Skip to content
2000
Volume 15, Issue 7
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

The genus L. is frequently employed in traditional medicine, primarily for addressing disorders of the digestive and respiratory systems. Biological investigations focused on essential oils have substantiated their antibacterial, antioxidant, anti-tumor, anti-diabetic, and anti-rheumatic properties.

Objective

The aim of the study was to assess the chemical composition and biological activities of the aerial parts of the endemic species K. Koch.

Methods

The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity was evaluated through the Oxygen Radical Absorbance Capacity (ORAC) assay and tested on normal skin fibroblasts (WS-1). Additionally, the anti-inflammatory efficacy was assessed by monitoring nitric oxide production. The total phenolic content in the aqueous, methanolic, and chloroformic extracts was quantified using the Folin-Ciocalteu reagent. Individual compounds were isolated using preparative high-performance liquid chromatography. Their identification was accomplished using high-resolution mass spectrometry (HRMS) with an ESI-Q-TOF detector in conjunction with nuclear magnetic resonance (NMR) spectroscopy.

Results

The essential oil yield was 0.32 ml/kg. Caryophyllene oxide, constituting 15.19%, and 1-octen-3-ol, constituting 8.75%, emerged as the primary components in the essential oil. Oxygenated sesquiterpenes dominated the terpenic compounds, representing 25.1% of the essential oil. The aqueous and methanolic extracts displayed a notable phenolic content, with percentages of 27 ± 2% and 35 ± 0.1%, respectively. Both the aqueous and methanolic extracts demonstrated robust antioxidant activity in the ORAC test and assessments using WS-1 cells. The methanolic extract, at a concentration of 160 μg/ml, inhibited NO formation by 90%, without toxicity in RAW 264.7. Individual compounds, teucrioside from the phenylethanoid glycoside class, two neo-clerodane diterpenes, teucrin A, and 6-alpha-hydroxyteuscordine, were isolated.

Conclusion

The essential oil extracted from the aerial parts of is characterized by the presence of caryophyllene oxide and 1-octen-3-ol. The methanolic extract exhibits notable antioxidant as well as anti-inflammatory properties, whereas the aqueous extract demonstrates high antioxidant activity. Additionally, three compounds of teucrioside, teucrin A, and 6-α-hydroxyteuscordine have been isolated and characterized.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155317820240827071846
2024-09-02
2025-09-11
Loading full text...

Full text loading...

References

  1. AbdullahF.O. HussainF.H.S. SardarA.S. GilardoniG. ThuZ.M. VidariG. Bio-active compounds from Teucrium plants used in the traditional medicine of Kurdistan Region, Iraq.Molecules20222710311610.3390/molecules27103116 35630593
    [Google Scholar]
  2. CiocarlanA. DragalinI. AricuA. LupascuL. CiocarlanN. VergelK. Chemical profile, elemental composition, and antimicrobial activity of plants of the teucrium (Lamiaceae) genus growing in moldova.J. Agron.2022124772
    [Google Scholar]
  3. CatinellaG. BadalamentiN. IlardiV. RosselliS. De MartinoL. BrunoM. The essential oil compositions of three Teucrium taxa growing wild in sicily: HCA and PCA analyses.Molecules202126364310.3390/molecules26030643 33530639
    [Google Scholar]
  4. StankovićM. Teucrium Species: Biology and Applications.ChamSpringer International Publishing202010.1007/978‑3‑030‑52159‑2
    [Google Scholar]
  5. DebbabiH. El MokniR. JlassiI. JoshiR.K. HammamiS. Chemical composition and antimicrobial activity of Teucrium Capitatum L. Subsp. Lusitanicum (Schreb.) T. Navarro & Rosua essential oil.J. Chromatogr. Sci.202159213413910.1093/chromsci/bmaa086 33230534
    [Google Scholar]
  6. MaccioniA. FalconieriD. SannaC. PorceddaS. PirasA. MaxiaA. Characterization of essential oils from different taxa belonging to the genus Teucrium in Sardinia Island, Italy.Plants2021107135910.3390/plants10071359 34371562
    [Google Scholar]
  7. FormisanoC. NapolitanoF. RiganoD. ArnoldN.A. PiozziF. SenatoreF. Essential oil composition of Teucrium divaricatum Sieb. ssp. villosum (Celak.) Rech. fil. growing wild in Lebanon.J. Med. Food20101351281128510.1089/jmf.2009.0216 20626245
    [Google Scholar]
  8. RuitersA.K. TilneyP.M. Van VuurenS.F. ViljoenA.M. KamatouG.P.P. Van WykB.E. The anatomy, ethnobotany, antimicrobial activity and essential oil composition of southern African species of Teucrium (Lamiaceae).S. Afr. J. Bot.201610217518510.1016/j.sajb.2015.06.008
    [Google Scholar]
  9. MuselliA. DesjobertJ.M. PaoliniJ. BernardiniA.F. CostaJ. RosaA. DessiM.A. Chemical composition of the essential oils of Teucrium chamaedrys L. from Corsica and Sardinia.J. Essent. Oil Res.200921213814310.1080/10412905.2009.9700133
    [Google Scholar]
  10. LazovićM. CvijetićI. JankovM. Milojković-OpsenicaD. TrifkovićJ. RistivojevićP. COSMO-RS in prescreening of natural eutectic solvents for phenolic extraction from Teucrium chamaedrys.J. Mol. Liq.202338712264910.1016/j.molliq.2023.122649
    [Google Scholar]
  11. LazovićM. CvijetićI. TrifkovićJ. Agatonović-KuštrinS. MortonD. RistivojevićP. Green analytical profiling of Teucrium chamaedrys L. using natural deep eutectic solvents and planar chromatography: A greenness assessment by the National Environmental Methods Index and analytical eco-scale.J. Planar Chromatogr.202336351358
    [Google Scholar]
  12. Al-NaemiH.A. AlasmarR.M. Al-GhanimK. Alcoholic extracts of Teucrium polium exhibit remarkable anti-inflammatory activity: In vivo study.Biomol. Biomed.20242418288
    [Google Scholar]
  13. BahramikiaS. YazdanparastR. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae).Phytother. Res.201226111581159310.1002/ptr.4617 22344867
    [Google Scholar]
  14. SharififarF. Dehghn-NudehG. MirtajaldiniM. Major flavonoids with antioxidant activity from Teucrium polium L.Food Chem.2009112488588810.1016/j.foodchem.2008.06.064
    [Google Scholar]
  15. ElbermawiA. ZulfiqarF. KhanI.A. AliZ. Fatimanols Y and Z: Two neo -clerodane diterpenoids from Teucrium yemense.RSC Advances20231343302643026810.1039/D3RA06083G 37868827
    [Google Scholar]
  16. RehmanI. GondalH.Y. ZamirR. Al-HussainS.A. BatoolF. IrfanA. NoreenS. RoheenT. NisarM. ZakiM.E.A. Green synthesis: The antibacterial and photocatalytic potential of silver nanoparticles using extract of Teucrium stocksianum.Nanomaterials2023138134310.3390/nano13081343 37110928
    [Google Scholar]
  17. KellerM. ChabaneS. BoudjelalA. DantonO. PrescimoneA. HamburgerM. PotteratO. New neo-clerodane diterpenes from Teucrium polium subsp. capitatum.J. Mol. Struct.2023128413544710.1016/j.molstruc.2023.135447
    [Google Scholar]
  18. PolatE.B. Hazar-YavuzA.N. GulerE. OzcanG.S. TaskinT. DuruksuG. ElciogluH.K. YazırY. CamM.E. Sublingual administration of teucrium polium-loaded nanofibers with ultra-fast release in the treatment of diabetes mellitus: In vitro and in vivo evaluation.J. Pharm. Sci.202411341068108710.1016/j.xphs.2023.12.013 38123068
    [Google Scholar]
  19. StankovićM.S. ZlatićN.M. Ethnobotany of Teucrium Species.Ethnobotany1s edCRC Press: Boca Raton, FL2018214231
    [Google Scholar]
  20. KremerD. KosirI. KosalecI. KoncicM. PotocnikT. CerenakA. BezicN. SrececS. DunkicV. Investigation of chemical compounds, antioxidant and antimicrobial properties of Teucrium arduini L. (lamiaceae).Curr. Drug Targets20131491006101410.2174/1389450111314090009 23597042
    [Google Scholar]
  21. SadeghiZ. YangJ.L. VendittiA. Moridi FarimaniM. A review of the phytochemistry, ethnopharmacology and biological activities of Teucrium genus (Germander).Nat. Prod. Res.202236215647566410.1080/14786419.2021.2022669 34986708
    [Google Scholar]
  22. MenichiniF. ConfortiF. RiganoD. FormisanoC. PiozziF. SenatoreF. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece.Food Chem.2009115267968610.1016/j.foodchem.2008.12.067
    [Google Scholar]
  23. MajdoubS. Dall’AcquaS. El MokniR. HammamiS. PeronG. Chemical composition and antioxidant activity of essential oil from the aerial parts of Teucrium luteum (Mill.) Degen subsp. flavovirens (Batt.) Greuter & Burdet growing wild in Tunisia.Appl. Sci.20221215737010.3390/app12157370
    [Google Scholar]
  24. MannanA. Insulinotropic effect of Teucrium polium; Identification of potential mechanistic drug targets.Adv. Med. Plant Res20241211832
    [Google Scholar]
  25. DjilasS.M. MarkovS.L. CvetkovićD.D. Čanadanović-BrunetJ.M. ĆetkovićG.S. TumbasV.T. Antimicrobial and free radical scavenging activities of Teucrium montanum.Fitoterapia200677540140310.1016/j.fitote.2006.05.019 16797876
    [Google Scholar]
  26. BlowmanK. MagalhãesM. LemosM.F.L. CabralC. PiresI.M. Anticancer properties of essential oils and other natural products.Evidence-Based Complementary Altern. Med2018123149362
    [Google Scholar]
  27. DunkićV. BezićN. VukoE. Antiphytoviral activity of essential oil from endemic species Teucrium arduini.Nat. Prod. Commun.2011691934578X110060010.1177/1934578X1100600940 21941920
    [Google Scholar]
  28. AliN. ChhetriB. DosokyN. ShariK. Al-FahadA. WessjohannL. SetzerW. Antimicrobial, antioxidant, and cytotoxic activities of ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils.Medicines2017421710.3390/medicines4020017 28930232
    [Google Scholar]
  29. SghaierM.B. BoubakerJ. NeffatiA. LimemI. SkandraniI. BhouriW. BouhlelI. KilaniS. Chekir-GhediraL. GhediraK. Antimutagenic and antioxidant potentials of Teucrium ramosissimum essential oil.Chem. Biodivers.2010771754176310.1002/cbdv.200900237 20658663
    [Google Scholar]
  30. GiamperiL. BucchiniA. FraternaleD. CaraP. RicciD. EpifanoF. GenoveseS. CuriniM. Chemical composition and antioxidant activity of the essential oil of Teucrium massiliense L.J. Essent. Oil Res.200820544644910.1080/10412905.2008.9700055
    [Google Scholar]
  31. HammamiS. JmiiH. MokniR. KhmiriA. FaidiK. DhaouadiH. AouniM. AouniM. JoshiR. Essential oil composition, antioxidant, cytotoxic and antiviral activities of teucrium pseudochamaepitys growing spontaneously in Tunisia.Molecules20152011204262043310.3390/molecules201119707 26580590
    [Google Scholar]
  32. JaradatN. Al-lahhamS. AbualhasanM.N. BakriA. ZaideH. HammadJ. Chemical constituents, antioxidant, cyclooxygenase inhibitor, and cytotoxic activities of Teucrium pruinosum Boiss. essential oil.Biomed Res. Int201820184034689
    [Google Scholar]
  33. HishamA. PathareN. Al-SaidiS. Al-SalmiA. The composition and antimicrobial activity of leaf essential oil of Teucrium mascatenses Boiss. from Oman.J. Essent. Oil Res.200618446546810.1080/10412905.2006.9699142
    [Google Scholar]
  34. ErsoyE. SüvariG. ErcanS. Eroğlu ÖzkanE. KarahanS. Aygün TuncayE. Yeşil CantürkY. Mataracı KaraE. ZenginG. BoğaM. Towards a better understanding of commonly used medicinal plants from Turkiye: Detailed phytochemical screening and biological activity studies of two Teucrium L. species with in vitro and in silico approach.J. Ethnopharmacol.202331211648210.1016/j.jep.2023.116482 37059244
    [Google Scholar]
  35. VujanovićM. ZenginG. ĐurovićS. MaškovićP. CvetanovićA. RadojkovićM. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula.S. Afr. J. Bot.201912021321810.1016/j.sajb.2018.06.012
    [Google Scholar]
  36. SabzeghabaieA. AsgarpanahJ. Essential oil composition of Teucrium polium L. fruits.J. Essent. Oil Res.2016281778010.1080/10412905.2015.1082947
    [Google Scholar]
  37. CandelaR.G. RosselliS. BrunoM. FontanaG. A review of the phytochemistry, traditional uses and biological activities of the essential oils of genus Teucrium.Planta Med.202187643247910.1055/a‑1293‑5768 33296939
    [Google Scholar]
  38. Hasani-RanS. NayebiN. LarijaniB. AbdollahiM. A systematic review of the efficacy and safety of teucrium species; From anti-oxidant to anti-diabetic effects.Int. J. Pharmacol.20106431532510.3923/ijp.2010.315.325
    [Google Scholar]
  39. BrunoM. PiozziF. MaggioA.M. RosselliS. SimmondsM.S.J. ServettazO. Antifeedant activity of neo-clerodanediterpenoids from Teucrium arduini.Biochem. Syst. Ecol2002306595599
    [Google Scholar]
  40. AbbaszadehG. SrivastavaC. WaliaS. Insect growth inhibitory activity of clerodane diterpenoids isolated from clerodendron infortunatum L. on the Cotton Bollworm, Helicoverpa armigera (Hubner).Natl. Acad. Sci. Lett.201235545746410.1007/s40009‑012‑0077‑z
    [Google Scholar]
  41. RodríguezB. de la TorreM.C. BrunoM. PiozziF. VassalloN. CiriminnaR. ServettazO. Neo-clerodane diterpenoids from three species of Teucrium.Phytochemistry199643243543810.1016/0031‑9422(96)00319‑6
    [Google Scholar]
  42. AydoğanF. AliZ. ZulfiqarF. KaraalpC. KhanI.A. BedirE. neo-Clerodanes from Teucrium divaricatum subsp. Divaricatum and their biological activity assessment.Phytochem. Lett.202354454910.1016/j.phytol.2023.01.010
    [Google Scholar]
  43. PanickerN.G. BalhamarS.O.M.S. AkhlaqS. QureshiM.M. RizviT.S. Al-HarrasiA. HussainJ. MustafaF. Identification and characterization of the caspase-mediated apoptotic activity of Teucrium mascatense and an isolated compound in human cancer cells.Molecules201924597710.3390/molecules24050977 30861999
    [Google Scholar]
  44. CabralC. FranciscoV. CruzM. LopesM. SalgueiroL. SalesF. BatistaM. Potential antioxidant and anti-inflammatory properties in Teucrium salviastrum Schreb.Planta Med.20107612s-0030s-126453510.1055/s‑0030‑1264535
    [Google Scholar]
  45. ShahS.M.M. ShahS.M.H. Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss.BMC Complement. Altern. Med.201515135110.1186/s12906‑015‑0872‑4 26446445
    [Google Scholar]
  46. El-ShazlyA.M. HusseinK.T. Chemical analysis and biological activities of the essential oil of Teucrium leucocladum Boiss. (Lamiaceae).Biochem. Syst. Ecol.200432766567410.1016/j.bse.2003.12.009
    [Google Scholar]
  47. MicheliL. NenciniC. GalluzziP. PippiF. MenchiariA. Hepatotoxicity of Teucrium chamaedrys L. decoction: Role of difference in the harvesting area and preparation method.Indian J. Pharmacol.201446218118410.4103/0253‑7613.129313 24741190
    [Google Scholar]
  48. LoeperJ. DescatoireV. LetteronP. MoulisC. DegottC. DansetteP. FauD. PessayreD. Hepatotoxicity of germander in mice.Gastroenterology1994106246447210.1016/0016‑5085(94)90606‑8 8299912
    [Google Scholar]
  49. FiorentinoA. D’AbroscaB. PacificoS. ScognamiglioM. D’AngeloG. GallicchioM. Structure elucidation and hepatotoxicity evaluation against HepG2 human cells of neo-clerodane diterpenes from Teucrium polium L. J.Phytochem.2011721620372044
    [Google Scholar]
  50. LiH.Y. WeiW.J. MaK.L. ZhangJ.Y. LiY. GaoK. Phytotoxic neo-clerodane diterpenoids from the aerial parts of Scutellaria barbata.Phytochemistry202017111223010.1016/j.phytochem.2019.112230 31923722
    [Google Scholar]
  51. BisioA. DamonteG. FraternaleD. GiacomelliE. SalisA. RomussiG. CafaggiS. RicciD. De TommasiN. Phytotoxic clerodane diterpenes from Salvia miniata Fernald (Lamiaceae).Phytochemistry2011722-326527510.1016/j.phytochem.2010.11.011 21130478
    [Google Scholar]
  52. StankovićM. StefanovićO. ČomićL. TopuzovićM. RadojevićI. SolujićS. Antimicrobial activity, total phenolic content and flavonoid concentrations of Teucrium species.Open Life Sci.20127466467110.2478/s11535‑012‑0048‑x
    [Google Scholar]
  53. DjabouN. LorenziV. GuinoiseauE. AndreaniS. GiulianiM.C. DesjobertJ.M. BollaJ-M. CostaJ. BertiL. LucianiA. MuselliA. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens.Food Control201330135436310.1016/j.foodcont.2012.06.025
    [Google Scholar]
  54. AlbayrakS. AksoyA. Comparative analysis of phenolic compositions and biological activities of three endemic Teucrium L. (Lamiaceae) species from Turkey.An. Acad. Bras. Cienc.2023951e2022018410.1590/0001‑3765202320220184 37162086
    [Google Scholar]
  55. BosisioE. GiavariniF. Dell’AgliM. GalliG. GalliC.L. Analysis by high-performance liquid chromatography of teucrin A in beverages flavoured with an extract of Teucrium chamaedrys L.Food Addit. Contam.200421540741410.1080/02652030410001670157 15204541
    [Google Scholar]
  56. SeremetD. Vojvodic CebinA. ManduraA. KomesD. Valorisation of Teucrium montanum as a source of valuable natural compounds: Bioactive content, antimicrobial and biological activity – A review.Pharmacogn. Rev.2021153019119810.5530/phrev.2021.15.18
    [Google Scholar]
  57. Asadi-SamaniM. Rafieian-KopaeiM. LorigooiniZ. ShirzadH. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines.Biomedicine201882810.1051/bmdcn/2018080208 29806586
    [Google Scholar]
  58. StankovićM.S. MitrovićT.L. MatićI.Z. TopuzovićM.D. StamenkovićS.M. New values of Teucrium species: In vitro study of cytotoxic activities of secondary metabolites.Not. Bot. Horti Agrobot. Cluj-Napoca2015431414610.15835/nbha4319746
    [Google Scholar]
  59. KorkotadzeT. MshvildadzeV. JokhadzeM. GokadzeS. GviniashviliT. MaisashviliM. Chemical composition and biological activity of aerial parts of Teucrium polium l. Growing in Georgia.J. Exp. Clin. Med.20234
    [Google Scholar]
  60. KorkotadzeT. BerashviliD. GokadzeS. JokhadzeM. GetiaM. MchedlidzeK. LegaultJ. MshvildadzeV. Chemical composition and biological activity of aerial parts of Thymus collinus Bieb. Growing in Georgia.Georgian Biomedical News.20231410.52340/GBMN.2023.01.01.43
    [Google Scholar]
  61. GetiaM. KorkotadzeT. MoshiashviliG. TabatadzeN. LegaultJ. MshvildadzeV. Composition and cytotoxicity of essential oils from aerial parts of Thymus tiflisiensis and T. collinus Growing in Georgia.Chem. Nat. Compd.202258595996110.1007/s10600‑022‑03840‑5
    [Google Scholar]
  62. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  63. LegaultJ. Girard-LalancetteK. DufourD. PichetteA. Antioxidant potential of bark extracts from boreal forest conifers.Antioxidants201323778910.3390/antiox2030077 26784337
    [Google Scholar]
  64. GauthierC. LavoieS. KubickiS. PiochonM. CloutierM. Dagenais-RoyM. Structural characterization of a nonionic rhamnolipid from Burkholderia lata.Carbohydr. Res.2024535108991
    [Google Scholar]
  65. OuB. Hampsch-WoodillM. PriorR.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe.J. Agric. Food Chem.200149104619462610.1021/jf010586o 11599998
    [Google Scholar]
  66. MamelonaJ. PelletierÉ. Girard-LalancetteK. LegaultJ. KarbouneS. KermashaS. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa.Food Chem.200710431040104710.1016/j.foodchem.2007.01.016
    [Google Scholar]
  67. GrenierA. LegaultJ. PichetteA. JeanL. BélangerA. PouliotR. Antioxidant, anti-inflammatory, and anti-aging potential of a Kalmia angustifolia extract and identification of some major compounds.Antioxidants2021109137310.3390/antiox10091373 34573004
    [Google Scholar]
  68. DufourD. PichetteA. MshvildadzeV. Bradette-HébertM.E. LavoieS. LongtinA. LapriseC. LegaultJ. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius.J. Ethnopharmacol.20071111222810.1016/j.jep.2006.10.021 17156957
    [Google Scholar]
  69. LegaultJ. Girard-LalancetteK. GrenonC. DussaultC. PichetteA. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum.J. Med. Food201013246046810.1089/jmf.2009.0029 20132041
    [Google Scholar]
  70. GeorgiY. New furanoid diterpenes from Teucrium scordium L.Zeitsch. Naturforsch. B1981361112113
    [Google Scholar]
  71. BedirE. ManyamR. KhanI.A. Neo-clerodane diterpenoids and phenylethanoid glycosides from Teucrium chamaedrys L. J.Phytochem.2003638977983
    [Google Scholar]
  72. AntognoniF. IannelloC. MandroneM. ScognamiglioM. FiorentinoA. GiovanniniP.P. PoliF. Elicited Teucrium chamaedrys cell cultures produce high amounts of teucrioside, but not the hepatotoxic neo-clerodane diterpenoids.Phytochemistry201281505910.1016/j.phytochem.2012.05.027 22769437
    [Google Scholar]
  73. SundaresanP.R. SlavoffS.A. GrundelE. WhiteK.D. MazzolaE. KoblenzD. RaderJ.I. Isolation and characterisation of selected germander diterpenoids from authenticated Teucrium chamaedrys and T. canadense by HPLC, HPLC‐MS and NMR.Phytochem. Anal.200617424325010.1002/pca.912 16910040
    [Google Scholar]
  74. WuL. GeorgievM.I. CaoH. NaharL. El-SeediH.R. SarkerS.D. XiaoJ. LuB. Therapeutic potential of phenylethanoid glycosides: A systematic review.Med. Res. Rev.20204062605264910.1002/med.21717 32779240
    [Google Scholar]
  75. FuG. PangH. WongY. Naturally occurring phenylethanoid glycosides: Potential leads for new therapeutics.Curr. Med. Chem.200815252592261310.2174/092986708785908996 18855681
    [Google Scholar]
  76. KaplanÖ. GökşenN. Biosynthesis of silver nanoparticles from Teucrioside and investigation of its antibacterial activity.Cumhuriyet Sci. J.2021421606710.17776/csj.809306
    [Google Scholar]
  77. Erden TayhanS. Bi̇lgi̇nS. ElmastaşM. Evaluation of the wound healing potential of Teucrioside.Int. J. Chem. Technol.201821161910.32571/ijct.345050
    [Google Scholar]
  78. LiR. Morris-NatschkeS.L. LeeK.H. Clerodane diterpenes: Sources, structures, and biological activities.Nat. Prod. Rep.201633101166122610.1039/C5NP00137D 27433555
    [Google Scholar]
/content/journals/npj/10.2174/0122103155317820240827071846
Loading
/content/journals/npj/10.2174/0122103155317820240827071846
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test