Skip to content
2000
Volume 15, Issue 6
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

There is a research gap about applying titania–graphene oxide (GO-TiO) nanocomposite and coronatine as elicitors in the cell suspension culture of .

Objective

The effects of two elicitors of GO-TiO (30 µg/L) and coronatine (10 µM) were examined to improve the production of five different taxanes in the cell suspension culture of .

Methods

The suspension culture was prepared from the callus of stems explant. Next, both elicitors of coronatine (10 µM) and GO-TiO (30 µg/L) were applied, sampling occurred 2, 4, 16 days after elicitation, and all five taxanes were quantified using HPLC.

Results

The amounts of 10-DAB III ranged from 0.84 mg/L (for control) to 9.17 mg/L (day 16 after elicitation with GO-TiO). The production of BAC III ranged from zero (for control) to 7.69 mg/L (day 4 with GO-TiO). The maximum production of 10-deacetyltaxol was observed in control on day 16 with the amount of 1.85 mg/L, followed by a lower level of 0.825 mg/L on day 2 with coronatine treatment. Considering cephalomannine, only elicitation of GO-TiO over all three different sampling times (., days 2, 4, and 16) resulted in sensible quantities. The maximum magnitudes of taxol were acquired when GO-TiO was applied on day 4 and day 16 (1.345 mg/L and 0.965 mg/L, respectively).

Conclusion

The results indicated the potential positive effects of both elicitors, particularly GO-TiO nanocomposite, to improve taxanes production.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155282541240624050103
2024-07-03
2025-09-02
Loading full text...

Full text loading...

References

  1. WallM.E. WaniM.C. CookC.E. PalmerK.H. McPhailA.T. SimG.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2.J. Am. Chem. Soc.196688163888389010.1021/ja00968a057
    [Google Scholar]
  2. WaniM.C. HorwitzS.B. Nature as a remarkable chemist.Anticancer Drugs201425548248710.1097/CAD.0000000000000063 24413390
    [Google Scholar]
  3. ZhangB. MaitiA. ShivelyS. LakhaniF. McDonald-JonesG. BruceJ. LeeE.B. XieS.X. JoyceS. LiC. ToleikisP.M. LeeV.M.Y. TrojanowskiJ.Q. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model.Proc. Natl. Acad. Sci.2005102122723110.1073/pnas.0406361102 15615853
    [Google Scholar]
  4. SofiasA.M. DunneM. StormG. AllenC. The battle of “nano” paclitaxel.Adv. Drug Deliv. Rev.2017122203010.1016/j.addr.2017.02.003 28257998
    [Google Scholar]
  5. NasiriJ. NaghaviM.R. AlizadehH. MoghadamM.R.F. Seasonal-based temporal changes fluctuate expression patterns of TXS, DBAT, BAPT and DBTNBT genes alongside production of associated taxanes in Taxus baccata.Plant Cell Rep.20163551103111910.1007/s00299‑016‑1941‑y 26883228
    [Google Scholar]
  6. NasiriJ. MotamediE. Reza NaghaviM. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts.J. Pharm. Anal.20155639639910.1016/j.jpha.2015.04.004 29403955
    [Google Scholar]
  7. NasiriJ. NaghaviM.R. AlizadehH. Fattahi MoghadamM.R. MashoufA. NabizadehM. Modified AHP-based decision-making model toward accurate selection of eligible maintenance media for production of taxanes in Taxus baccata callus culture.Acta Physiol. Plant.201537611010.1007/s11738‑015‑1858‑z
    [Google Scholar]
  8. NasiriJ. NaghaviM.R. AlizadehH. MoghadamM.R.F. MotamediE. MashoufA. Magnetic solid phase extraction coupled with HPLC towards removal of pigments and impurities from leaf-derived paclitaxel extractions of Taxus baccata and optimization via response surface methodology.Chromatographia20157817-181143115710.1007/s10337‑015‑2925‑8
    [Google Scholar]
  9. ZhouX. ZhuH. LiuL. LinJ. TangK. A review: Recent advances and future prospects of taxol-producing endophytic fungi.Appl. Microbiol. Biotechnol.20108661707171710.1007/s00253‑010‑2546‑y 20358192
    [Google Scholar]
  10. AdabiR. RezaeiA. Influence of mild γ-irradiation on growth and paclitaxel biosynthesis in hazel (Corylus avellana L.) in vitro culture.Plant Cell Tissue Organ Cult.20241561610.1007/s11240‑023‑02618‑z
    [Google Scholar]
  11. GallegoA. MalikS. YousefzadiM. MakhzoumA. Tremouillaux-GuillerJ. BonfillM. Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug.Plant Cell Tissue Organ Cult.2017129111610.1007/s11240‑016‑1164‑5
    [Google Scholar]
  12. Goktepe-AtilganI. DoganA. AriS. Enhancement of taxane production in cell suspension culture of Corylus avellana L. Kalınkara by elicitation and precursor feeding.Biotechnol. Biotechnol. Equip.2023371225570310.1080/13102818.2023.2255703
    [Google Scholar]
  13. HoffmanA. ShahidiF. Paclitaxel and other taxanes in hazelnut.J. Funct. Foods200911333710.1016/j.jff.2008.09.004
    [Google Scholar]
  14. KumarP. SinghB. ThakurV. ThakurA. ThakurN. PandeyD. ChandD. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region.Biotechnol. Rep.201924e0039510.1016/j.btre.2019.e00395 31799144
    [Google Scholar]
  15. Mohammadi BallakutiN. GhanatiF. Zare-MaivanH. AlipourM. MoghaddamM. AbdolmalekiP. Taxoid profile in endophytic fungi isolated from Corylus avellana, introduces potential source for the production of Taxol in semi-synthetic approaches.Sci. Rep.2022121939010.1038/s41598‑022‑13602‑6 35672438
    [Google Scholar]
  16. SwamyM.K. DasT. NandyS. MukherjeeA. PandeyD.K. DeyA. Endophytes for the production of anticancer drug, paclitaxel.Paclitaxel.Elsevier202220322810.1016/B978‑0‑323‑90951‑8.00012‑6
    [Google Scholar]
  17. ZhangP. ZhouP.P. YuL.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2.Curr. Microbiol.200959322723210.1007/s00284‑008‑9270‑1 19484305
    [Google Scholar]
  18. DenisJ.N. GreeneA.E. GuenardD. Gueritte-VoegeleinF. MangatalL. PotierP. Highly efficient, practical approach to natural taxol.J. Am. Chem. Soc.1988110175917591910.1021/ja00225a063
    [Google Scholar]
  19. ShiT. LiX. LiY. FuX. WuL. WuD. HuW. An asymmetric catalytic multi-component reaction enabled the green synthesis of isoserine derivatives and semi-synthesis of paclitaxel.Green Synth. Catal.202341586310.1016/j.gresc.2022.05.008
    [Google Scholar]
  20. Perez-MatasE. Garcia-PerezP. Miras-MorenoB. LuciniL. BonfillM. PalazonJ. Hidalgo-MartinezD. Exploring the interplay between metabolic pathways and taxane production in elicited Taxus baccata cell suspensions.Plants20231214269610.3390/plants12142696 37514310
    [Google Scholar]
  21. Perez-MatasE. HananoA. MoyanoE. BonfillM. CusidoR.M. PalazonJ. Insights into the control of taxane metabolism: Molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions.Front. Plant Sci.20221394243310.3389/fpls.2022.942433 35968149
    [Google Scholar]
  22. Perez-MatasE. Hidalgo-MartinezD. MoyanoE. PalazonJ. BonfillM. Overexpression of BAPT and DBTNBT genes in Taxus baccata in vitro cultures to enhance the biotechnological production of paclitaxel.Plant Biotechnol. J.202422123324710.1111/pbi.14182 37772738
    [Google Scholar]
  23. OudinA. PaponN. CourdavaultV. Metabolic engineering of the paclitaxel anticancer drug.Cell Res.202420241210.1038/s41422‑024‑00950‑3 38486059
    [Google Scholar]
  24. AjikumarP.K. XiaoW.H. TyoK.E.J. WangY. SimeonF. LeonardE. MuchaO. PhonT.H. PfeiferB. StephanopoulosG. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.Science20103306000707410.1126/science.1191652 20929806
    [Google Scholar]
  25. MalcıK. SantibáñezR. Jonguitud-BorregoN. Santoyo-GarciaJ.H. KerkhovenE.J. Rios-SolisL. Improved production of Taxol® precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering.Microb. Cell Fact.202322124310.1186/s12934‑023‑02251‑7 38031061
    [Google Scholar]
  26. NowrouziB. Torres-MonteroP. KerkhovenE.J. MartínezJ.L. Rios-SolisL. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production.Metab. Eng. Commun.202418e0022910.1016/j.mec.2023.e00229 38098801
    [Google Scholar]
  27. JiangB. GaoL. WangH. SunY. ZhangX. KeH. LiuS. MaP. LiaoQ. WangY. WangH. LiuY. DuR. RoggeT. LiW. ShangY. HoukK.N. XiongX. XieD. HuangS. LeiX. YanJ. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III.Science2024383668362262910.1126/science.adj3484 38271490
    [Google Scholar]
  28. ZhangY. WieseL. FangH. AlseekhS. Perez de SouzaL. ScossaF. MolloyJ.J. ChristmannM. FernieA.R. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis.Mol. Plant202316121951196110.1016/j.molp.2023.10.016 37897038
    [Google Scholar]
  29. MalikS. CusidóR.M. MirjaliliM.H. MoyanoE. PalazónJ. BonfillM. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review.Process Biochem.2011461233410.1016/j.procbio.2010.09.004
    [Google Scholar]
  30. SabzehzariM. ZeinaliM. NaghaviM.R. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives.Biotechnol. Adv.20204310756910.1016/j.biotechadv.2020.107569 32446923
    [Google Scholar]
  31. NaghaviM.R. MotamediE. NasiriJ. AlizadehH. Fattahi MoghadamM.R. MashoufA. Evaluation of magnetic- and carbon-based nano-adsorbents application in pre-purification of paclitaxel from needles of Taxus baccata.J. Nanopart. Res.20151711710.1007/s11051‑014‑2830‑3
    [Google Scholar]
  32. NasiriJ. NaghaviM.R. MotamediE. AlizadehH. MoghadamM.R.F. NabizadehM. MashoufA. Carbonaceous sorbents alongside an optimized magnetic solid phase extraction (MSPE) towards enrichment of crude Paclitaxel extracts from callus cultures of Taxus baccata.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201710439610610.1016/j.jchromb.2016.10.029
    [Google Scholar]
  33. WangY.F. ShiQ.W. DongM. KiyotaH. GuY.C. CongB. Natural taxanes: Developments since 1828.Chem. Rev.2011111127652770910.1021/cr100147u 21970550
    [Google Scholar]
  34. ZhaoC. SongG. FuC. DongY. XuH. ZhangH. YuL.J. A systematic approach to expound the variations in taxane production under different dissolved oxygen conditions in Taxus chinensis cells.Plant Cell Rep.201635354155910.1007/s00299‑015‑1902‑x 26620815
    [Google Scholar]
  35. TongY. LuoY.F. GaoW. Biosynthesis of paclitaxel using synthetic biology.Phytochem. Rev.20212021115
    [Google Scholar]
  36. OnrubiaM. MoyanoE. BonfillM. PalazónJ. GoossensA. CusidóR.M. The relationship between TXS, DBAT, BAPT and DBTNBT gene expression and taxane production during the development of Taxus baccata plantlets.Plant Sci.2011181328228710.1016/j.plantsci.2011.06.006 21763539
    [Google Scholar]
  37. HalderM. SarkarS. JhaS. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures.Eng. Life Sci.2019191288089510.1002/elsc.201900058 32624980
    [Google Scholar]
  38. BhaskarR. XavierL.S.E. UdayakumaranG. KumarD.S. VenkateshR. NagellaP. Biotic elicitors: a boon for the in-vitro production of plant secondary metabolites.Plant Cell Tissue Organ Cult.20221491-272410.1007/s11240‑021‑02131‑1
    [Google Scholar]
  39. JanR. AsafS. NumanM. Lubna; Kim, K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions.Agronomy202111596810.3390/agronomy11050968
    [Google Scholar]
  40. AryaS.S. LenkaS.K. CahillD.M. RookesJ.E. Designer nanoparticles for plant cell culture systems: Mechanisms of elicitation and harnessing of specialized metabolites.BioEssays20214311210008110.1002/bies.202100081 34608646
    [Google Scholar]
  41. AsgharzadehP. SabetM.S. MoieniA. Enhancement of paclitaxel production by reduced cellular accumulation and alteration in expression pattern of key genes using multi-walled carbon nanotube in Taxus baccata L. cell suspension culture.Biocatal. Agric. Biotechnol.20234710255010.1016/j.bcab.2022.102550
    [Google Scholar]
  42. GolinejadS. MirjaliliM.H. RezadoostH. GhorbanpourM. Molecular, biochemical, and metabolic changes induced by gold nanoparticles in Taxus baccata L. cell culture.Ind. Crops Prod.202319211598810.1016/j.indcrop.2022.115988
    [Google Scholar]
  43. FarrokhzadY. RamezanD. Alinejad ElahshahA. Priming with CuO nanoparticles and ultrasound enhanced antioxidant potential and total taxol in the cell suspension culture of Corylus avellana L.J. Nuts2021123227240
    [Google Scholar]
  44. HazratiR. ZareN. AsghariR. SheikhzadehP. Johari-AharM. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures.Appl. Microbiol. Biotechnol.2022106186017603110.1007/s00253‑022‑12107‑6 35972514
    [Google Scholar]
  45. JamshidiM. GhanatiF. Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles.Plant Physiol. Biochem.201711017818410.1016/j.plaphy.2016.04.026 27112786
    [Google Scholar]
  46. Escrich MontañanaA. AlmagroL. Moyano ClaramuntE. Cusidó VidalR.M. Bonfill BaldrichM.M. HosseiniB. PalazónJ. Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes.Plant Physiol. Biochem.20211636875
    [Google Scholar]
  47. KashaniK. SabetM.S. Jalali JavaranM. MoieniA. Bottleneck removal of paclitaxel biosynthetic pathway by overexpression of DBTNBT gene under methyl-β-cyclodextrin and coronatine elicitation in Taxus baccata L.Plant Cell Tissue Organ Cult.20221491-248549510.1007/s11240‑022‑02279‑4
    [Google Scholar]
  48. OnrubiaM. MoyanoE. BonfillM. CusidóR.M. GoossensA. PalazónJ. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate.J. Plant Physiol.2013170221121910.1016/j.jplph.2012.09.004 23102875
    [Google Scholar]
  49. Ramirez-EstradaK. OsunaL. MoyanoE. BonfillM. TapiaN. CusidoR.M. PalazonJ. Changes in gene transcription and taxane production in elicited cell cultures of Taxus×media and Taxus globosa.Phytochemistry201511717418410.1016/j.phytochem.2015.06.013 26091963
    [Google Scholar]
  50. Sabater-JaraA.B. OnrubiaM. MoyanoE. BonfillM. PalazónJ. PedreñoM.A. CusidóR.M. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures.Plant Biotechnol. J.20141281075108410.1111/pbi.12214 24909837
    [Google Scholar]
  51. Vidal-LimonH.R. AlmagroL. MoyanoE. PalazonJ. PedreñoM.A. CusidoR.M. Perfluorodecalins and hexenol as inducers of secondary metabolism in Taxus media and Vitis vinifera cell cultures.Front. Plant Sci.2018933510.3389/fpls.2018.00335 29616056
    [Google Scholar]
  52. Acosta-EsparzaM.A. RiveraL.P. Pérez-CentenoA. Zamudio-OjedaA. GonzálezD.R. Chávez-ChávezA. Santana-ArandaM.A. Santos-CruzJ. Quiñones-GalvánJ.G. UV and Visible light photodegradation of methylene blue with graphene decorated titanium dioxide.Mater. Res. Express20207303550410.1088/2053‑1591/ab7ac5
    [Google Scholar]
  53. AdlyM.S. El-DafrawyS.M. El-HakamS.A. Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes.J. Mater. Res. Technol.2019865610562210.1016/j.jmrt.2019.09.029
    [Google Scholar]
  54. KandiahK. MuthusamyP. MohanS. VenkatachalamR. TiO2–graphene nanocomposites for enhanced osteocalcin induction.Mater. Sci. Eng. C20143825226210.1016/j.msec.2014.02.010 24656376
    [Google Scholar]
  55. KhalidK. ZahraA. AmaraU. KhalidM. HanifM. AzizM. MahmoodK. AjmalM. AsifM. SaeedK. QayyumM.F. AbbasW. Titanium doped cobalt ferrite fabricated graphene oxide nanocomposite for efficient photocatalytic and antibacterial activities.Chemosphere202333813953110.1016/j.chemosphere.2023.139531 37459929
    [Google Scholar]
  56. ZhaoX. YanJ. YangT. XiongP. ZhengX. LuY. JingK. Exploring engineering reduced graphene oxide-titanium dioxide (RGO-TiO2) nanoparticles treatment to effectively enhance lutein biosynthesis with Chlorella sorokiniana F31 under different light intensity.Bioresour. Technol.202234812681610.1016/j.biortech.2022.126816 35134526
    [Google Scholar]
  57. TayelA. RamadanA. El SeoudO. Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: Synthesis, characterization and photocatalytic applications for water decontamination.Catalysts201881149110.3390/catal8110491
    [Google Scholar]
  58. BaiX. ZhangX. HuaZ. MaW. DaiZ. HuangX. GuH. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application.J. Alloys Compd.2014599101810.1016/j.jallcom.2014.02.049
    [Google Scholar]
  59. NajafiM. KermanpurA. RahimipourM.R. NajafizadehA. Effect of TiO2 morphology on structure of TiO2-graphene oxide nanocomposite synthesized via a one-step hydrothermal method.J. Alloys Compd.201772227227710.1016/j.jallcom.2017.06.001
    [Google Scholar]
  60. MetsaluT. ViloJ. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap.Nucleic Acids Res.201543W1W566W57010.1093/nar/gkv468 25969447
    [Google Scholar]
  61. ZhangX.Y. LiH.P. CuiX.L. LinY. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting.J. Mater. Chem.201020142801280610.1039/b917240h
    [Google Scholar]
  62. BasheerC. Application of titanium dioxide-graphene composite material for photocatalytic degradation of alkylphenols.J. Chem.2013201345658610.1155/2013/456586
    [Google Scholar]
  63. JihadK.M. RoknabadiM.R. MohammadiM. GoharshadiE.K. Reduced graphene oxide/TiO2/NiFe2O4 nanocomposite as a stable photocatalyst and strong antibacterial agent.Sustain. Environ. Res.20233314310.1186/s42834‑023‑00200‑y
    [Google Scholar]
  64. AlShammariA.S. HalimM.M. YamF.K. KausN.H.M. Effect of precursor concentration on the performance of UV photodetector using TiO2/reduced graphene oxide (rGO) nanocomposite.Results Phys.20201910363010.1016/j.rinp.2020.103630
    [Google Scholar]
  65. AbolhassaniS. AlipourH. AlizadehA. NematiM.M. NajafiH. AlaviO. Antibacterial effect of electrospun polyurethanegelatin loaded with honey and ZnO nanoparticles as potential wound dressing.J. Ind. Text.2022511_suppl)(Suppl.954S968S10.1177/15280837211069871
    [Google Scholar]
  66. LashgariA. GhamamiS. ShahbazkhanyS. Salgado-MoránG. Glossman-MitnikD. Fractal dimension calculation of a manganese-chromium bimetallic nanocomposite using image processing.J. Nanomater.2015201511910.1155/2015/384835
    [Google Scholar]
  67. Pastrana-MartínezL.M. Morales-TorresS. LikodimosV. FigueiredoJ.L. FariaJ.L. FalarasP. SilvaA.M.T. Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye.Appl. Catal. B2012123-12424125610.1016/j.apcatb.2012.04.045
    [Google Scholar]
  68. GolkarP. Abdollahi BakhtiariM. BazarganipourM. The effects of nanographene oxide on the morpho-biochemical traits and antioxidant activity of Lepidium sativum L. under in vitro salinity stress.Sci. Hortic.202128811030110.1016/j.scienta.2021.110301
    [Google Scholar]
  69. GhorbanpourM. Khaltabadi FarahaniA.H. HadianJ. Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration.Ecotoxicol. Environ. Saf.201814891092210.1016/j.ecoenv.2017.11.061
    [Google Scholar]
  70. SarmadiM. KarimiN. PalazónJ. GhassempourA. MirjaliliM.H. The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture.Plant Physiol. Biochem.201813227128010.1016/j.plaphy.2018.09.013 30240989
    [Google Scholar]
  71. Barrales-CureñoH.J. Ramos ValdiviaA.C. Soto HernándezM. Increased production of taxoids in suspension cultures of Taxus globosa after elicitation.Future Pharmacology202221455410.3390/futurepharmacol2010004
    [Google Scholar]
  72. MarslinG. SheebaC.J. FranklinG. Nanoparticles alter secondary metabolism in plants via ROS burst.Front. Plant Sci.2017883210.3389/fpls.2017.00832 28580002
    [Google Scholar]
  73. SamadiS. SaharkhizM.J. AziziM. SamieiL. GhorbanpourM. Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. in vitro.Chemosphere202024912606910.1016/j.chemosphere.2020.126069 32058138
    [Google Scholar]
  74. JamedM.J. Alhathal AlaneziA. AlsalhyQ.F. Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly(vinylidene fluoride- co -hexafluoropropylene) membrane distillation performance.Chem. Eng. Commun.201920681035105710.1080/00986445.2018.1542302
    [Google Scholar]
  75. ChoiH.K. YunJ.H. KimS.I. SonJ.S. KimH.R. KimJ.H. ChoiH.J. HongS.S. Enhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture of Taxus chinensis.Enzyme Microb. Technol.2001291058358610.1016/S0141‑0229(01)00427‑6
    [Google Scholar]
/content/journals/npj/10.2174/0122103155282541240624050103
Loading
/content/journals/npj/10.2174/0122103155282541240624050103
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chemotherapy; coronatine; taxanes; taxol; Taxus baccata; TiO2/graphene nanocomposite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test