Skip to content
2000
Volume 16, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Aims

To evaluate the anti-oxidative and radioprotective role of SCG24 pigment during radiation exposure.

Background

Radiation-induced cytotoxicity is quite common during cancer therapy. There is a need for naturally derived therapeutic molecules that can scavenge free radicals. They may act as substitutes for synthetic molecules. Hence, there is a need for urgent evaluation of these potent compounds before therapeutic application.

Objectives

The objective of this study is to examine the anti-oxidative and radioprotective role of SCG24 pigment, specifically to evaluate free radical scavenging X-ray irradiated HDF cells.

Methods

A radiotoleraent pigment-producing SCG24 was isolated from pharmaceutical effluent. Chloroform was used as a primary solvent for pigment extraction. GCMS/MS analysed initial pigment composition. Various antioxidant assays were performed using ABTS, FRAP, and DPPH assay. Flow cytometry was used to determine the rate of scavenging activity of pigment in HDF cells.

Results

The GCMS/MS profile of the chloroform extract revealed twenty-two compounds. Furthermore, based on the DPPH, ABTS, and FRAP assay, the pigment was found to have significant antioxidant properties. The flow cytometry results indicate that the pigment possesses radioprotectant activity by neutralizing ROS species in HDF cells when exposed to X-ray radiation.

Conclusion

These observations on SCG24 pigment suggested that the pigment may have potential therapeutic importance.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341557241010013223
2024-10-21
2025-10-22
Loading full text...

Full text loading...

References

  1. KaurH. BhardwajA. SehgalA. MohiG.K. KumarR. Skin cancer: An overview.Handbook of Oncobiology: From Basic to Clinical Sciences.Springer2024
    [Google Scholar]
  2. ChiouW.L. Advancing new views on the causes and prevention of skin cancer and aging of the skin.Med. Res. Arch.20241241210.18103/mra.v12i4.5292
    [Google Scholar]
  3. AfaqF. ZaidM.A. KhanN. DreherM. MukhtarH. Protective effect of pomegranate‐derived products on UVB‐mediated damage in human reconstituted skin.Exp. Dermatol.200918655356110.1111/j.1600‑0625.2008.00829.x 19320737
    [Google Scholar]
  4. ReddyV.P. Oxidative stress in health and disease.Biomedicines20231111292510.3390/biomedicines11112925 38001926
    [Google Scholar]
  5. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  6. HajamY.A. RaniR. GanieS.Y. SheikhT.A. JavaidD. QadriS.S. PramodhS. AlsulimaniA. AlkhananiM.F. HarakehS. HussainA. HaqueS. ReshiM.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives.Cells202211355210.3390/cells11030552 35159361
    [Google Scholar]
  7. BhattiJ.S. SehrawatA. MishraJ. SidhuI.S. NavikU. KhullarN. KumarS. BhattiG.K. ReddyP.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives.Free Radic. Biol. Med.202218411413410.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  8. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S158513 29731617
    [Google Scholar]
  9. MohanaD. ThippeswamyS. AbhishekR.U. Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp.Rad. Pro. Env.201336416810.4103/0972‑0464.142394
    [Google Scholar]
  10. MunG.I. KimS. ChoiE. KimC.S. LeeY.S. Pharmacology of natural radioprotectors.Arch. Pharm. Res.201841111033105010.1007/s12272‑018‑1083‑6 30361949
    [Google Scholar]
  11. SinghV.K. SeedT.M. The efficacy and safety of amifostine for the acute radiation syndrome.Expert Opin. Drug Saf.201918111077109010.1080/14740338.2019.1666104 31526195
    [Google Scholar]
  12. MontoroA. ObradorE. MistryD. ForteG.I. BravatàV. MinafraL. CalvarusoM. CammarataF.P. FalkM. SchettinoG. Radioprotectors, Radiomitigators, and Radiosensitizers BT.Radiobiology Textbook. BaatoutS. ChamSpringer2023571628
    [Google Scholar]
  13. KoukourakisM.I. Radiation damage and radioprotectants: new concepts in the era of molecular medicine.Br. J. Radiol.201285101231333010.1259/bjr/16386034 22294702
    [Google Scholar]
  14. SmithT.A. KirkpatrickD.R. SmithS. SmithT.K. PearsonT. KailasamA. HerrmannK.Z. SchubertJ. AgrawalD.K. Radioprotective agents to prevent cellular damage due to ionizing radiation.J. Transl. Med.201715123210.1186/s12967‑017‑1338‑x 29121966
    [Google Scholar]
  15. KurubaV. GollapalliP. Natural radioprotectors and their impact on cancer drug discovery.Radiat. Oncol. J.201836426527510.3857/roj.2018.00381 30630265
    [Google Scholar]
  16. AndreassenC.N. GrauC. LindegaardJ.C. Chemical radioprotection: A critical review of amifostine as a cytoprotector in radiotherapy.Semin. Radiat. Oncol.200313627210.1053/srao.2003.50006
    [Google Scholar]
  17. MurrayD. Aminothiols.Radioprotectors.CRC Press20215310710.4324/9781003068181‑5
    [Google Scholar]
  18. GenvresseI. LangeC. SchanzJ. SchweigertM. HarderH. PossingerK. Späth-SchwalbeE. Tolerability of the cytoprotective agent amifostine in elderly patients receiving chemotherapy: a comparative study.Anticancer Drugs200112434534910.1097/00001813‑200104000‑00007 11335791
    [Google Scholar]
  19. JavadiA. NikhbakhtM.R. Ghasemian YadegariJ. RustamzadehA. MohammadiM. ShirazinejadA. AzadbakhtS. AbdiZ. In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review.Int. J. Radiat. Biol.202399215516510.1080/09553002.2022.2078007 35549605
    [Google Scholar]
  20. MönigH. MesserschmidtO. StrefferC. Chemical Radioprotection in Mammals and in Man BT.Radiation Exposure and Occupational Risks. SchererE. StrefferC. TrottK-R. Berlin, HeidelbergSpringer199097143
    [Google Scholar]
  21. AzmanA.S. MawangC-I. AbubakarS. Bacterial pigments: The bioactivities and as an alternative for therapeutic applications.Nat. Prod. Commun.201813121934578X180130110.1177/1934578X1801301240
    [Google Scholar]
  22. NaikC. Isolation, identification and evaluation of antioxidant, anti-inflammatory and antimitotic properties of bioactive pigment from rhodococcus Corynebacterioides SCG11.IJAMBR20208114
    [Google Scholar]
  23. JagetiaG.C. Radioprotective potential of plants and herbs against the effects of ionizing radiation.J. Clin. Biochem. Nutr.2007402748110.3164/jcbn.40.74 18188408
    [Google Scholar]
  24. ClauditzA. ReschA. WielandK.P. PeschelA. GötzF. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress.Infect. Immun.20067484950495310.1128/IAI.00204‑06 16861688
    [Google Scholar]
  25. DeviM. RamakrishnanE. DekaS. ParasarD.P. Bacteria as a source of biopigments and their potential applications.J. Microbiol. Methods202421910690710.1016/j.mimet.2024.106907 38387652
    [Google Scholar]
  26. RameshC. VinithkumarN. KirubagaranR. VenilC. DufosséL. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications.Microorganisms20197718610.3390/microorganisms7070186 31261756
    [Google Scholar]
  27. UsmanH. Bacterial pigments and its significance.MOJ Bioequival. Bioavailab.20184328528810.15406/mojbb.2017.04.00073
    [Google Scholar]
  28. AgarwalH. BajpaiS. MishraA. KohliI. VarmaA. FouillaudM. DufosséL. JoshiN.C. Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications.Microorganisms202311361410.3390/microorganisms11030614 36985186
    [Google Scholar]
  29. Kumar SamantaA. ChaudhuriS. DuttaD. Antioxidant efficacy of carotenoid extract from bacterial strain Kocuria marina DAGII.Mater. Today Proc.20163103427343310.1016/j.matpr.2016.10.023
    [Google Scholar]
  30. KirtiK. AmitaS. PritiS. Mukesh KumarA. JyotiS. Colorful world of microbes: Carotenoids and their applications.Adv. Biol.2014201411310.1155/2014/837891
    [Google Scholar]
  31. CooneyJ.J. MarksH.W.Jr SmithA.M. Isolation and Identification of Canthaxanthin from Micrococcus roseus.J. Bacteriol.196692234234510.1128/jb.92.2.342‑345.1966 16562117
    [Google Scholar]
  32. Correa-LlanténD.N. AmenábarM.J. BlameyJ.M. Antioxidant capacity of novel pigments from an Antarctic bacterium.J. Microbiol.201250337437910.1007/s12275‑012‑2029‑1 22752899
    [Google Scholar]
  33. DuránN. MenckC.F.M. Chromobacterium violaceum: a review of pharmacological and industiral perspectives.Crit. Rev. Microbiol.200127320122210.1080/20014091096747 11596879
    [Google Scholar]
  34. YangL.H. XiongH. LeeO.O. QiS.H. QianP.Y. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge.Lett. Appl. Microbiol.200744662563010.1111/j.1472‑765X.2007.02125.x 17576224
    [Google Scholar]
  35. Ambrožič AvguštinJ. Žgur BertokD. KostanjšekR. AvguštinG. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov.Antonie van Leeuwenhoek2013103476376910.1007/s10482‑012‑9858‑0 23192307
    [Google Scholar]
  36. MarizcurrenaJ.J. CerdáM.F. AlemD. Castro-SowinskiS. Living with pigments: The colour palette of antarctic life BT. The Ecological Role of Micro-Organisms in the Antarctic EnvironmentCastro-Sowinski, S., Ed.; Springer: Cham20196582
    [Google Scholar]
  37. YuD. XuF. ValienteJ. WangS. ZhanJ. An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue.J. Ind. Microbiol. Biotechnol.201340115916810.1007/s10295‑012‑1207‑9 23053349
    [Google Scholar]
  38. DayP.A. VillalbaM.S. HerreroO.M. ArancibiaL.A. AlvarezH.M. Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments.Antonie van Leeuwenhoek2017110341542810.1007/s10482‑016‑0814‑2 27915412
    [Google Scholar]
  39. RajashekarappaK.K. BasavarajappaA. NeelagundS.E. MahadevanG.D. AchurR.N. KumarP. Propitious catalytic response of immobilized α-amylase from G. thermoleovorans in modified APTES-Fe3O4 NPs for industrial bio-processing.Int. J. Biol. Macromol.2024269Pt 113202110.1016/j.ijbiomac.2024.132021 38697441
    [Google Scholar]
  40. AltschulS.F. GishW. MillerW. MyersE.W. LipmanD.J. Basic local alignment search tool.J. Mol. Biol.1990215340341010.1016/S0022‑2836(05)80360‑2 2231712
    [Google Scholar]
  41. MountD.W. Using the basic local alignment search tool (BLAST).Cold Spring Harb. Protoc.20072007pdb-top17
    [Google Scholar]
  42. SaitouN. NeiM. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol.19874440642510.1093/oxfordjournals.molbev.a040454 3447015
    [Google Scholar]
  43. PoddarK. PadhanB. SarkarD. SarkarA. Purification and optimization of pink pigment produced by newly isolated bacterial strain Enterobacter sp. PWN1.SN Appl. Sci.20213110510.1007/s42452‑021‑04146‑x
    [Google Scholar]
  44. NumanM. BashirS. MumtazR. TayyabS. RehmanN.U. KhanA.L. ShinwariZ.K. Al-HarrasiA. Therapeutic applications of bacterial pigments: a review of current status and future opportunities.3 Biotech2018820710.1007/s13205‑018‑1227‑x
    [Google Scholar]
  45. NeelamegamR. EzhilanB.P. GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L.Pharmacognosy Res.201241111410.4103/0974‑8490.91028 22224055
    [Google Scholar]
  46. ThammaratP. KulsingC. WongraveeK. LeepipatpiboonN. NhujakT. Identification of volatile compounds and selection of discriminant markers for elephant dung coffee using static headspace gas chromatography-mass spectrometry and chemometrics.Molecules2018238191010.3390/molecules23081910
    [Google Scholar]
  47. HatanoT. KagawaH. YasuharaT. OkudaT. Two new flavonoids and other constituents in licorice root. Their relative astringency and radical scavenging effects.Chem. Pharm. Bull. (Tokyo)19883662090209710.1248/cpb.36.2090 3240445
    [Google Scholar]
  48. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.0292 8660627
    [Google Scholar]
  49. ShalabyE. ShanabS. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis.Indian J. Geo-Mar. Sci.201342556564
    [Google Scholar]
  50. LiS. DongY. SunX. ZhaoY. ZhaoL. ZhangW. XiaoT. Seasonal and spatial variations of Synechococcus in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay.Front. Microbiol.202414132254810.3389/fmicb.2023.1322548 38274747
    [Google Scholar]
  51. SajjadW. DinG. RafiqM. IqbalA. KhanS. ZadaS. AliB. KangS. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications.Extremophiles202024444747310.1007/s00792‑020‑01180‑2 32488508
    [Google Scholar]
  52. SinghA.K. GargN. LataP. KumarR. NegiV. VikramS. LalR. Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane- contaminated soil.Int. J. Syst. Evol. Microbiol.201464Pt_125425910.1099/ijs.0.055319‑0 24052629
    [Google Scholar]
  53. ChenZ. WuW. WenY. ZhangL. WuY. FaridM.S. El-SeediH.R. CapanogluE. ZhaoC. Recent advances of natural pigments from algae. Food Product.Proces. Nutri.2023513910.1186/s43014‑023‑00155‑y
    [Google Scholar]
  54. SainiR.K. PrasadP. ShangX. KeumY.S. Advances in lipid extraction methods-A review.Int. J. Mol. Sci.202122241364310.3390/ijms222413643 34948437
    [Google Scholar]
  55. BarrosR.G.C. AndradeJ.K.S. DenadaiM. NunesM.L. NarainN. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues.Food Res. Int.2017102849210.1016/j.foodres.2017.09.082 29196016
    [Google Scholar]
  56. SowndhararajanK. KangS.C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn.Saudi J. Biol. Sci.201320431932510.1016/j.sjbs.2012.12.005 24235867
    [Google Scholar]
  57. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  58. Gülçinİ. AlwaselS.H. DPPH Radical Scavenging Assay.Processes (Basel)2023118224810.3390/pr11082248
    [Google Scholar]
  59. MagalhãesL.M. SegundoM.A. ReisS. LimaJ.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties.Anal. Chim. Acta2008613111910.1016/j.aca.2008.02.047 18374697
    [Google Scholar]
  60. SekkoutZ.E.L. YoubiA.H. BoudaiaO. RadallahD.E.L. AmraniN. Phytochemistry and pharmacological activities of essential oils, flavonoids, and ascorbic acid in Smyrnium olusatrum L.: A comprehensive review.Euro. J. Med. Chem. Rep.20242024100201
    [Google Scholar]
  61. NaguibY.M.A. Antioxidant activities of astaxanthin and related carotenoids.J. Agric. Food Chem.20004841150115410.1021/jf991106k 10775364
    [Google Scholar]
  62. MartemucciG. CostagliolaC. MarianoM. D’andreaL. NapolitanoP. D’AlessandroA.G. Free radical properties, source and targets, antioxidant consumption and health.Oxygen (Basel)202222487810.3390/oxygen2020006
    [Google Scholar]
  63. NuszkiewiczJ. WoźniakA. Szewczyk-GolecK. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D.Int. J. Mol. Sci.20202116580410.3390/ijms21165804 32823530
    [Google Scholar]
  64. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  65. OgawaY. KobayashiT. NishiokaA. KariyaS. HamasatoS. SeguchiH. YoshidaS. Radiation-induced reactive oxygen species formation prior to oxidative DNA damage in human peripheral T cells.Int. J. Mol. Med.200311214915210.3892/ijmm.11.2.149 12525868
    [Google Scholar]
  66. GlorieuxC. LiuS. TrachoothamD. HuangP. Targeting ROS in cancer: rationale and strategies.Nat. Rev. Drug Discov.202423858360610.1038/s41573‑024‑00979‑4 38982305
    [Google Scholar]
  67. RaufA. KhalilA.A. AwadallahS. KhanS.A. Abu-IzneidT. KamranM. HemegH.A. MubarakM.S. KhalidA. WilairatanaP. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review.Food Sci. Nutr.202412267569310.1002/fsn3.3784 38370049
    [Google Scholar]
  68. ChuH.L. ChienJ.C. DuhP.D. Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells.Food Chem.2011129387187610.1016/j.foodchem.2011.05.037 25212312
    [Google Scholar]
  69. MotallebnejadM. ZahedpashaS. MoghadamniaA.A. KazemiS. MoslemiD. PouramirM. AsgharpourF. Protective effect of lycopene on oral mucositis and antioxidant capacity of blood plasma in the rat exposed to gamma radiation.J. Intern. Med.202011441942510.22088/cjim.11.4.419
    [Google Scholar]
  70. SrinivasanM. DevipriyaN. KalpanaK.B. MenonV.P. Lycopene: An antioxidant and radioprotector against γ-radiation-induced cellular damages in cultured human lymphocytes.Toxicology20092621434910.1016/j.tox.2009.05.004 19450652
    [Google Scholar]
  71. NagpalI. AbrahamS.K. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster.Genes Environ.20173912410.1186/s41021‑017‑0084‑x 29118865
    [Google Scholar]
  72. KonopackaM. Rzeszowska-WolnyJ. Antioxidant Vitamins C, E and β-carotene reduce DNA damage before as well as after γ-ray irradiation of human lymphocytes in vitro.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20014911-21710.1016/S1383‑5718(00)00133‑9 11287291
    [Google Scholar]
  73. TianB. XuZ. SunZ. LinJ. HuaY. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses.Biochim. Biophys. Acta, Gen. Subj.20071770690291110.1016/j.bbagen.2007.01.016 17368731
    [Google Scholar]
  74. BiswalS. Oxidative stress and astaxanthin: The novel supernutrient carotenoid.Int. J. Health Allied Sci.20143314710.4103/2278‑344X.138587
    [Google Scholar]
  75. Guardado YordiE. Pérez MartínezA. RadiceM. ScalvenziL. Abreu-NaranjoR. UriarteE. SantanaL. MatosM.J. Seaweeds as source of bioactive pigments with neuroprotective and/or anti-neurodegenerative activities: Astaxanthin and fucoxanthin.Mar. Drugs202422732710.3390/md22070327 39057436
    [Google Scholar]
  76. GarciaM.P. RegueirasA. LopesG. MatosG. da SilvaL.P. CerqueiraM.T. CardosoH. CorreiaN. SaraivaJ.A. SilvaJ.L. MartinsR. MarquesA.P. Nonthermal high-pressure microalgae extracts: A new source of natural ingredients for cosmetics.Algal Res.20248110359110.1016/j.algal.2024.103591
    [Google Scholar]
  77. ZhangJ. YangH. SunY. YanB. ChenW. FanD. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments.Compr. Rev. Food Sci. Food Saf.2024234e1341810.1111/1541‑4337.13418 39073089
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341557241010013223
Loading
/content/journals/npj/10.2174/0122103155341557241010013223
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ABTS; antioxidant; flow cytometry; FRAP; Pontibacter indicus; radioprotectant ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test