Skip to content
2000
Volume 15, Issue 9
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Purpose

Atherosclerosis (AS) is a chronic disease with worldwide incidence. The current study was conducted to highlight the molecular pathogenesis of AS and equally effectiveness of cynodon dactylon–(tm)s ethanolic extract (CDE) on the AS-induced injuries.

Methods

Atherosclerosis was induced experimentally in healthy male rats with a hypercholesterolemic diet (HCD) for 24 weeks. The HCD-received animals were either treated with normal saline or various doses of CDE and/or atorvastatin. After 24 weeks of the treatment period, the effects of HCD on lipid profile, oxidative/nitrosative stress status, inflammatory enzymes (LDH, ALP and CK-MB) activities, trimethylamine oxide (TMAO) concentration in serum along with the expression of TLR-4 (qPCR) and CD31 (Immunohistochemistry) in coronary and aorta were analyzed.

Results

CDE was able to reduce the HCD-enhanced cholesterol and triglycerides. The HCD-elevated activities of LDH, ALP and CK-MB were declined by CDE. The antioxidant potency of CDE was comparable with atorvastatin on HCD-induced oxidative/nitrosative stress. The serum concentration of TMAO was lowered (1.7-fold) by CDE in a dose-dependent manner, while CD31 expression in the endothelial of coronary arterials and aorta in CDE and atorvastatin-received animals was remarkably increased. The up-regulated expression of TLR-4 (2.5-fold) at mRNA level was regulated significantly ( < 0.05) and returned to normal level by CDE treatment.

Conclusion

Results of the current study indicate that the up-regulation of TLR-4 as a main inflammatory gene and elevation of TMAO are involved in the pathophysiology of AS. Moreover, the protective effects of CDE on AS may be attributed to its anti-inflammatory and hypolipidemic properties.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155326715240918052346
2024-10-01
2025-10-31
Loading full text...

Full text loading...

References

  1. GlaucylaraR. Atherosclerosis and inflammation: Overview and updates.Clin. Sci. (Lond.)20181321212431252
    [Google Scholar]
  2. NguyenT.K. PaoneS. ChanE. PoonI.K.H. BaxterA.A. ThomasS.R. HulettM.D. Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis.Cells20221120319810.3390/cells11203198 36291066
    [Google Scholar]
  3. KimK. ParkS. ParkJ. ChoiJ.H. Characteristics of plaque lipid-associated macrophages and their possible roles in the pathogenesis of atherosclerosis.Curr. Opin. Lipidol.202233528328810.1097/MOL.0000000000000842 35942822
    [Google Scholar]
  4. YeP. CheahI.K. HalliwellB. High fat diets and pathology in the guinea pig. Atherosclerosis or liver damage?Biochim. Biophys. Acta Mol. Basis Dis.20131832235536410.1016/j.bbadis.2012.11.008 23195951
    [Google Scholar]
  5. TangetenC. Zouaoui BoudjeltiaK. DelporteC. Van AntwerpenP. KorpakK. Unexpected Role of MPO-Oxidized LDLs in Atherosclerosis: In between Inflammation and Its Resolution.Antioxidants202211587410.3390/antiox11050874 35624738
    [Google Scholar]
  6. TejeroJ. ShivaS. GladwinM.T. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation.Physiol. Rev.201999131137910.1152/physrev.00036.2017 30379623
    [Google Scholar]
  7. GuL. MengR. TangY. ZhaoK. LiangF. ZhangR. XueQ. ChenF. XiaoX. WangH. Toll-Like Receptor 4 Signaling Licenses the Cytosolic Transport of Lipopolysaccharide From Bacterial Outer Membrane Vesicles.Shock201951225626510.1097/SHK.0000000000001129
    [Google Scholar]
  8. GallegoC. GolenbockD. GomezM.A. SaraviaN.G. Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis.Infect. Immun.20117972871287910.1128/IAI.01388‑10 21518783
    [Google Scholar]
  9. OtsuiK. InoueN. KobayashiS. ShirakiR. HonjoT. TakahashiM. HirataK. KawashimaS. YokoyamaM. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries.Heart Vessels200722641642210.1007/s00380‑007‑1001‑1 18044001
    [Google Scholar]
  10. LuZ. ZhangX. LiY. JinJ. HuangY. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice.J. Endocrinol.20132161617110.1530/JOE‑12‑0338 23060524
    [Google Scholar]
  11. CenX. WangB. LiangY. ChenY. XiaoY. DuS. NandakumarK.S. YinH. LiuS. ChengK. Small molecule SMU-CX24 targeting toll-like receptor 3 counteracts inflammation: A novel approach to atherosclerosis therapy.Acta Pharm. Sin. B20221293667368110.1016/j.apsb.2022.06.001 36176917
    [Google Scholar]
  12. TangW.H.W. WangZ. LevisonB.S. KoethR.A. BrittE.B. FuX. WuY. HazenS.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa1109400 23614584
    [Google Scholar]
  13. GanG. ZhangR. LuB. LuoY. ChenS. LeiH. LiY. CaiZ. HuangX. Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice.Int. Endod. J.2023561536810.1111/iej.13845 36208054
    [Google Scholar]
  14. VelasquezM. RamezaniA. ManalA. RajD. Trimethylamine N-Oxide: The Good, the Bad and the Unknown.Toxins (Basel)201681132610.3390/toxins8110326 27834801
    [Google Scholar]
  15. LuoT. GuoZ. LiuD. GuoZ. WuQ. LiQ. LinR. ChenP. OuC. ChenM. Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3.Gut Microbes2022141207760210.1080/19490976.2022.2077602 35613310
    [Google Scholar]
  16. CaoH. ZhuY. HuG. ZhangQ. ZhengL. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis?Pharmacol. Res.202318710658610.1016/j.phrs.2022.106586
    [Google Scholar]
  17. MuthukrishnanS.D. KaliyaperumalA. SubramaniyanA. Identification and determination of flavonoids, carotenoids and chlorophyll concentration in Cynodon dactylon (L.) by HPLC analysis.Nat. Prod. Res.201420141610.1080/14786419.2014.986125 25495959
    [Google Scholar]
  18. AshokkumarK. Cynodon dactylon (L.) Pers.: An updated review of its phytochemistry and pharmacology.J. Med. Plants Res.20137483477348310.5897/JMPR2013.5316x
    [Google Scholar]
  19. ManjiriM.A. AsadpourA.A. YousefiM. JamaliJ. DavachiB. AhmadpourM.R. SalariR. The effects of Cynodon dactylon (Poaceae family) and Dolichos biflorus (Fabaceae family) extracts on decreasing size and excretion of kidney and urinary tract stones: A randomized, double-blind controlled trial.J. Complement. Integr. Med.202320121422210.1515/jcim‑2022‑0166 35938937
    [Google Scholar]
  20. PerumalR.K. GopinathA. ThangamR. PerumalS. MasilamaniD. RamadassS.K. MadhanB. Collagen-silica bio-composite enriched with Cynodon dactylon extract for tissue repair and regeneration.Mater. Sci. Eng. C20189229730610.1016/j.msec.2018.06.050 30184754
    [Google Scholar]
  21. MarappanS. SubramaniyanA. Antitumor activity of methanolic extract of cynodon dactylon leaves against ehrlich ascites induced carcinoma in mice.J Adv Scient Res.201231105108
    [Google Scholar]
  22. JaraldE.E. JoshiS.B. JainD.C. Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers.Indian J. Exp. Biol.2008469660667 18949896
    [Google Scholar]
  23. SarojaM. SanthiR. AnnapooraniS. Antioxidant potential of ethyl acetate fraction of Cynodon dactylon against Ela implanted swiss albino mice.Int. J. Pharma Bio Sci.201232415419
    [Google Scholar]
  24. NischithaR. VasanthkumariM. M. KumaraswamyB. E. ShivannaM. B. Antimicrobial and antioxidant activities and chemical profiling of Curvularia tsudae endophytic in Cynodon dactylon (L.) Pers.3 Biotech202020103000225010.1007/s13205‑020‑02250‑0
    [Google Scholar]
  25. GargV.K. PaliwalS.K. Anti-inflammatory activity of aqueous extract of cynodon dactylon.Int. J. Pharmacol.20117337037510.3923/ijp.2011.370.375
    [Google Scholar]
  26. ChompunutL. WanapornT. AnupongW. NarayananM. AlshiekheidM. SabourA. KaruppusamyI. Chi, Lan Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties.Food Chem. Toxicol.202216611324510.1016/j.fct.2022.113245
    [Google Scholar]
  27. RaoA.S. NayanataraA.K. KaupS.R. ArjunS. KumarB.A. VaghasiyaB.D. KishanK. PaiS.R. Potential antibacterial and antinfungal activity of aqueous extract of Cynodon dactylon.Int. J. Pharm. Sci. Res.20112112889289310.13040/IJPSR.0975‑8232.2(11).2889‑93
    [Google Scholar]
  28. PashaieB. HobbenaghiR. MalekinejadH. Anti-atherosclerotic effect of Cynodon dactylon extract on experimentally induced hypercholesterolemia in rats.Vet. Res. Forum201783185193 29085605
    [Google Scholar]
  29. ZimmermannM. Ethical guidelines for investigations of experimental pain in conscious animals.Pain198316210911010.1016/0304‑3959(83)90201‑4 6877845
    [Google Scholar]
  30. JiangY. DaiM. NieW.J. YangX.R. ZengX.C. Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats.J. Ethnopharmacol.201720022823510.1016/j.jep.2017.02.037 28242382
    [Google Scholar]
  31. BiondiB. KleinI. Hypothyroidism as a risk factor for cardiovascular disease.Endocr. J.200424100101410.1385/ENDO:24:1:001 15249698
    [Google Scholar]
  32. GrishamM.B. JohnsonG.G. LancasterJ.R.Jr Quantitation of nitrate and nitrite in extracellular fluids.Methods Enzymol.199626823724610.1016/S0076‑6879(96)68026‑4 8782590
    [Google Scholar]
  33. NiehausW.G.Jr SamuelssonB. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation.Eur. J. Biochem.196861126130
    [Google Scholar]
  34. MikrutK. KupszJ. KoźlikJ. KraussH. Pruszyń"ska-Oszmał,ekE. Gibas-DornaM. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors.Croat. Med. J.201657437138010.3325/cmj.2016.57.371 27586552
    [Google Scholar]
  35. WekellJ.C. BarnettH. New Method for Analysis of Trimethylamine Oxide Using Ferrous Sulfate and EDTA.J. Food Sci.199156113213510.1111/j.1365‑2621.1991.tb07993.x
    [Google Scholar]
  36. ChomczynskiP. SacchiN. The single-step method of RNA isolation by acid guanidinium thiocyanate–"phenol–"chloroform extraction: Twenty-something years on.Nat. Protoc.20061258158510.1038/nprot.2006.83 17406285
    [Google Scholar]
  37. JanardhanK.S. McIsaacM. FowlieJ. ShrivastavA. CaldwellS. SharmaR.K. SinghB. Toll like receptor-4 expression in lipopolysaccharide induced lung inflammation.Histol. Histopathol.200621768769610.14670/HH‑21.687 16598667
    [Google Scholar]
  38. HaenziB. Gers-BarlagK. AkhoundzadehH. HutsonT.H. MenezesS.C. BungeM.B. MoonL.D.F. Overexpression of the Fibroblast Growth Factor Receptor 1 (FGFR1) in a Model of Spinal Cord Injury in Rats.PLoS One2016113e015054110.1371/journal.pone.0150541 27015635
    [Google Scholar]
  39. RavnskovU. Is atherosclerosis caused by high cholesterol?QJM200295639740310.1093/qjmed/95.6.397
    [Google Scholar]
  40. RavnskovU. de LorgerilM. DiamondD.M. HamaR. HamazakiT. HammarskjöldB. HynesN. KendrickM. LangsjoenP.H. MascitelliL. McCullyK.S. OkuyamaH. RoschP.J. ScherstenT. SultanS. SundbergR. LDL-C does not cause cardiovascular disease: A comprehensive review of the current literature.Expert Rev. Clin. Pharmacol.2018111095997010.1080/17512433.2018.1519391 30198808
    [Google Scholar]
  41. FrancisG. KeremZ. MakkarH.P.S. BeckerK. The biological action of saponins in animal systems: A review.Br. J. Nutr.200288658760510.1079/BJN2002725 12493081
    [Google Scholar]
  42. KaupS.R. ArunkumarN. BernhardtL.K. VasaviR.G. ShettyS.S. PaiS.R. ArunkumarB. Antihyperlipedemic activity of Cynodon dactylon extract in high-cholesterol diet fed Wistar rats. Gen. Med.Biomarkers Health Sci.201133-49810210.1016/j.gmbhs.2011.11.001
    [Google Scholar]
  43. MarrelliM. ConfortiF. AranitiF. StattiG. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity.Molecules20162110140410.3390/molecules21101404 27775618
    [Google Scholar]
  44. ChengF. TorzewskiM. DegreifA. RossmannH. CanisiusA. LacknerK.J. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: Implications for atherogenesis.PLoS One201388e7206310.1371/journal.pone.0072063 23991041
    [Google Scholar]
  45. XuX.H. ShahP.K. FaureE. EquilsO. ThomasL. FishbeinM.C. LuthringerD. XuX.P. RajavashisthT.B. YanoJ. KaulS. ArditiM. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL.Circulation2001104253103310810.1161/hc5001.100631 11748108
    [Google Scholar]
  46. BagheriB. Khatibiyan FeyzabadiZ. NouriA. AzadfallahA. Mahdizade AriM. HemmatiM. DarbanM. Alavi ToosiP. BanihashemianS.Z. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9).Mediators Inflamm.2024202411310.1155/2024/5830491 38445291
    [Google Scholar]
  47. YangK. ZhangX.J. CaoL.J. LiuX.H. LiuZ.H. WangX.Q. ChenQ.J. LuL. ShenW.F. LiuY. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein.PLoS One201494e9593510.1371/journal.pone.0095935 24755612
    [Google Scholar]
  48. QuH. HeinbAckR. SaloH. EwingE. EspinosaA. AulinC. Erlandsson HarrisH. Transcriptomic Profiling Reveals That HMGB1 Induces Macrophage Polarization Different from Classical M1.Biomolecules202212677910.3390/biom12060779 35740904
    [Google Scholar]
  49. BaeY.S. LeeJ.H. ChoiS.H. KimS. AlmazanF. WitztumJ.L. MillerY.I. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2.Circ. Res.2009104221021810.1161/CIRCRESAHA.108.181040
    [Google Scholar]
  50. GroyerE. NicolettiA. Ait-OufellaH. Khallou-LaschetJ. VarthamanA. GastonA.T. ThaunatO. KaveriS.V. BlatnyR. StockingerH. MallatZ. CaligiuriG. Atheroprotective effect of CD31 receptor globulin through enrichment of circulating regulatory T-cells.J. Am. Coll. Cardiol.200750434435010.1016/j.jacc.2007.04.040 17659202
    [Google Scholar]
  51. LiuL. ShiG.P. CD31: Beyond a marker for endothelial cells.Cardiovasc. Res.20129413510.1093/cvr/cvs108 22379038
    [Google Scholar]
  52. LavieL. Si-OnE. HoffmanA. Markers of Carotid Plaque Destabilization in Patients With Sleep-Disordered Breathing.Front. Neurol.20221381191610.3389/fneur.2022.811916 35250817
    [Google Scholar]
  53. AachouiY. SchulteM.L. FitchR.W. GhoshS.K. Synthetic adjuvants for vaccine formulations: Evaluation of new phytol derivatives in induction and persistence of specific immune response.Cell. Immunol.2011271230831810.1016/j.cellimm.2011.07.009 21855057
    [Google Scholar]
  54. JeongS.H. Inhibitory effect of phytol on cellular senescence.Biomed. Dermatol.2018211310.1186/s41702‑018‑0025‑8
    [Google Scholar]
  55. DuraisamyP. AngusamyA. RaviS. KrishnanM. MartinL. C. ManikandanB. SundaramJ. RamarM. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization.3 Biotech.20241438010.1007/s13205‑024‑03924‑9
    [Google Scholar]
  56. GarjaniA. AfrooziyanA. NazemiyehH. NajafiM. KharazmkiaA. Maleki-DizajiN. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats.BMC Complement. Altern. Med.2009912810.1186/1472‑6882‑9‑28 19653918
    [Google Scholar]
/content/journals/npj/10.2174/0122103155326715240918052346
Loading
/content/journals/npj/10.2174/0122103155326715240918052346
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test