198399510.1016/S0981‑9428(02)01460‑2
    [Google Scholar]
  81. OsakabeN. TakanoH. SanbongiC. YasudaA. YanagisawaR. InoueK.I. YoshikawaT. Anti‐inflammatory and anti‐allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism.Biofactors2004211-412713110.1002/biof.552210125 15630183
    [Google Scholar]
  82. HuangS. ZhengR. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro.Cancer Lett.2006239227128010.1016/j.canlet.2005.08.025 16239062
    [Google Scholar]
  83. SuiX. LiuT. MaC. YangL. ZuY. ZhangL. WangH. Microwave irradiation to pretreat rosemary (Rosmarinus officinalis L.) for maintaining antioxidant content during storage and to extract essential oil simultaneously.Food Chem.201213141399140510.1016/j.foodchem.2011.10.007
    [Google Scholar]
  84. KimD.S. KimH.R. WooE.R. HongS.T. ChaeH.J. ChaeS.W. Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase.Biochem. Pharmacol.20057071066107810.1016/j.bcp.2005.06.026 16102732
    [Google Scholar]
  85. LiG.S. JiangW.L. TianJ.W. QuG.W. ZhuH.B. FuF.H. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis.Phytomedicine2010173-428228810.1016/j.phymed.2009.05.002 19524418
    [Google Scholar]
  86. FuhrmanB. VolkovaN. RosenblatM. AviramM. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic.Antioxid. Redox Signal.20002349150610.1089/15230860050192279 11229363
    [Google Scholar]
  87. BehlT. AroraA. SehgalA. SinghS. SharmaN. BhatiaS. Al-HarrasiA. BungauS. MostafaviE. Molecular and biochemical pathways encompassing diabetes mellitus and dementia.CNS Neurol. Disord. Drug Targets202221754255610.2174/1871527320666211110115257 34758720
    [Google Scholar]
  88. IgneaC. AthanasakoglouA. IoannouE. GeorganteaP. TrikkaF.A. LoupassakiS. RoussisV. MakrisA.M. KampranisS.C. Carnosic acid biosynthesis elucidated by a synthetic biology platform.Proc. Natl. Acad. Sci. USA2016113133681368610.1073/pnas.1523787113 26976595
    [Google Scholar]
  89. HorváthG. MolnárE. SzabóZ. KecskemétiG. JuhászL. TallósyS.P. NyáriJ. BogdanovA. SomogyváriF. EndrészV. BuriánK. VirokD.P. Carnosic acid inhibits Herpes simplex virus replication by suppressing cellular ATP Synthesis.Int. J. Mol. Sci.2024259498310.3390/ijms25094983 38732202
    [Google Scholar]
/content/journals/npj/10.2174/0122103155332776240909060924
Loading
/content/journals/npj/10.2174/0122103155332776240909060924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test