Skip to content
2000
Volume 16, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Turmeric ( L.) is renowned for its therapeutic properties, such as antitumor, antioxidant, anticancer, and antiinflammatory effects. Despite its safety, the usefulness of curcumin, a prominent polyphenolic compound derived from the rhizome of L., is limited by factors such as low bioavailability, poor absorption, rapid metabolism, and quick systemic elimination. Despite these challenges, researchers continually explore therapeutic potential of curcumin’s through the development of novel delivery systems and chemical modifications such as monocarbonyl analogues of curcumin (MACs) which lack one carbonyl group present in the native structure. Recent studies on MACs have shown promising antiinflammatory, anticancer, and antidiabetic properties. In summary, the development of MACs and other chemical modifications of curcumin presents a promising avenue to improve the bioavailability and pharmacological activities of this natural compound. The objective of this review is to understand structure-activity relationships that will guide further investigations and applications of MACs in therapeutics and help in enhancing curcumin’s bioavailability and pharmacological activities.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155307922241022143752
2024-10-30
2025-10-22
Loading full text...

Full text loading...

References

  1. ButlerM.S. The role of natural product chemistry in drug discovery.J. Nat. Prod.200467122141215310.1021/np040106y 15620274
    [Google Scholar]
  2. PriyadarsiniK. The chemistry of curcumin: From extraction to therapeutic agent.Molecules20141912200912011210.3390/molecules191220091 25470276
    [Google Scholar]
  3. PrasadS. AggarwalB.B. Turmeric, the golden spice.Herbal Medicine: Biomolecular and Clinical Aspects.2nd edBoca Raton CRC Press/Taylor and Francis201110.1201/b10787‑14
    [Google Scholar]
  4. SemsriS. KrigS.R. KotelawalaL. SweeneyC.A. AnuchapreedaS. Inhibitory mechanism of pure curcumin on Wilms’ tumor 1 (WT1) gene expression through the PKCα signaling pathway in leukemic K562 cells.FEBS Lett.2011585142235224210.1016/j.febslet.2011.05.043 21658388
    [Google Scholar]
  5. GalanoA. Álvarez-DidukR. Ramírez-SilvaM.T. Alarcón-ÁngelesG. Rojas-HernándezA. Role of the reacting free radicals on the antioxidant mechanism of curcumin.Chem. Phys.20093631-3132310.1016/j.chemphys.2009.07.003
    [Google Scholar]
  6. BasileV. FerrariE. LazzariS. BellutiS. PignedoliF. ImbrianoC. Curcumin derivatives: Molecular basis of their anti-cancer activity.Biochem. Pharmacol.200978101305131510.1016/j.bcp.2009.06.105 19580791
    [Google Scholar]
  7. CooneyJ.M. BarnettM.P.G. DommelsY.E.M. BrewsterD. ButtsC.A. McNabbW.C. LaingW.A. RoyN.C. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a−/− mouse model of inflammatory bowel disease.J. Nutr. Biochem.20162718119210.1016/j.jnutbio.2015.08.030 26437580
    [Google Scholar]
  8. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  9. LestariM.L.A.D. IndrayantoG. Profiles of drug substances, excipients and related methodology.USA Academic Press201439113204
    [Google Scholar]
  10. KulacM. AktasC. TulubasF. UygurR. KanterM. ErbogaM. CeberM. TopcuB. OzenO.A. The effects of topical treatment with curcumin on burn wound healing in rats.J. Mol. Histol.2013441839010.1007/s10735‑012‑9452‑9 23054142
    [Google Scholar]
  11. RodriguesFC KumarNA ThakurG. The potency of heterocyclic curcumin analogues: An evidence-based review.Pharmacol. Res.2021166105489
    [Google Scholar]
  12. LoprestiA.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects?Adv. Nutr.201891415010.1093/advances/nmx011 29438458
    [Google Scholar]
  13. HumaZ. GuptaA. JavedI. DasR. HussainS.Z. MumtazS. HussainI. RotelloV.M. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria.ACS Omega2018312167211672710.1021/acsomega.8b02438 30613808
    [Google Scholar]
  14. AfzalO YusufM AhsanMJ AltamimiASA BakhtMA AliA. Chemical modification of Curcumin into its semi-synthetic analogues bearing pyrimidinone moiety as anticancer agents.Plants202211202737
    [Google Scholar]
  15. LinL. LiuY. LiH. LiP-K. FuchsJ. ShibataH. IwabuchiY. LinJ. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.Br. J. Cancer2011105221222010.1038/bjc.2011.200 21694723
    [Google Scholar]
  16. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  17. NelsonK.M. DahlinJ.L. BissonJ. GrahamJ. PauliG.F. WaltersM.A. The essential medicinal chemistry of curcumin.J. Med. Chem.20176051620163710.1021/acs.jmedchem.6b00975 28074653
    [Google Scholar]
  18. YuH. GengW.C. ZhengZ. GaoJ. GuoD.S. WangY. Facile fluorescence monitoring of gut microbial metabolite Trimethylamine N -oxide via molecular recognition of Guanidinium-Modified Calixarene.Theranostics20199164624463210.7150/thno.33459 31367245
    [Google Scholar]
  19. NoureddinS.A. El-ShishtawyR.M. Al-FootyK.O. Curcumin analogues and their hybrid molecules as multifunctional drugs.Eur. J. Med. Chem.201918211163110.1016/j.ejmech.2019.111631 31479974
    [Google Scholar]
  20. ParikhA. KathawalaK. TanC.C. GargS. ZhouX.F. Development of a novel oral delivery system of edaravone for enhancing bioavailability.Int. J. Pharm.20165151-249050010.1016/j.ijpharm.2016.10.052 27789367
    [Google Scholar]
  21. GaoD. LiuH. LinJ.M. WangY. JiangY. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device.Lab Chip201313597898510.1039/c2lc41215b 23340920
    [Google Scholar]
  22. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑957450 9619120
    [Google Scholar]
  23. TanS. RupasingheT.W.T. TullD.L. BoughtonB. OliverC. McSweenyC. GrasS.L. AugustinM.A. Degradation of curcuminoids by in vitro pure culture fermentation.J. Agric. Food Chem.20146245110051101510.1021/jf5031168 25317751
    [Google Scholar]
  24. HassaninasabA. HashimotoY. Tomita-YokotaniK. KobayashiM. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism.Proc. Natl. Acad. Sci. USA2011108166615662010.1073/pnas.1016217108 21467222
    [Google Scholar]
  25. IresonC. OrrS. JonesD.J. VerschoyleR. LimC.K. LuoJ.L. HowellsL. PlummerS. JukesR. WilliamsM. StewardW.P. GescherA. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production.Cancer Res.200161310581064 11221833
    [Google Scholar]
  26. HoehleS.I. PfeifferE. SólyomA.M. MetzlerM. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver.J. Agric. Food Chem.200654375676410.1021/jf058146a 16448179
    [Google Scholar]
  27. IresonC.R. JonesD.J. OrrS. CoughtrieM.W. BoocockD.J. WilliamsM.L. FarmerP.B. StewardW.P. GescherA.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine.Cancer Epidemiol. Biomarkers Prev.2002111105111 11815407
    [Google Scholar]
  28. PanM.H. HuangT.M. LinJ.K. Biotransformation of curcumin through reduction and glucuronidation in mice.Drug Metab. Dispos.1999274486494 10101144
    [Google Scholar]
  29. AggarwalB. DebL. PrasadS. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses.Molecules201420118520510.3390/molecules20010185 25547723
    [Google Scholar]
  30. WuJ.C. TsaiM.L. LaiC.S. WangY.J. HoC.T. PanM.H. Chemopreventative effects of tetrahydrocurcumin on human diseases.Food Funct.201451121710.1039/C3FO60370A 24220621
    [Google Scholar]
  31. GriesserM. PistisV. SuzukiT. TejeraN. PrattD.A. SchneiderC. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin.J. Biol. Chem.201128621114112410.1074/jbc.M110.178806 21071447
    [Google Scholar]
  32. WangY.J. PanM.H. ChengA.L. LinL.I. HoY.S. HsiehC.Y. LinJ.K. Stability of curcumin in buffer solutions and characterization of its degradation products.J. Pharm. Biomed. Anal.199715121867187610.1016/S0731‑7085(96)02024‑9 9278892
    [Google Scholar]
  33. DasR. RoyA. DuttaN. MajumderH.K. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani.Apoptosis200813786788210.1007/s10495‑008‑0224‑7 18506627
    [Google Scholar]
  34. HailN.Jr Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis.Free Radic. Biol. Med.20084471382139310.1016/j.freeradbiomed.2007.12.034 18206126
    [Google Scholar]
  35. ChoiH. ChunY.S. ShinY.J. YeS.K. KimM.S. ParkJ.W. Curcumin attenuates cytochrome P450 induction in response to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin by ROS‐dependently degrading AhR and ARNT.Cancer Sci.200899122518252410.1111/j.1349‑7006.2008.00984.x 19018768
    [Google Scholar]
  36. WanR. MoY. ZhangX. ChienS. TollerudD.J. ZhangQ. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation.Toxicol. Appl. Pharmacol.2008233227628510.1016/j.taap.2008.08.022 18835569
    [Google Scholar]
  37. KhanM.A. GahlotS. MajumdarS. Oxidative stress induced by curcumin promotes the death of cutaneous T-cell lymphoma (HuT-78) by disrupting the function of several molecular targets.Mol. Cancer Ther.20121191873188310.1158/1535‑7163.MCT‑12‑0141 22653966
    [Google Scholar]
  38. GordonO.N. LuisP.B. AshleyR.E. OsheroffN. SchneiderC. Oxidative transformation of demethoxy-and bisdemethoxycurcumin: products, mechanism of formation, and poisoning of human topoisomerase IIα.Chem. Res. Toxicol.201528598999610.1021/acs.chemrestox.5b00009 25806475
    [Google Scholar]
  39. GordonO.N. SchneiderC. Vanillin and ferulic acid: Not the major degradation products of curcumin.Trends Mol. Med.201218736136310.1016/j.molmed.2012.04.011 22652257
    [Google Scholar]
  40. GordonO.N. LuisP.B. SintimH.O. SchneiderC. Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione.J. Biol. Chem.201529084817482810.1074/jbc.M114.618785 25564617
    [Google Scholar]
  41. Martín-CorderoC. López-LázaroM. GálvezM. Jesús AyusoM. Curcumin as a DNA topoisomerase II poison.J. Enzyme Inhib. Med. Chem.200318650550910.1080/14756360310001613085 15008515
    [Google Scholar]
  42. López-LázaroM. WillmoreE. JobsonA. GilroyK.L. CurtisH. PadgetK. AustinC.A. Curcumin induces high levels of topoisomerase I- and II-DNA complexes in K562 leukemia cells.J. Nat. Prod.200770121884188810.1021/np070332i 18076140
    [Google Scholar]
  43. KetronA.C. GordonO.N. SchneiderC. OsheroffN. Oxidative metabolites of curcumin poison human type II topoisomerases.Biochemistry201352122122710.1021/bi3014455 23253398
    [Google Scholar]
  44. LitwinienkoG. IngoldK.U. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer.J. Org. Chem.200469185888589610.1021/jo049254j 15373474
    [Google Scholar]
  45. LitwinienkoG. IngoldK.U. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals.Acc. Chem. Res.200740322223010.1021/ar0682029 17370994
    [Google Scholar]
  46. KornblumN. DeLaMareH.E. The base catalyzed decomposition of a dialkyl peroxide.J. Am. Chem. Soc.195173288088110.1021/ja01146a542
    [Google Scholar]
  47. HambergM. SamuelssonB. Oxygenation of unsaturated fatty acids by the vesicular gland of sheep.J. Biol. Chem.1967242225344535410.1016/S0021‑9258(18)99434‑2 6070852
    [Google Scholar]
  48. SchneiderC. BoeglinW.E. YinH. PorterN.A. BrashA.R. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products.Chem. Res. Toxicol.200821489590310.1021/tx700357u 18324788
    [Google Scholar]
  49. SchneiderC. PorterN.A. BrashA.R. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation.J. Biol. Chem.200828323155391554310.1074/jbc.R800001200 18285327
    [Google Scholar]
  50. PrasadS. TyagiA.K. AggarwalB.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice.Cancer Res. Treat.201446121810.4143/crt.2014.46.1.2 24520218
    [Google Scholar]
  51. RodriguesF.C. Anil KumarN.V. ThakurG. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review.Eur. J. Med. Chem.20191777610410.1016/j.ejmech.2019.04.058 31129455
    [Google Scholar]
  52. PandeyA. ChaturvediM. MishraS. KumarP. SomvanshiP. ChaturvediR. Reductive metabolites of curcumin and their therapeutic effects.Heliyon2020611e0546910.1016/j.heliyon.2020.e05469 33241148
    [Google Scholar]
  53. WiggersH.J. ZaionczS. CheleskiJ. MainardesR.M. KhalilN.M. Curcumin, a multitarget phytochemical.Stud. Nat. Prod. Chem.20175324327610.1016/B978‑0‑444‑63930‑1.00007‑7
    [Google Scholar]
  54. WangS. PengX. CuiL. LiT. YuB. MaG. BaX. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation.Spectrochim. Acta A Mol. Biomol. Spectrosc.2018190899510.1016/j.saa.2017.09.010 28915469
    [Google Scholar]
  55. HsiehM.T. ChangL.C. HungH.Y. LinH.Y. ShihM.H. TsaiC.H. KuoS.C. LeeK.H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo.Eur. J. Med. Chem.201713114115110.1016/j.ejmech.2017.03.006 28319780
    [Google Scholar]
  56. SribalanR. KirubavathiM. BanuppriyaG. PadminiV. Synthesis and biological evaluation of new symmetric curcumin derivatives.Bioorg. Med. Chem. Lett.201525194282428610.1016/j.bmcl.2015.07.088 26264500
    [Google Scholar]
  57. FangX. FangL. GouS. ChengL. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: Potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin.Bioorg. Med. Chem. Lett.20132351297130110.1016/j.bmcl.2012.12.098 23357628
    [Google Scholar]
  58. QudjaniE. ImanM. DavoodA. RamandiM.F. ShafieeA. Design and synthesis of curcumin-like diarylpentanoid analogues as potential anticancer agents.Recent Pat. Anticancer Drug Discov.201611334235110.2174/1574892811666160420141613 27094172
    [Google Scholar]
  59. Mohd AluwiM.F.F. RullahK. YaminB.M. LeongS.W. Abdul BahariM.N. LimS.J. Mohd FaudziS.M. JalilJ. AbasF. Mohd FauziN. IsmailN.H. JantanI. LamK.W. Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines.Bioorg. Med. Chem. Lett.201626102531253810.1016/j.bmcl.2016.03.092 27040659
    [Google Scholar]
  60. ZhuH. XuT. QiuC. WuB. ZhangY. ChenL. XiaQ. LiC. ZhouB. LiuZ. LiangG. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.Eur. J. Med. Chem.201612118119310.1016/j.ejmech.2016.05.041 27240273
    [Google Scholar]
  61. ZhangX. ChenM. ZouP. KanchanaK. WengQ. ChenW. ZhongP. JiJ. ZhouH. HeL. LiangG. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells.BMC Cancer201515186610.1186/s12885‑015‑1851‑3 26546056
    [Google Scholar]
  62. EmamDR AlhajojAM ElattarKM KhederNA FaddaAA. Synthesis and evaluation of curcuminoid analogues as antioxidant and antibacterial agents.Molecules201722697110.3390/molecules22060971
    [Google Scholar]
  63. TuZ.S. WangQ. SunD.D. DaiF. ZhouB. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death.Eur. J. Med. Chem.2017134728510.1016/j.ejmech.2017.04.008 28399452
    [Google Scholar]
  64. KumarP. KandiS.K. ManoharS. MukhopadhyayK. RawatD.S. Monocarbonyl Curcuminoids with improved stability as antibacterial agents against Staphylococcus aureus and their mechanistic studies.ACS Omega20194167568710.1021/acsomega.8b02625
    [Google Scholar]
  65. YusufA.S. SadaI. HassanY. OlomolaT.O. AdeyemiC.M. AjibadeS.O. Synthesis, antimalarial activity, and docking studies of Monocarbonyl analogues of Curcumin.An. Univ. Ovidius Constanta Ser. Chim.2018292929610.2478/auoc‑2018‑0013
    [Google Scholar]
  66. ShettyD. KimY. ShimH. SnyderJ. Eliminating the heart from the curcumin molecule: Monocarbonyl curcumin mimics (MACs).Molecules201420124929210.3390/molecules20010249 25547726
    [Google Scholar]
  67. ZhengD. HuangC. HuangH. ZhaoY. KhanM.R.U. ZhaoH. HuangL. Antibacterial mechanism of Curcumin: A review.Chem. Biodivers.2020178e200017110.1002/cbdv.202000171 32533635
    [Google Scholar]
  68. KumarN. KhanS.I. Beena; Rajalakshmi, G.; Kumaradhas, P.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of substituted 3,6-diphenyl-[1,2,4,5]tetraoxanes.Bioorg. Med. Chem.200917155632563810.1016/j.bmc.2009.06.020 19574054
    [Google Scholar]
  69. PolaquiniC.R. MarquesB.C. AyussoG.M. MorãoL.G. SardiJ.C.O. CamposD.L. SilvaI.C. CavalcaL.B. ScheffersD.J. RosalenP.L. PavanF.R. FerreiraH. RegasiniL.O. Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption.Bioorg. Chem.202110910466810.1016/j.bioorg.2021.104668 33601139
    [Google Scholar]
  70. NagargojeA.A. AkolkarS.V. SiddiquiM.M. SubhedarD.D. SangshettiJ.N. KhedkarV.M. ShingateB.B. Quinoline based monocarbonyl curcumin analogs as potential antifungal and antioxidant agents: Synthesis, bioevaluation and molecular docking study.Chem. Biodivers.2020172e190062410.1002/cbdv.201900624 31863703
    [Google Scholar]
  71. JamilS.N.H. AliA.H. FerozS.R. LamS.D. AgustarH.K. Mohd Abd RazakM.R. LatipJ. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure-activity relationship and mechanism of action.Pharmaceuticals202316460910.3390/ph16040609 37111366
    [Google Scholar]
  72. Anti-inflammatory diet 101: How to reduce inflammation naturally2022Available from: https://www.healthline.com/nutrition/anti-inflammatory-diet-101#what-it-is
  73. LiangG. LiX. ChenL. YangS. WuX. StuderE. GurleyE. HylemonP.B. YeF. LiY. ZhouH. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin.Bioorg. Med. Chem. Lett.20081841525152910.1016/j.bmcl.2007.12.068 18234497
    [Google Scholar]
  74. SandurS.K. PandeyM.K. SungB. AhnK.S. MurakamiA. SethiG. LimtrakulP. BadmaevV. AggarwalB.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism.Carcinogenesis20072881765177310.1093/carcin/bgm123 17522064
    [Google Scholar]
  75. DohutiaC. ChetiaD. GogoiK. BhattacharyyaD.R. SarmaK. Molecular docking, synthesis and in vitro antimalarial evaluation of certain novel curcumin analogues.Braz. J. Pharm. Sci.201853410.1590/s2175‑97902017000400084
    [Google Scholar]
  76. LiangG. YangS. ZhouH. ShaoL. HuangK. XiaoJ. HuangZ. LiX. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues.Eur. J. Med. Chem.200944291591910.1016/j.ejmech.2008.01.031 18336957
    [Google Scholar]
  77. PanY. WangY. CaiL. CaiY. HuJ. YuC. LiJ. FengZ. YangS. LiX. LiangG. Inhibition of high glucose‐induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats.Br. J. Pharmacol.201216631169118210.1111/j.1476‑5381.2012.01854.x 22242942
    [Google Scholar]
  78. LiangG ZhouH WangY GurleyEC FengB Chen, L Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin.J. Cell. Mol. Med.2009139B3370
    [Google Scholar]
  79. ZhaoC. CaiY. HeX. LiJ. ZhangL. WuJ. ZhaoY. YangS. LiX. LiW. LiangG. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages.Eur. J. Med. Chem.201045125773578010.1016/j.ejmech.2010.09.037 20934787
    [Google Scholar]
  80. RampoguS. BalasubramaniyamT. LeeJ.H. Curcumin Chalcone derivatives database (CCDD): A python framework for natural compound derivatives database.PeerJ202311e1588510.7717/peerj.15885 37605747
    [Google Scholar]
  81. WangZ.S. ChenL.Z. ZhouH.P. LiuX.H. ChenF.H. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity.Bioorg. Med. Chem. Lett.20172781803180710.1016/j.bmcl.2017.02.056 28284806
    [Google Scholar]
  82. Mohd AluwiM.F.F. RullahK. HaqueM.A. YaminB.M. AhmadW. AmjadM.W. LeongS.W. FahmizarN.A. JalilJ. AbasF. IsmailN.H. JantanI. LamK.W. Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives.Med. Chem. Res.201726123323333510.1007/s00044‑017‑2025‑4
    [Google Scholar]
  83. LeongS. FaudziS. AbasF. AluwiM. RullahK. WaiL. BahariM. AhmadS. ThamC. ShaariK. LajisN. Synthesis and sar study of diarylpentanoid analogues as new anti-inflammatory agents.Molecules20141910160581608110.3390/molecules191016058 25302700
    [Google Scholar]
  84. WHODiabetes.2022Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
    [Google Scholar]
  85. ZhangDW FuM GaoSH LiuJL Curcumin and diabetes: A systematic review.eCAM20131610.1155/2013/636053
    [Google Scholar]
  86. DasK.K. Razzaghi-AslN. TikareS.N. Di SantoR. CostiR. MessoreA. PescatoriL. CrucittiG.C. JargarJ.G. DhundasiS.A. SasoL. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats.J. Enzyme Inhib. Med. Chem.20163119910510.3109/14756366.2015.1004061 25683079
    [Google Scholar]
  87. MardianisY. AnwarC. HaryadiW. Synthesis of curcumin analogues monoketone from cinnamaldehyde and their inhibition assay against alpha-glucosidase enzyme.Mater. Sci. Forum201790111011710.4028/www.scientific.net/MSF.901.110
    [Google Scholar]
  88. TsalamandrisS. AntonopoulosA.S. OikonomouE. PapamikroulisG.A. VogiatziG. PapaioannouS. DeftereosS. TousoulisD. The role of inflammation in diabetes: Current concepts and future perspectives.Eur. Cardiol.2019141505910.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  89. PanY. ZhuG. WangY. CaiL. CaiY. HuJ. LiY. YanY. WangZ. LiX. WeiT. LiangG. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart.J. Nutr. Biochem.201324114615510.1016/j.jnutbio.2012.03.012 22819547
    [Google Scholar]
  90. Cancer 2022Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  91. LiangZ. WuR. XieW. ZhuM. XieC. LiX. ZhuJ. ZhuW. WuJ. GengS. XuW. ZhongC. HanH. Curcumin reverses tobacco smoke induced epithelial mesenchymal transition by suppressing the MAPK pathway in the lungs of mice.Mol. Med. Rep.201817120192025 29138815
    [Google Scholar]
  92. GiordanoA. TommonaroG. Curcumin and Cancer.Nutrients20191110237610.3390/nu11102376 31590362
    [Google Scholar]
  93. AliN.M. YeapS.K. AbuN. LimK.L. KyH. PauziA.Z.M. HoW.Y. TanS.W. Alan-OngH.K. ZareenS. AlitheenN.B. AkhtarM.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells.Cancer Cell Int.20171713010.1186/s12935‑017‑0400‑3 28239299
    [Google Scholar]
  94. LiangB. LiuZ. CaoY. ZhuC. ZuoY. HuangL. WenG. ShangN. ChenY. YueX. DuJ. LiB. ZhouB. BuX. MC37, a new mono-carbonyl curcumin analog, induces G2/M cell cycle arrest and mitochondria-mediated apoptosis in human colorectal cancer cells.Eur. J. Pharmacol.201779679613914810.1016/j.ejphar.2016.12.030 28024945
    [Google Scholar]
  95. LiQ. ChenJ. LuoS. XuJ. HuangQ. LiuT. Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues.Eur. J. Med. Chem.20159346146910.1016/j.ejmech.2015.02.005 25728027
    [Google Scholar]
  96. AlibeikiF. JafariN. KarimiM. Peeri DogahehH. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells.Sci. Rep.2017711910.1038/s41598‑017‑02666‑4
    [Google Scholar]
  97. WengQ. FuL. ChenG. HuiJ. SongJ. FengJ. ShiD. CaiY. JiJ. LiangG. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin.Eur. J. Med. Chem.2015103445510.1016/j.ejmech.2015.08.036 26318057
    [Google Scholar]
  98. AdamsB.K. FerstlE.M. DavisM.C. HeroldM. KurtkayaS. CamalierR.F. HollingsheadM.G. KaurG. SausvilleE.A. RicklesF.R. SnyderJ.P. LiottaD.C. ShojiM. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents.Bioorg. Med. Chem.200412143871388310.1016/j.bmc.2004.05.006 15210154
    [Google Scholar]
  99. DasU. AlcornJ. ShrivastavA. SharmaR.K. De ClercqE. BalzariniJ. DimmockJ.R. Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds.Eur. J. Med. Chem.2007421718010.1016/j.ejmech.2006.08.002 16996657
    [Google Scholar]
  100. PatiH.N. DasU. DasS. BandyB. De ClercqE. BalzariniJ. KawaseM. SakagamiH. QuailJ.W. StablesJ.P. DimmockJ.R. The cytotoxic properties and preferential toxicity to tumour cells displayed by some 2,4-bis(benzylidene)-8-methyl-8-azabicyclo[3.2.1] octan-3-ones and 3,5-bis(benzylidene)-1-methyl-4-piperidones.Eur. J. Med. Chem.2009441546210.1016/j.ejmech.2008.03.015 18468733
    [Google Scholar]
  101. KarthikeyanN.S. SathiyanarayananK.I. AravindanP.G. GiridharanP. Synthesis, crystal structure, and anticancer properties of cyclic monocarbonyl analogs of curcumin.Med. Chem. Res.2011201818710.1007/s00044‑009‑9284‑7
    [Google Scholar]
  102. Al-HujailyE.M. MohamedA.G. Al-SharifI. YoussefK.M. ManogaranP.S. Al-OtaibiB. Al-Haza’aA. Al-JammazI. Al-HusseinK. AboussekhraA. PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells.Breast Cancer Res. Treat.201112819710710.1007/s10549‑010‑1089‑3 20680677
    [Google Scholar]
  103. StojchevskiR Hadzi-PetrushevN MladenovM BogdanovJ VelichkovikjS PoretskyL Effects of two experimental monocarbonyl analogues of Curcumin (MACs) on breast cancer growth, migration, and epithelial-to-mesenchymal transition (EMT).J Endocr Soc.202371bvad114.2183
    [Google Scholar]
/content/journals/npj/10.2174/0122103155307922241022143752
Loading
/content/journals/npj/10.2174/0122103155307922241022143752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test