Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

One of the important medicinal plants and agricultural products in Asia, particularly in Iran, is barberry, and both salinity and drought can cause osmotic or ionic imbalance in plant cells. In order to study the impacts of D-Mannitol and gibberellic acid on seed germination, physiological parameters, early seedling growth characteristics, and some of the most important chemical ingredients of barberry, one experiment is designed.

Methods

The experimental design was Completely Randomized Design (CRD) with three replicates, and drought stress was done by D-mannitol at various stress levels, namely, 0 MPa, 40 MPa, and 80 MPa, and the reaction of studied cultivar was assessed on the basis of experimental characteristics associated to germination and seedling growth, and Gibberellic acid treatments were 0 mgL-1, 300 mgL-1, 600 mgL-1, and 900 mgL-1.

Results

The effects of D-mannitol were significant in germination percentage, germination rate, seedling vigor index, chlorophyll a, total chlorophyll, leaf dry weight and total sugar. Experimental treatments such as germination percentage, germination rate, and total chlorophyll were also influenced by the application of gibberellic acid. The interaction between D-mannitol and gibberellic acid had significant effect on peroxidase activity. The highest germination percentage, germination rate, seedling vigor index, catalase activity, peroxide activity, and Chlorophyll a were obtained for 0 MPa application of D-Mannitol, followed by usage of 40 MPa, and 80 Mpa, respectively. The maximum total chlorophyll, relative water content, and leaf dry weight were also related to control treatment (0 MPa D-Mannitol), while the higher values of proline content, carotenoids and total sugar were obtained for 80 MPa application of D-Mannitol. The maximum values of germination rate, germination percentage, seedling vigor index, peroxidase activity, and chlorophyll a were related to control treatment (0 mgL-1 gibberellic acid), and the highest CAT activity was related to the application of 300 mgL-1 gibberellic acid. The highest total chlorophyll content and relative water content were related to 0 mgL-1 gibberellic acid, while the maximum praline content and leaf dry weight were obtained for the application of 600 mgL-1 and 0 mgL-1 gibberellic acid. There was not any significant difference in carotenoids between gibberellic acid treatments, while the application of 900 mgL-1 gibberellic acid obtained the highest value of total sugar of barberry.

Conclusion

Conclusively, on the basis of the results, the application of 80 MPa D-Mannitol and 600 mgL-1 could be recommended as they can increase the absorption of nutrients and water.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155311053240822102929
2024-09-02
2025-09-11
Loading full text...

Full text loading...

References

  1. AminiM.R. SheikhhosseinF. NaghshiS. DjafariF. AskariM. ShahinfarH. SafabakhshM. JafariA. Shab-BidarS. Effects of berberine and barberry on anthropometric measures: A systematic review and meta-analysis of randomized controlled trials.Complement. Ther. Med.20204910233710.1016/j.ctim.2020.102337 32147051
    [Google Scholar]
  2. EslamiZ. MahdaviV. MofradA.A. Simultaneous multi-determination of pesticide residues in barberry: A risk assessment study.J. Food Compos. Anal.202211010457610.1016/j.jfca.2022.104576
    [Google Scholar]
  3. SamadiZ. YaghmaeianK. Mortazavi-DerazkolaS. KhosraviR. NabizadehR. AlimohammadiM. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium.Bioorg. Chem.202111410505110.1016/j.bioorg.2021.105051 34116265
    [Google Scholar]
  4. AtefiM. GhavamiA. HadiA. AskariG. The effect of barberry (Berberis vulgaris L.) supplementation on blood pressure: A systematic review and meta-analysis of the randomized controlled trials.Complement. Ther. Med.20215610260810.1016/j.ctim.2020.102608 33197673
    [Google Scholar]
  5. SharifiA. Khoshnoudi-NiaS. Ranking novel extraction systems of seedless barberry (Berberis Vulgaris) bioactive compounds with fuzzy logic-based term weighting scheme.Sustain. Chem. Pharm.20222510056110.1016/j.scp.2021.100561
    [Google Scholar]
  6. Safari-KhuzaniA. RezaeiM. KhadiviA. Screening of the superior F1 segregating populations of barberry (Berberis spp.) for cultivation based on phenotypic characterizations.Ind. Crops Prod.202015811305410.1016/j.indcrop.2020.113054
    [Google Scholar]
  7. ShahrajabianM.H. SunW. SoleymaniA. ChengQ. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses.Phytother. Res.20202020111110.1002/ptr.6888 33350538
    [Google Scholar]
  8. ShahrajabianM.H. SunW. ChengQ. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities.Mini Rev. Org. Chem.202219329331810.2174/1570178618666210707161025
    [Google Scholar]
  9. ShahrajabianM.H. SunW. ChengQ. Improving health benefits with considering traditional and modern health benefits of Peganum harmala.Clinical Phytoscience2021711810.1186/s40816‑021‑00255‑7
    [Google Scholar]
  10. ShahrajabianM.H. ChaskiC. PolyzosN. PetropoulosS.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables.Biomolecules202111569810.3390/biom11050698 34067181
    [Google Scholar]
  11. ShahrajabianM.H. ChaskiC. PolyzosN. TzortzakisN. PetropoulosS.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants.Biomolecules202111681910.3390/biom11060819 34072781
    [Google Scholar]
  12. ShahrajabianM.H. SunW. ChengQ. Different methods for molecular and rapid detection of human novel coronavirus.Curr. Pharm. Des.202127252893290310.2174/1381612827666210604114411 34086547
    [Google Scholar]
  13. SerdaroğluM. CanH. SarıB. KavuşanH.S. YılmazF.M. Effects of natural nitrite sources from arugula and barberry extract on quality characteristic of heat-treated fermented sausages.Meat Sci.202319810909010.1016/j.meatsci.2022.109090 36610293
    [Google Scholar]
  14. BakmohamadporM. JavadiA. Azadmard-DamirchiS. Jafarizadeh-MalmiriH. Effect of barberry (Berberis vulgaris) fruit powder on the quality and shelf life stability of puffed corn extrude.NFS J.20212291310.1016/j.nfs.2020.12.004
    [Google Scholar]
  15. SaniM.A. TavassoliM. HamishehkarH. McClementsD.J. Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials.Carbohydr. Polym.202125511748810.1016/j.carbpol.2020.117488 33436248
    [Google Scholar]
  16. RamezaniF. ShekarabiS.P.H. MehrganM.S. ForoudiF. IslamiH.R. Supplementation of Siberian sturgeon (Acipenser baerii) diet with barberry (Berberis vulgaris) fruit extract: Growth performance, hemato-biochemical parameters, digestive enzyme activity, and growth-related gene expression.Aquaculture202154073675010.1016/j.aquaculture.2021.736750
    [Google Scholar]
  17. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.7100 33793002
    [Google Scholar]
  18. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era.Appl. Sci.20211117788910.3390/app11177889
    [Google Scholar]
  19. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn5 33245271
    [Google Scholar]
  20. SunW. ShahrajabianM.H. LinM. Research progress of fermented functional foods and protein factory-microbial fermentation technology.Fermentation202281268810.3390/fermentation8120688
    [Google Scholar]
  21. SunW. ShahrajabianM.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture.Plants20231217310110.3390/plants12173101 37687348
    [Google Scholar]
  22. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules28041845 36838831
    [Google Scholar]
  23. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants12132469 37447031
    [Google Scholar]
  24. EmamatH. ZahedmehrA. AsadianS. NasrollahzadehJ. The effect of purple-black barberry (Berberis integerrima) on blood pressure in subjects with cardiovascular risk factors: a randomized controlled trial.J. Ethnopharmacol.202228911509710.1016/j.jep.2022.115097 35150818
    [Google Scholar]
  25. ŞensuE. KasapoğluK.N. Gültekin-ÖzgüvenM. DemircanE. ArslanerA. ÖzçelikB. Orange, red and purple barberries: Effect of in-vitro digestion on antioxidants and ACE inhibitors.Lebensm. Wiss. Technol.202114011082010.1016/j.lwt.2020.110820
    [Google Scholar]
  26. ShahrajabianM.H. ChengQ. SunW. Wonderful natural drugs with surprising nutritional values, Rheum species, gifts of the nature.Lett. Org. Chem.2022191081882610.2174/1570178619666220112115918
    [Google Scholar]
  27. ShahrajabianM.H. SunW. Five important seeds in traditional medicine, and pharmacological benefits.Seeds20232329030810.3390/seeds2030022
    [Google Scholar]
  28. ShahrajabianM.H. SunW. Great health benefits of essential oils of pennyroyal (Mentham pulegium L.): A natural and organic medicine.Curr. Nutr. Food Sci.202319434034510.2174/1573401318666220620145213
    [Google Scholar]
  29. ShahrajabianM.H. SunW. The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.).Nat. Prod. J.2023134e27042220412710.2174/2210315512666220427113702
    [Google Scholar]
  30. ShahrajabianM.H. SunW. Potential roles of longan as a natural remedy with tremendous nutraceutical values.Curr. Nutr. Food Sci.202319988889510.2174/1573401319666230221111242
    [Google Scholar]
  31. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem.20232310.2174/1389557523666230816090054 37587815
    [Google Scholar]
  32. ShahrajabianM.H. SunW. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid.Curr. Org. Synth.20232010.2174/1570179420666230803102253 37534487
    [Google Scholar]
  33. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  34. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influence of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  35. SoleymaniA. ShahrajabianM.H. Study of cold stress on the germination and seedling stage and determination of recovery in rice varieties.Int. J. Biol.201244233010.5539/ijb.v4n4p23
    [Google Scholar]
  36. SoleymaniA. KhoshkharamM. ShahrajabianM.H. Germination rate and initial growth of silage corn grown under various fertility systems.Res. Crops201213310351038
    [Google Scholar]
  37. LiangB. CaoJ. WangR. FanC. WangW. HuX. HeR. TaiF. ZmCIPK32 positively regulates germination of stressed seeds via gibberellin signal.Plant Physiol. Biochem.202319910771610.1016/j.plaphy.2023.107716
    [Google Scholar]
  38. ChevillyS. Dolz-EdoL. Martínez-SánchezG. MorcilloL. VilagrosaA. López-NicolásJ.M. BlancaJ. YenushL. MuletJ.M. Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.).Front. Plant Sci.20211277706010.3389/fpls.2021.777060 34804107
    [Google Scholar]
  39. GiordanoM. PetropoulosS.A. RouphaelY. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress.Agriculture202111546310.3390/agriculture11050463
    [Google Scholar]
  40. RoseroA. GrandaL. Berdugo-CelyJ.A. ŠamajováO. ŠamajJ. CerkalR. Crops into production systems to enhance their resilience to water deficiency.Plants2020910126310.3390/plants9101263 32987964
    [Google Scholar]
  41. MolinaG.E.S. ShettyR. Bang-BerthelsenC.H. Genotypical and phenotypical characterization of Apilactobacillus kunkeei NFICC 2128 for high-mannitol scale-up production using apple pulp and sugar beet molasses as fermentable biological side streams.Bioresour. Technol. Rep.20232110135010.1016/j.biteb.2023.101350
    [Google Scholar]
  42. KongX. SongG. ChenY. ChenX. LiM. LiL. WangY. GongP. ZhangZ. ZhangJ. YangR. XuK. CaiT. ChangK. PanZ. WangB. WuX. LinC.T. NishimuraK. JiangN. YuJ. Mannitol enhanced thermal conductivity and environmental stability of highly aligned MXene composite film.Compos. Sci. Technol.202324111014110.1016/j.compscitech.2023.110141
    [Google Scholar]
  43. ZhangY. ShtukenbergA.G. KahrB. KalyonD.M. LeeS.S. Effect of melt shearing on -mannitol crystal twisting in the presence of small molecule and macromolecular additives.J. Cryst. Growth202360112694210.1016/j.jcrysgro.2022.126942
    [Google Scholar]
  44. AgrawalA. AshagreT.B. RakshitD. Experimental investigation of a thermal response behavior of d-mannitol as phase change material.Int. Commun. Heat Mass Transf.202314410680410.1016/j.icheatmasstransfer.2023.106804
    [Google Scholar]
  45. MaC. TanC. XieJ. YuanF. TaoH. GuoL. CuiB. YuanC. GaoW. ZouF. WuZ. LiuP. LuL. Effects of different ratios of mannitol to sorbitol on the functional properties of sweet potato starch films.Int. J. Biol. Macromol.2023242Pt 412491410.1016/j.ijbiomac.2023.124914 37217055
    [Google Scholar]
  46. TrivediC.H. PatelM. MehtaK.J. PanigrahiJ. Improvement of shelf-life quality of ivy gourd (Coccinia grandis L. Voigt) using an exogenous coating of mannitol and sorbitol.Food Chemistry Advances2023210026010.1016/j.focha.2023.100260
    [Google Scholar]
  47. MohamedF. RayaR.R. MozziF. Design of a minimized and low-cost culture medium for high mannitol production by Fructobacillus sp. CRL 2054 and F. tropaeoli CRL 2034.Bioresour. Technol. Rep.20232210148410.1016/j.biteb.2023.101484
    [Google Scholar]
  48. YanC. WuQ. ZhengJ. LiD. HeJ. ShuY. LiuM. ZhangL. Solid-state hydrogen generation from NaBH4 using mannitol as a bi-functional additive.Int. J. Hydrogen Energy20234883324593246810.1016/j.ijhydene.2023.05.056
    [Google Scholar]
  49. YangJ. ZhangL. JiangL. ZhanY.G. FanG.Z. Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress.Plant Physiol. Biochem.202115926827610.1016/j.plaphy.2020.12.025 33401201
    [Google Scholar]
  50. CokkizginA. GirgelU. CokkizginH. Mannitol (C6H14O6) effects on germination of broad bean (Vicia faba L.) seeds. Forest.Res. Eng. Int. J.2019312022
    [Google Scholar]
  51. ParmarM.T. MooreR.P. Carbowax 6000, mannitol, and sodium chloride for simulating drought conditions in germination studies of corn (Zea mays L.) of strong and weak vigor.Agron. J.196860219219510.2134/agronj1968.00021962006000020015x
    [Google Scholar]
  52. ThillD.C. SchirmanR.D. ApplebyA.P. Osmotic stability of mannitol and polyethylene glycol 20,000 solutions used as seed germination media.Agron. J.197971110510810.2134/agronj1979.00021962007100010027x
    [Google Scholar]
  53. RathorP. BorzaT. LiuY. QinY. StoneS. ZhangJ. HuiJ.P.M. BerrueF. GroisillierA. TononT. YurgelS. PotinP. PrithivirajB. Low mannitol concentration in Arabidopsis thaliana expressing Ectocarpus genes improve salt tolerance.Plants2020911150810.3390/plants9111508 33171775
    [Google Scholar]
  54. AfolayanA.J. MeyerJ.J.M. LeeuwnerD.V. Germination in Helichrysum aureonitens (Asteraceae): Effects of temperature, light, gibberellic acid, scarification and smoke extract.S. Afr. J. Bot.1997631222410.1016/S0254‑6299(15)30687‑6
    [Google Scholar]
  55. RiveraJ.D. Ocampo-SernaD.M. Martínez-RubioR.A. Correa-NavarroY.M. Determination of gibberellic acid and abscisic acid in (Zea mays L.) (ICA-V305) seeds germinated using dynamic sonication assisted solvent extraction and maceration.MethodsX2022910182110.1016/j.mex.2022.101821 36042812
    [Google Scholar]
  56. AielloN. LombardoG. GiannìS. ScartezziniF. FusaniP. The effect of cold stratification and of gibberellic acid on the seed germination of wild musk yarrow [ Achillea erba-rotta subsp. moschata (Wulfen) I. Richardson] populations.J. Appl. Res. Med. Aromat. Plants2017710811210.1016/j.jarmap.2017.07.001
    [Google Scholar]
  57. RavindranP. KumarP.P. Regulation of seed germination: The involvement of multiple forces exerted via gibberellic acid signaling.Mol. Plant2019121242610.1016/j.molp.2018.12.013 30582998
    [Google Scholar]
  58. ChauhanA. AbuAmarahB.A. KumarA. VermaJ.S. GhramhH.A. KhanK.A. AnsariM.J. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars.Saudi J. Biol. Sci.20192661298130410.1016/j.sjbs.2019.04.014 31516361
    [Google Scholar]
  59. DissanayakeP. GeorgeD.L. GuptaM.L. Effect of light, gibberellic acid and abscisic acid on germination of guayule (Parthenium argentatum Gray) seed.Ind. Crops Prod.201032211111710.1016/j.indcrop.2010.03.012
    [Google Scholar]
  60. LiL. YuP. LiQ. GuM. Gibberellic acid and cold stratification improve sparkleberry (Vaccinium arboreum) germination under different collection times.Sci. Hortic.202229111060610.1016/j.scienta.2021.110606
    [Google Scholar]
  61. NeffM.M. Light-mediated seed germination: Connecting phytochrome B to gibberellic acid.Dev. Cell201222468768810.1016/j.devcel.2012.04.003 22516192
    [Google Scholar]
  62. HammanB. KoningG. LokK.H. Homeopathically prepared gibberellic acid and barley seed germination.Homeopathy200392314014410.1016/S1475‑4916(03)00045‑6 12884896
    [Google Scholar]
  63. AmriB. KhamassiK. AliM.B. Teixeira da SilvaJ.A. Bettaieb Ben KaabL. Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum.S. Afr. J. Bot.2016106354010.1016/j.sajb.2016.05.007
    [Google Scholar]
  64. NortonC.R. Low temperature and gibberellic acid stimulation of germination in Sambucus caerulea Raf.Sci. Hortic.198628432332910.1016/0304‑4238(86)90106‑8
    [Google Scholar]
  65. TarchounN. SaadaouiW. MezghaniN. PavliO.I. FallehH. PetropoulosS.A. The effects of salt stress on germination, seedling growth, and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm.Plants202211680010.3390/plants11060800 35336682
    [Google Scholar]
  66. ScottS.J. JonesR.A. WilliamsW.A. Review of data analysis methods for seed germination 1.Crop Sci.19842461192119910.2135/cropsci1984.0011183X002400060043x
    [Google Scholar]
  67. AshrafF. ZargarT.B. VeresS. Comparison between germinating parameters of basils (Ocimum basilicum L.) and pumpkin (Cucurbita pepo L.) under drought stress conditions.Rev. Agric. Rural Dev.2021101-210010610.14232/rard.2021.1‑2.100‑106
    [Google Scholar]
  68. SaadaouiW. TarchounN. MsetraI. PavliO. FallehH. AyedC. AmamiR. KsouriR. PetropoulosS.A. Effects of drought stress induced by D-Mannitol on the germination and early seedling growth traits, physiological parameters and phytochemicals content of Tunisian squash (Cucurbita maximaDuch.) landraces.Front. Plant Sci.202314121539410.3389/fpls.2023.1215394 37600166
    [Google Scholar]
  69. Porcar-CastellA. TyystjärviE. AthertonJ. van der TolC. FlexasJ. PfündelE.E. MorenoJ. FrankenbergC. BerryJ.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges.J. Exp. Bot.201465154065409510.1093/jxb/eru191 24868038
    [Google Scholar]
  70. ArnonD.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.Plant Physiol.194924111510.1104/pp.24.1.1 16654194
    [Google Scholar]
  71. MonneveuxP. NemmarM. Contribution to the study of drought resistance in common wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.): Study of the accumulation of proline during the development cycle.Agronomie19866658359010.1051/agro:19860611
    [Google Scholar]
  72. BousbaR. BounarR. SedratiN. LekhalR. HamlaC. Rached-KanouniM. Effects of osmotic stress induced by polyethylene glycol (PEG) 6000 and mannitol on seed gerination and seedling growth of durum wheat.J. Biores. Manag2021835766
    [Google Scholar]
  73. MaksimovicT. JanjicN. LubardaB. Effect of different concentratons of mannitol on germination of pea seeds (Pisum sativum L.).Poljopr. Sumar.2020663657210.17707/AgricultForest.66.3.06
    [Google Scholar]
  74. LedbetterC.A. PalmquistD.E. PetersonS.J. Germination and net in vitro growth of peach, almond and peach-almond hybrid embryos in response to mannitol inclusion in the nutrient medium.Euphytica1998103224325010.1023/A:1018324624252
    [Google Scholar]
  75. DhakalP. SubediR. Influence of mannitol priming on maize seeds under induced water stress.JAC2020663273110.32861/jac.63.27.31
    [Google Scholar]
  76. QueirozM.S. OliveiraC.E.S. SteinerF. ZuffoA.M. ZozT. VendruscoloE.P. SilvaM.V. MelloB.F.F.R. CabralR.C. MenisF.T. Drought stresses on seed germination and early growth of maize and sorghum.J. Agric. Sci.201911231031810.5539/jas.v11n2p310
    [Google Scholar]
  77. LiuF. AndersenM.N. JacobsenS.E. JensenC.R. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying.Environ. Exp. Bot.2005541334010.1016/j.envexpbot.2004.05.002
    [Google Scholar]
  78. FarooqM. HussainM. SiddiqueK.H.M. Drought stress in wheat during flowering and grain-filling periods.Crit. Rev. Plant Sci.201433433134910.1080/07352689.2014.875291
    [Google Scholar]
  79. YadavB. JogawatA. RahmanM.S. NarayanO.P. Secondary metabolites in the drought stress tolerance of crop plants: A review.Gene Rep.20212310104010.1016/j.genrep.2021.101040
    [Google Scholar]
  80. FangY. XiongL. General mechanisms of drought response and their application in drought resistance improvement in plants.Cell. Mol. Life Sci.201572467368910.1007/s00018‑014‑1767‑0 25336153
    [Google Scholar]
  81. TakahashiF. KuromoriT. UranoK. Yamaguchi-ShinozakiK. ShinozakiK. Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication.Front. Plant Sci.20201155697210.3389/fpls.2020.556972 33013974
    [Google Scholar]
  82. Ortega-BaesP. Rojas-AréchigaM. Seed germination of Trichocereus terscheckii (Cactaceae): Light, temperature and gibberellic acid effects.J. Arid Environ.200769116917610.1016/j.jaridenv.2006.09.009
    [Google Scholar]
  83. ChenS.Y. KuoS.R. ChienC.T. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds.Tree Physiol.20082891431143910.1093/treephys/28.9.1431 18595855
    [Google Scholar]
  84. DevR DayalD SureshkumarM Gibberellic acid and potassium nitrate promote seed germination and growth of grey-leaved saucer-berry (Cordia sinensis Lam.) seedlings.Int J Fruit Sci202020sup2S937S95410.1080/15538362.2020.1774465
    [Google Scholar]
  85. TaghinezadZ. DehdariM. MirshekariA. ZainaliH. Effect of gibberellic acid, temperature and embryo culture on seed germination of four native species of barberry (Berberis spp.). Iran.J. Seed Res.201631273710.29252/yujs.3.1.27
    [Google Scholar]
  86. SavaediZ. ParmoonG. MoosaviS.A. BakhshandeA. The role of light and Gibberellic Acid on cardinal temperatures and thermal time required for germination of Charnushka (Nigella sativa) seed.Ind. Crops Prod.201913214014910.1016/j.indcrop.2019.02.025
    [Google Scholar]
  87. KimD.H. KimS.G. LeeH. NaC.S. LeeD.H. The dormancy types and germination characteristics of the seeds of Berberis koreana Palibin, an endemic species of Korea.Horticulturae20239554710.3390/horticulturae9050547
    [Google Scholar]
  88. AL-HuqailA A AlshehriD NawazR IrshadM A IftikharA HussainiK M RizwanM AlghanemS M S AbeedA H A The effect of gibberellic acid on wheat growth and nutrient uptake under combined stress of cerium, zinc and titanium dioxide nanoparticles.Chemosphere202333613919910.1016/j.chemosphere.2023.13919937315861
    [Google Scholar]
  89. Dwi SetiawanG. ThiravetyanP. TreesubsuntornC. Gaseous toluene phytoremediation by Vigna radiata seedlings under simulated microgravity: Effect of hypocotyl, auxin, and gibberellic acid.Acta Astronaut.2023211889610.1016/j.actaastro.2023.06.002
    [Google Scholar]
  90. KagawaT. MichizoS. Involvement of gibberellic acid in phytochrome-mediated spore germination of the fern Lygodium japonicum.J. Plant Physiol.1991138329930310.1016/S0176‑1617(11)80291‑9
    [Google Scholar]
  91. MontazeranA. KhadiviA. KhaleghiA. The first report: Chilling and heat requirements of seedless barberry (Berberis vulgaris L. var. asperma).Sci. Hortic.201823118819310.1016/j.scienta.2017.12.043
    [Google Scholar]
  92. MousaviS.M.E. MousaviM. KianiH. Characterization and identification of sediment forming agents in barberry juice.Food Chem.202031212605610.1016/j.foodchem.2019.126056 31887620
    [Google Scholar]
  93. SafariZ. FarrokhzadA. GhavamiA. FadelA. HadiA. RafieeS. Mokari-YamchiA. AskariG. The effect of barberry (Berberis vulgaris L.) on glycemic indices: A systematic review and meta-analysis of randomized controlled trials.Complement. Ther. Med.20205110241410.1016/j.ctim.2020.102414 32507431
    [Google Scholar]
  94. ShahrajabianM.H. SunW. Iranian traditional (ITM) and natural remedies for treatment of the common cold and Flu.Rev. Recent Clin. Trials20231811010.2174/0115748871275500231127065053 38047364
    [Google Scholar]
  95. ShahrajabianM.H. SunW. Chinese medicinal plants with antiviral activities for treatment of the common cold and flu.Biol. Life Sci. Forum202326271410.3390/Foods2023‑15058
    [Google Scholar]
  96. KhoshkharamM. ShahrajabianM.H. SunW. Changes in germination parameters, growth and development of three cultivars of corn seedlings under various aqueous extracts of mallow.Curr. Org. Synth.202421101110.2174/0115701794274892231229110318
    [Google Scholar]
  97. SunW. ShahrajabianM.H. KuangY. WangN. Amino acids biostimulants and protein hydrolysates in agricultural sciences.Plants202413221010.3390/plants13020210 38256763
    [Google Scholar]
/content/journals/npj/10.2174/0122103155311053240822102929
Loading
/content/journals/npj/10.2174/0122103155311053240822102929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test