Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

The primary cause of End-stage Renal Disease (ESRD) and a possible chronic microvascular consequence of diabetes mellitus is Diabetic Nephropathy (DN). The early stages of diabetic kidney disease (DN) often include hyperfiltration and albuminuria, which are followed by a steady loss in renal function. Diabetes patients may display the usual signs and symptoms of Diabetic Kidney Disease (DKD), particularly if they have Type 2 Diabetes Mellitus (T2DM). Significant confounders might also include the presence of other glomerular/tubular illnesses and severe peripheral vascular disease. Patients with diabetic nephropathy have an all-cause mortality rate that is approximately thirty times higher than that of diabetic patients without nephropathy. Most patients with diabetic nephropathy die from cardiovascular disease before they develop End-stage Renal Disease (ESRD). The formation of diabetic nephropathy must be prevented and its advancement must be slowed by controlling metabolic and hemodynamic abnormalities. Research should concentrate on developing new therapies for diabetic nephropathy since it is a crippling condition that affects people worldwide and causes significant social and economic burdens. Recent findings suggest that numerous pathways are activated during diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper was to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155306808240705040740
2024-09-03
2025-09-11
Loading full text...

Full text loading...

References

  1. VallonV. KomersR. Pathophysiology of the diabetic kidney.Compr. Physiol.2011131175123210.1002/cphy.c100049 23733640
    [Google Scholar]
  2. LiY. XiaW. ZhaoF. WenZ. ZhangA. HuangS. JiaZ. ZhangY. Prostaglandins in the pathogenesis of kidney diseases.Oncotarget2018941265862660210.18632/oncotarget.25005 29899878
    [Google Scholar]
  3. SunY.M. SuY. LiJ. WangL.F. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy.Biochem. Biophys. Res. Commun.2013433435936110.1016/j.bbrc.2013.02.120 23541575
    [Google Scholar]
  4. WuT. DingL. AndohV. ZhangJ. ChenL. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: An update.Life202313253910.3390/life13020539 36836895
    [Google Scholar]
  5. SagooM.K. GnudiL. Diabetic nephropathy: Is there a role for oxidative stress?Free Radic. Biol. Med.2018116506310.1016/j.freeradbiomed.2017.12.040 29305106
    [Google Scholar]
  6. LinY.C. ChangY.H. YangS.Y. WuK.D. ChuT.S. Update of pathophysiology and management of diabetic kidney disease.J. Formos. Med. Assoc.2018117866267510.1016/j.jfma.2018.02.007 29486908
    [Google Scholar]
  7. TonneijckL. MuskietM.H.A. SmitsM.M. van BommelE.J. HeerspinkH.J.L. van RaalteD.H. JolesJ.A. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment.J. Am. Soc. Nephrol.20172841023103910.1681/ASN.2016060666 28143897
    [Google Scholar]
  8. YangY. XuG. Update on pathogenesis of glomerular hyperfiltration in early diabetic kidney disease.Front. Endocrinol.20221387291810.3389/fendo.2022.872918 35663316
    [Google Scholar]
  9. ChangJ. YanJ. LiX. LiuN. ZhengR. ZhongY. Update on the mechanisms of tubular cell injury in diabetic kidney disease.Front. Med.2021866107610.3389/fmed.2021.661076 33859992
    [Google Scholar]
  10. StanigutA.M. PanaC. EnciuM. DeacuM. CimpineanuB. TutaL.A. Hypoxia-inducible factors and diabetic kidney disease how deep can we go?Int. J. Mol. Sci.202223181041310.3390/ijms231810413 36142323
    [Google Scholar]
  11. ZhouK. ZiX. SongJ. ZhaoQ. LiuJ. BaoH. LiL. Molecular mechanistic pathways targeted by natural compounds in the prevention and treatment of diabetic kidney disease.Molecules20222719622110.3390/molecules27196221 36234757
    [Google Scholar]
  12. SamsuN. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment.BioMed Res. Int.2021202111710.1155/2021/1497449 34307650
    [Google Scholar]
  13. YuanQ. TangB. ZhangC. Signaling pathways of chronic kidney diseases, implications for therapeutics.Signal Transduct. Target. Ther.20227118210.1038/s41392‑022‑01036‑5 35680856
    [Google Scholar]
  14. OrmazabalV. NairS. ElfekyO. AguayoC. SalomonC. ZuñigaF.A. Association between insulin resistance and the development of cardiovascular disease.Cardiovasc. Diabetol.201817112210.1186/s12933‑018‑0762‑4 30170598
    [Google Scholar]
  15. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative Stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201711310.1155/2017/8416763 28819546
    [Google Scholar]
  16. JhaJ.C. BanalC. ChowB.S.M. CooperM.E. Jandeleit-DahmK. Diabetes and kidney disease: Role of oxidative stress.Antioxid. Redox Signal.2016251265768410.1089/ars.2016.6664 26906673
    [Google Scholar]
  17. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ROS and RNS sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.2016201614410.1155/2016/1245049 27478531
    [Google Scholar]
  18. DuniA. LiakopoulosV. RoumeliotisS. PeschosD. DounousiE. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling ariadne’s thread.Int. J. Mol. Sci.20192015371110.3390/ijms20153711 31362427
    [Google Scholar]
  19. StenvinkelP. ChertowG.M. DevarajanP. LevinA. AndreoliS.P. BangaloreS. WaradyB.A. Chronic inflammation in chronic kidney disease progression: Role of Nrf2.Kidney Int. Rep.2021671775178710.1016/j.ekir.2021.04.023 34307974
    [Google Scholar]
  20. KashiharaN. HarunaY. KondetiV.K. KanwarY.S. Oxidative stress in diabetic nephropathy.Curr. Med. Chem.201017344256426910.2174/092986710793348581 20939814
    [Google Scholar]
  21. AmesM.K. AtkinsC.E. PittB. The renin‐angiotensin‐aldosterone system and its suppression.J. Vet. Intern. Med.201933236338210.1111/jvim.15454 30806496
    [Google Scholar]
  22. RemuzziG. PericoN. MaciaM. RuggenentiP. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease.Kidney Int.20056899S57S6510.1111/j.1523‑1755.2005.09911.x 16336578
    [Google Scholar]
  23. BenigniA. CassisP. RemuzziG. Angiotensin II revisited: new roles in inflammation, immunology and aging.EMBO Mol. Med.20102724725710.1002/emmm.201000080 20597104
    [Google Scholar]
  24. PacurariM. KafouryR. TchounwouP.B. NdebeleK. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling.Int. J. Inflamm.2014201411310.1155/2014/689360 24804145
    [Google Scholar]
  25. FogoA.B. Mechanisms of progression of chronic kidney disease.Pediatr. Nephrol.200722122011202210.1007/s00467‑007‑0524‑0 17647026
    [Google Scholar]
  26. ChawlaT. SharmaD. SinghA. Role of the renin angiotensin system in diabetic nephropathy.World J. Diabetes20101514114510.4239/wjd.v1.i5.141 21537441
    [Google Scholar]
  27. IraniR.A. XiaY. The functional role of the renin-angiotensin system in pregnancy and preeclampsia.Placenta200829976377110.1016/j.placenta.2008.06.011 18687466
    [Google Scholar]
  28. ChenJ. LiuQ. HeJ. LiY. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target.Front. Immunol.20221395879010.3389/fimmu.2022.958790 36045667
    [Google Scholar]
  29. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  30. Husain-SyedF. McCulloughP.A. BirkH.W. RenkerM. BroccaA. SeegerW. RoncoC. Cardio pulmonary renal interactions.J. Am. Coll. Cardiol.201565222433244810.1016/j.jacc.2015.04.024 26046738
    [Google Scholar]
  31. ZhangY. WangB. GuoF. LiZ. QinG. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy.Biomed. Pharmacother.201810576677210.1016/j.biopha.2018.06.036 29909344
    [Google Scholar]
  32. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a001651 20457564
    [Google Scholar]
  33. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017211702310.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  34. Francisqueti-FerronF.V. FerronA.J.T. GarciaJ.L. SilvaC.C.V.A. CostaM.R. GregolinC.S. MoretoF. FerreiraA.L.A. MinatelI.O. CorreaC.R. Basic concepts on the role of nuclear factor erythroid-derived 2-like 2 (Nrf2) in age-related diseases.Int. J. Mol. Sci.20192013320810.3390/ijms20133208 31261912
    [Google Scholar]
  35. HeF. RuX. WenT. NRF2, a transcription factor for stress response and beyond.Int. J. Mol. Sci.20202113477710.3390/ijms21134777 32640524
    [Google Scholar]
  36. WangL. ZhangX. XiongX. ZhuH. ChenR. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke.Antioxidants202211122377
    [Google Scholar]
  37. JeongW.S. JunM. KongA.N.T. Nrf2: A potential molecular target for cancer chemoprevention by natural compounds.Antioxid. Redox Signal.200681-29910610.1089/ars.2006.8.99 16487042
    [Google Scholar]
  38. PanD. XuL. GuoM. The role of protein kinase C in diabetic microvascular complications.Front. Endocrinol.20221397305810.3389/fendo.2022.973058 36060954
    [Google Scholar]
  39. LienC-F. ChenS-J. TsaiM-C. LinC-S. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis.Front. Pharmacol.20211271633210.3389/fphar.2021.716332
    [Google Scholar]
  40. AlsaadK.O. HerzenbergA.M. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update.J. Clin. Pathol.2007601182610.1136/jcp.2005.035592 17213346
    [Google Scholar]
  41. QiC. MaoX. ZhangZ. WuH. Classification and differential diagnosis of diabetic nephropathy.J. Diabetes Res.201720171710.1155/2017/8637138 28316995
    [Google Scholar]
  42. LiuH. FengJ. TangL. Early renal structural changes and potential biomarkers in diabetic nephropathy.Front. Physiol.202213102044310.3389/fphys.2022.1020443
    [Google Scholar]
  43. LiX. QiX. MaZ. HuangW. Fibronectin glomerulopathy with monoclonal gammopathy responding to bortezomib plus dexamethasone: A case report.BMC Nephrol.202223138210.1186/s12882‑022‑03005‑0 36451151
    [Google Scholar]
  44. WangJ.S. YenF.S. LinK.D. ShinS.J. HsuY.H. HsuC.C. Epidemiological characteristics of diabetic kidney disease in Taiwan.J. Diabetes Investig.202112122112212310.1111/jdi.13668 34529360
    [Google Scholar]
  45. NatesanV. KimS.J. Diabetic nephropathy: A review of risk factors, progression, mechanism, and dietary management.Biomol. Ther.202129436537210.4062/biomolther.2020.204 33888647
    [Google Scholar]
  46. MacIsaacR.J. JerumsG. EkinciE.I. Effects of glycaemic management on diabetic kidney disease.World J. Diabetes20178517218610.4239/wjd.v8.i5.172 28572879
    [Google Scholar]
  47. MullinsL.J. ConwayB.R. MenziesR.I. DenbyL. MullinsJ.J. Renal disease pathophysiology and treatment: contributions from the rat.Dis. Model. Mech.20169121419143310.1242/dmm.027276 27935823
    [Google Scholar]
  48. De VrieseA.S. WetzelsJ.F. GlassockR.J. SethiS. FervenzaF.C. Therapeutic trials in adult FSGS: lessons learned and the road forward.Nat. Rev. Nephrol.202117961963010.1038/s41581‑021‑00427‑1 34017116
    [Google Scholar]
  49. OnyenwenyiC. RicardoA.C. Impact of lifestyle modification on diabetic kidney disease.Curr. Diab. Rep.20151596010.1007/s11892‑015‑0632‑3 26194155
    [Google Scholar]
  50. PuglieseG. PennoG. NataliA. BaruttaF. Di PaoloS. ReboldiG. GesualdoL. De NicolaL. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function.J. Nephrol.202033193510.1007/s40620‑019‑00650‑x 31576500
    [Google Scholar]
  51. DounousiE. DuniA. LeivaditisK. VaiosV. EleftheriadisT. LiakopoulosV. Improvements in the management of diabetic nephropathy.Rev. Diabet. Stud.2015121-211913310.1900/RDS.2015.12.119 26676665
    [Google Scholar]
  52. GodinhoR. MegaC. Teixeira-de-LemosE. CarvalhoE. TeixeiraF. FernandesR. ReisF. The place of dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapeutics: A “Me Too” or “the special one” antidiabetic class?J. Diabetes Res.2015201512810.1155/2015/806979 26075286
    [Google Scholar]
  53. DeaconC.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes.Front. Endocrinol.20191080
    [Google Scholar]
  54. HsiaD.S. GroveO. CefaluW.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus.Curr. Opin. Endocrinol. Diabetes Obes.2017241737910.1097/MED.0000000000000311 27898586
    [Google Scholar]
  55. ScheenA.J. DPP-4 inhibitors in the management of type 2 diabetes: A critical review of head-to-head trials.Diabetes Metab.20123828910110.1016/j.diabet.2011.11.001 22197148
    [Google Scholar]
  56. VizzardiE. RegazzoniV. CarettaG. GavazzoniM. SciattiE. BonadeiI. TrichakiE. RaddinoR. MetraM. Mineralocorticoid receptor antagonist in heart failure: Past, present and future perspectives.Int. J. Cardiol. Heart Vessels2014361410.1016/j.ijchv.2014.03.005 29450163
    [Google Scholar]
  57. GhatageT. GoyalS.G. DharA. BhatA. Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies.Hypertens. Res.202144774075510.1038/s41440‑021‑00643‑z 33731923
    [Google Scholar]
  58. AhmadN. VeerapalliH. LankalaC.R. CastanedaE.E. AzizA. RockferryA.G. HamidP. Endothelin receptor antagonists as a potential treatment of diabetic nephropathy: A systematic review.Cureus20211311e1932510.7759/cureus.19325 34909290
    [Google Scholar]
  59. LiY.C. KongJ. WeiM. ChenZ.F. LiuS.Q. CaoL.P. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system.J. Clin. Invest.2002110222923810.1172/JCI0215219 12122115
    [Google Scholar]
  60. Wu-WongJ.R. Potential for vitamin D receptor agonists in the treatment of cardiovascular disease.Br. J. Pharmacol.2009158239541210.1111/j.1476‑5381.2009.00171.x 19371337
    [Google Scholar]
  61. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  62. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  63. KitadaM. KoyaD. Renal protective effects of resveratrol.Oxid. Med. Cell. Longev.201320131710.1155/2013/568093 24379901
    [Google Scholar]
  64. KoushkiM. Amiri-DashatanN. AhmadiN. AbbaszadehH.A. Rezaei-TaviraniM. Resveratrol: A miraculous natural compound for diseases treatment.Food Sci. Nutr.2018682473249010.1002/fsn3.855 30510749
    [Google Scholar]
  65. KobayashiE.H. SuzukiT. FunayamaR. NagashimaT. HayashiM. SekineH. TanakaN. MoriguchiT. MotohashiH. NakayamaK. YamamotoM. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.Nat. Commun.2016711162410.1038/ncomms11624 27211851
    [Google Scholar]
  66. AhmedS.M.U. LuoL. NamaniA. WangX.J. TangX. Nrf2 signaling pathway: Pivotal roles in inflammation.Biochim. Biophys. Acta Mol. Basis Dis.20171863258559710.1016/j.bbadis.2016.11.005 27825853
    [Google Scholar]
  67. DekaH. ChoudhuryA. DeyB.K. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes.J. Pharmacopuncture202225319920810.3831/KPI.2022.25.3.199 36186092
    [Google Scholar]
  68. Da PortoA. BrosoloG. CasarsaV. BulfoneL. ScandolinL. CatenaC. SechiL.A. The pivotal role of oleuropein in the anti-diabetic action of the mediterranean diet: A concise review.Pharmaceutics20211414010.3390/pharmaceutics14010040 35056936
    [Google Scholar]
  69. SangiS.A. SulaimanM. El-wahabM.A. AhmedaniE. AliS. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals.Pharmacogn. Mag.20151144)(225110.4103/0973‑1296.166017 26664013
    [Google Scholar]
  70. SuM. ZhaoW. XuS. WengJ. Resveratrol in treating diabetes and its cardiovascular complications: A review of its mechanisms of action.Antioxidants2022116108510.3390/antiox11061085 35739982
    [Google Scholar]
  71. MahjabeenW. KhanD.A. MirzaS.A. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial.Complement. Ther. Med.20226610281910.1016/j.ctim.2022.102819 35240291
    [Google Scholar]
  72. BaiY. MoK. WangG. ChenW. ZhangW. GuoY. SunZ. Intervention of gastrodin in type 2 diabetes mellitus and its mechanism.Front. Pharmacol.20211271072210.3389/fphar.2021.710722 34603025
    [Google Scholar]
  73. YangC. QiuH. LvM. YangJ. WuK. HuangJ. JiangQ. Gastrodin protects endothelial cells against high glucose-induced injury through up-regulation of PPARβ and alleviation of nitrative stress.Microvasc. Res.202314810453110.1016/j.mvr.2023.104531 36963481
    [Google Scholar]
  74. AjebliM. KhanH. EddouksM. Natural alkaloids and diabetes mellitus: A review.Endocr. Metab. Immune Disord. Drug Targets202121111113010.2174/1871530320666200821124817 32955004
    [Google Scholar]
  75. SubramanianS.P. PrasathG.S. Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats.Biomed. Preven. Nutrit.20144447548010.1016/j.bionut.2014.07.001
    [Google Scholar]
  76. ZhouJ. ChanL. ZhouS. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease.Curr. Med. Chem.201219213523353110.2174/092986712801323171 22680628
    [Google Scholar]
  77. YinJ. XingH. YeJ. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism200857571271710.1016/j.metabol.2008.01.013 18442638
    [Google Scholar]
  78. YinJ. YeJ. JiaW. Effects and mechanisms of berberine in diabetes treatment.Acta Pharm. Sin. B20122432733410.1016/j.apsb.2012.06.003
    [Google Scholar]
  79. ChenJ. GuoP. LiuX. LiaoH. ChenK. WangY. QinJ. YangF. Sinomenine alleviates diabetic peripheral neuropathic pain through inhibition of the inositol‐requiring enzyme 1 alpha–X‐box binding protein 1 pathway by downregulating prostaglandin‐endoperoxide synthase 2.J. Diabetes Investig.202314336437510.1111/jdi.13938 36692011
    [Google Scholar]
  80. RaoS. LiuS. ZouL. JiaT. ZhaoS. WuB. YiZ. WangS. XueY. GaoY. XuC. LiG. XuH. ZhangC. LiangS. The effect of sinomenine in diabetic neuropathic pain mediated by the P2X3 receptor in dorsal root ganglia.Purinergic Signal.201713222723510.1007/s11302‑016‑9554‑z 28054206
    [Google Scholar]
  81. AL-IshaqR K AbotalebM KubatkaP KajoK BüsselbergD Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom909043031480505
    [Google Scholar]
  82. Den HartoghD.J. TsianiE. Antidiabetic properties of naringenin: a citrus fruit polyphenol.Biomolecules2019939910.3390/biom9030099 30871083
    [Google Scholar]
  83. AnsariP. ChoudhuryS.T. SeidelV. RahmanA.B. AzizM.A. RichiA.E. RahmanA. JafrinU.H. HannanJ.M.A. Abdel-WahabY.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life12081146 36013325
    [Google Scholar]
  84. JiangW. DingK. YueR. LeiM. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications.Crit. Rev. Food Sci. Nutr.202312610.1080/10408398.2022.2159317 36591787
    [Google Scholar]
  85. SamirS.M. ElalfyM. NasharE.M.E. AlghamdiM.A. HamzaE. SerriaM.S. ElhadidyM.G. Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation.Korean J. Physiol. Pharmacol.202125434135410.4196/kjpp.2021.25.4.341 34187951
    [Google Scholar]
  86. Vargas-SánchezK. Garay-JaramilloE. González-ReyesR.E. Effects of Moringa oleifera on glycaemia and insulin levels: A review of animal and human studies.Nutrients20191112290710.3390/nu11122907 31810205
    [Google Scholar]
  87. OwensF.S.III DadaO. CyrusJ.W. AdedoyinO.O. AdunlinG. The effects of Moringa oleifera on blood glucose levels: A scoping review of the literature.Complement. Ther. Med.20205010236210.1016/j.ctim.2020.102362 32444043
    [Google Scholar]
  88. PhoolC. NeetuS. Evaluation of mechanism(s) of action underlying the antioxidant and antiulcer activity of Sesamum indicum leaves extract in experimental rats.Indian J. Pharmacol.2022546423430
    [Google Scholar]
  89. ZouT. LiuZ. CaoP. ZhengS. GuoW. WangT. ChenY. DuanY. LiQ. LiaoC. XieZ. HanJ. YangX. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway.Acta Pharmacol. Sin.202344102065207410.1038/s41401‑023‑01106‑6 37225845
    [Google Scholar]
  90. PuttaS. Sastry YarlaN. Kumar KilariE. SurekhaC. AlievG. Basavaraju DivakaraM. Sridhar SantoshM. RamuR. ZameerF. PrasadM.N. N.; Chintala, R.; Vijaya Rao, P.; Shiralgi, Y.; Lakkappa Dhananjaya, B. Therapeutic potentials of triterpenes in diabetes and its associated complications.Curr. Top. Med. Chem.201616232532254210.2174/1568026616666160414123343 27086788
    [Google Scholar]
  91. MikkelsenK.H. KnopF.K. FrostM. HallasJ. PottegårdA. Use of antibiotics and risk of type 2 diabetes: A population-based case-control study.J. Clin. Endocrinol. Metab.2015100103633364010.1210/jc.2015‑2696 26312581
    [Google Scholar]
  92. LiangD. MaiH. RuanF. FuH. The efficacy of triptolide in preventing diabetic kidney diseases: A systematic review and meta-analysis.Front. Pharmacol.20211272875810.3389/fphar.2021.728758 34658869
    [Google Scholar]
  93. ElekofehintiO.O. Saponins: Anti-diabetic principles from medicinal plants: A review.Pathophysiology20152229510310.1016/j.pathophys.2015.02.001 25753168
    [Google Scholar]
  94. ZhouR. HeD. ZhangH. XieJ. ZhangS. TianX. ZengH. QinY. HuangL. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles.J. Ethnopharmacol.202330311599710.1016/j.jep.2022.115997 36509256
    [Google Scholar]
  95. ShenQ. QiS. ZhangJ. LiM. WangY. WangZ. LiW. Platycodin D inhibits HFD/STZ-induced diabetic nephropathy via inflammatory and apoptotic signaling pathways in C57BL/6 mice.J. Ethnopharmacol.202331411659610.1016/j.jep.2023.116596 37146841
    [Google Scholar]
  96. YaoH. ZhangW. YangF. AiF. DuD. LiY. Discovery of caffeoylisocitric acid as a Keap1-dependent Nrf2 activator and its effects in mesangial cells under high glucose.J. Enzyme Inhib. Med. Chem.202237117818810.1080/14756366.2021.1998025 34894983
    [Google Scholar]
  97. SepahiS. GolfakhrabadiM. BonakdaranS. LotfiH. MohajeriS.A. Effect of crocin on diabetic patients: A placebo-controlled, triple-blinded clinical trial.Clin. Nutr. ESPEN20225025526310.1016/j.clnesp.2022.05.006 35871933
    [Google Scholar]
  98. ChenR. ZengJ. LiC. XiaoH. LiS. LinZ. HuangK. ShenJ. HuangH. Fraxin promotes the activation of Nrf2/ARE pathway via increasing the expression of connexin43 to ameliorate diabetic renal fibrosis.Front. Pharmacol.20221385338310.3389/fphar.2022.853383 35401165
    [Google Scholar]
/content/journals/npj/10.2174/0122103155306808240705040740
Loading
/content/journals/npj/10.2174/0122103155306808240705040740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test