Skip to content
2000
Volume 15, Issue 6
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

The advancement of nanotechnology has made it possible to deliver small molecular drugs in nano-sized particles to target tissues. In this context, natural biomolecules, such as proteins, have gained significant attention as a safer alternative to synthetic polymers commonly used in nanoparticle production. Plant proteins, in particular, are preferred over animal proteins due to their lower risk of causing allergic reactions. Notable plant proteins include zein, soy protein, and wheat protein (gliadin, gluten). Plant protein nanoparticles can be fabricated using various methods, including emulsion, electrospray, desolvation, and complex coacervation, utilizing plant proteins like zein, gliadin, legumin, and soy protein. This review provides an overview of several plant proteins, their applications as excipients or vehicles in drug delivery, and the methods employed to fabricate plant protein nanoparticles. The review aims to shed light on the utilization of natural proteins as alternative excipients in nanotechnology.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155306353240704072716
2024-07-09
2025-09-03
Loading full text...

Full text loading...

References

  1. JainA. SinghS.K. AryaS.K. KunduS.C. Kapoor, S Protein nanoparticles: Promising platforms for drug delivery applications.ACS Biomater. Sci. Eng.2018439393961
    [Google Scholar]
  2. WenC. ZhangJ. ZhangH. DuanY. New perspective on natural plant protein-based nanocarriers for bioactive ingredients delivery.Foods20221112170110.3390/foods11121701 35741899
    [Google Scholar]
  3. JahanshahiM. BabaeiZ. Protein nanoparticle: A unique system as drug delivery vehicles.Afr. J. Biotechnol.200872549264934
    [Google Scholar]
  4. HusenA. IqbalM. Plant Protein-Based Nanoparticles and Their Biomedical Applications.Nanomater Plant Potential20191605
    [Google Scholar]
  5. WanZ.L. GuoJ. YangX.Q. Plant protein-based delivery systems for bioactive ingredients in foods.Food Funct.2015692876288910.1039/C5FO00050E 26156251
    [Google Scholar]
  6. MalekzadH. MirshekariH. Sahandi ZangabadP. Moosavi BasriS.M. BaniasadiF. Sharifi AghdamM. KarimiM. HamblinM.R. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.Crit. Rev. Biotechnol.2018381476710.1080/07388551.2017.1312267 28434263
    [Google Scholar]
  7. OrecchioniA.M. DuclairoirC. RenardD. NakacheE. Gliadin characterization by SANS and gliadin nanoparticle growth modelization.J. Nanosci. Nanotechnol.2006693171317810.1166/jnn.2006.455 17048533
    [Google Scholar]
  8. ReddyN. YangY. Potential of plant proteins for medical applications.Trends Biotechnol.2011291049049810.1016/j.tibtech.2011.05.003 21665302
    [Google Scholar]
  9. NeheteJ. NarkhedeM.R. BhambarR.S. GawaliS. Natural proteins: Sources, isolation, characterization and applications.Pharmacogn. Rev.201371410711610.4103/0973‑7847.120508 24347918
    [Google Scholar]
  10. KianfarE. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles.J. Nanobiotechnology202119115910.1186/s12951‑021‑00896‑3 34051806
    [Google Scholar]
  11. ElzoghbyA.O. SamyW.M. ElgindyN.A. Protein-based nanocarriers as promising drug and gene delivery systems.J. Control. Release20121611384910.1016/j.jconrel.2012.04.036 22564368
    [Google Scholar]
  12. IracheJ.M. González-NavarroC.J. Zein nanoparticles as vehicles for oral delivery purposes.Nanomedicine201712111209121110.2217/nnm‑2017‑0075 28520512
    [Google Scholar]
  13. LaiL.F. GuoH.X. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting.Int. J. Pharm.20114041-231732310.1016/j.ijpharm.2010.11.025 21094232
    [Google Scholar]
  14. ZhongQ. JinM. Zein nanoparticles produced by liquid–liquid dispersion.Food Hydrocoll.200923823802387[Internet].10.1016/j.foodhyd.2009.06.015
    [Google Scholar]
  15. ZhongQ. TianH. ZivanovicS. Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion.J. Food Process. Preserv.200933225527010.1111/j.1745‑4549.2009.00390.x
    [Google Scholar]
  16. PatelA.R. VelikovK.P. Zein as a source of functional colloidal nano- and microstructures.Curr. Opin. Colloid Interface Sci.2014195450458[Internet].10.1016/j.cocis.2014.08.001
    [Google Scholar]
  17. OrecchioniAnne-Marie DuclairoirCécile Irache, Juan Manuel Plant Protein‐based Nanoparticles.Nanotechnologies for the Life Sciences.Academia200715410.1002/9783527610419.ntls0016
    [Google Scholar]
  18. WangP. TaoH. WuF. YangN. ChenF. JinZ. XuX. Effect of frozen storage on the foaming properties of wheat gliadin.Food Chem.2014164444910.1016/j.foodchem.2014.05.010 24996303
    [Google Scholar]
  19. EzpeletaI. IracheJ.M. StainmesseS. ChabenatC. GueguenJ. PopineauY. OrecchioniA-M. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid.Int. J. Pharm.1996131219120010.1016/0378‑5173(95)04338‑1
    [Google Scholar]
  20. UmamaheshwariR.B. RamtekeS. JainN.K. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model.AAPS PharmSciTech200452606810.1208/pt050232 15760090
    [Google Scholar]
  21. PetruccelliS. AñónM.C. Soy protein isolate components and their interactions.J. Agric. Food Chem.19954371762176710.1021/jf00055a004
    [Google Scholar]
  22. Vega-LugoA.C. LimL.T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers.Food Res. Int.200942893394010.1016/j.foodres.2009.05.005
    [Google Scholar]
  23. TangC.H. WuH. ChenZ. YangX.Q. Formation and properties of glycinin-rich and β-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase.Food Res. Int.2006391879710.1016/j.foodres.2005.06.004
    [Google Scholar]
  24. WindC. HägerK.P. Legumin encoding sequences from the Redwood family (Taxodiaceae) reveal precursors lacking the conserved Asn‐Gly processing site.FEBS Lett.19963831-2465010.1016/0014‑5793(96)00216‑5 8612788
    [Google Scholar]
  25. HedqvistH. Metabolism of soluble proteins by rumen microorganisms and the influence of condensed tannins on nitrogen solubility and degradation.Department of Animal Nutrition and Management2004
    [Google Scholar]
  26. IracheJ. BergougnouxL. EzpeletaI. GueguenJ. OrecchioniA.M. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method.Int. J. Pharm.19951261-210310910.1016/0378‑5173(95)04103‑6
    [Google Scholar]
  27. MirshahiT. IracheJ.M. NicolasC. MirshahiM. FaureJ.P. GueguenJ. HecquetC. OrecchioniA.M. Adaptive immune responses of legumin nanoparticles.J. Drug Target.200210862563110.1080/1061186021000066237 12683667
    [Google Scholar]
  28. DakhiliS. AbdolalizadehL. HosseiniS.M. Shojaee-AliabadiS. MirmoghtadaieL. Quinoa protein: Composition, structure and functional properties.Food Chem.2019299January12516110.1016/j.foodchem.2019.125161 31323439
    [Google Scholar]
  29. Abugoch JamesL.E. Composition, chemistry, nutritional, and functional properties.Composition, chemistry, nutritional, and functional properties.1st edElsevier Inc2009113110.1016/S1043‑4526(09)58001‑1
    [Google Scholar]
  30. QinX.S. LuoZ.G. PengX.C. Fabrication and characterization of quinoa protein nanoparticle-stabilized food-grade pickering emulsions with ultrasound treatment: Interfacial adsorption/arrangement properties.J. Agric. Food Chem.201866174449445710.1021/acs.jafc.8b00225 29664623
    [Google Scholar]
  31. QianX. ShenT. ZhangX. WangC. CaiW. ChengR. JiangX. Biologically active Camellia oleifera protein nanoparticles for improving the tumor microenvironment and drug delivery.Biomater. Sci.20208143907391510.1039/D0BM00516A 32543626
    [Google Scholar]
  32. SantosL.F. CorreiaI.J. SilvaA.S. ManoJ.F. Biomaterials for drug delivery patches.Eur. J. Pharm. Sci.2018118496610.1016/j.ejps.2018.03.020 29572160
    [Google Scholar]
  33. McClementsD.J. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: Structural design of medical and functional foods.Expert Opin. Drug Deliv.201310121621163210.1517/17425247.2013.837448 24053714
    [Google Scholar]
  34. LabibG. Overview on zein protein: A promising pharmaceutical excipient in drug delivery systems and tissue engineering.Expert Opin. Drug Deliv.2018151657510.1080/17425247.2017.1349752 28662354
    [Google Scholar]
  35. PaliwalR. PalakurthiS. Zein in controlled drug delivery and tissue engineering.J. Control. Release201418910812210.1016/j.jconrel.2014.06.036 24993426
    [Google Scholar]
  36. ShindeP. AgravalH. SinghA. YadavU.C.S. KumarU. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy.J. Drug Deliv. Sci. Technol.201952369378[Internet].10.1016/j.jddst.2019.04.044
    [Google Scholar]
  37. SarvarianP. SamadiP. GholipourE. AsenjanK.S. Hojjat-farsangiM. MotavalliR. Application of emerging plant-derived nanoparticles as a novel approach for nano-drug delivery systems.Immunol. Invest.20225141039105910.1080/08820139.2021.1891094 33627016
    [Google Scholar]
  38. ShishirM.R.I. XieL. SunC. ZhengX. ChenW. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters.Trends Food Sci. Technol.201878346010.1016/j.tifs.2018.05.018
    [Google Scholar]
  39. LiuH. ZhangY. ZhangJ. XiongY. PengS. McClementsD.J. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment.Food Hydrocoll.2022124107329
    [Google Scholar]
  40. EditorC. ArtsS. Modern Research in Chemical Studies.Scripown Publications2022149
    [Google Scholar]
  41. ZhangX. ZuoZ. MaW. YuP. LiT. WangL. Assemble behavior of ultrasound-induced quinoa protein nanoparticles and their roles on rheological properties and stability of high internal phase emulsions.Food Hydrocoll.202111710674810.1016/j.foodhyd.2021.106748
    [Google Scholar]
  42. HongS. ChoiD.W. KimH.N. ParkC.G. LeeW. ParkH.H. Protein-based nanoparticles as drug delivery systems.Pharmaceutics202012760410.3390/pharmaceutics12070604 32610448
    [Google Scholar]
  43. SturessonC. CarlforsJ. Incorporation of protein in PLG-microspheres with retention of bioactivity.J. Control. Release2000672-317117810.1016/S0168‑3659(00)00205‑4 10825551
    [Google Scholar]
  44. RaghuvanshiR.S. GoyalS. SinghO. PandaA.K. Stabilization of dichloromethane-induced protein denaturation during microencapsulation.Pharm. Dev. Technol.19983226927610.3109/10837459809028504 9653765
    [Google Scholar]
  45. HabibiN. MauserA. KoY. LahannJ. Protein nanoparticles: Uniting the power of proteins with engineering design approaches.Adv. Sci.202298210401210.1002/advs.202104012 35077010
    [Google Scholar]
  46. ArabD. KantzasA. BryantS.L. Nanoparticle stabilized oil in water emulsions: A critical review.J. Petrol. Sci. Eng.201816321724210.1016/j.petrol.2017.12.091
    [Google Scholar]
  47. Truong-LeV.L. AugustJ.T. LeongK.W. Controlled gene delivery by DNA-gelatin nanospheres.Hum. Gene Ther.19989121709171710.1089/hum.1998.9.12‑1709 9721081
    [Google Scholar]
  48. NishaC.K. ManoramaS.V. GanguliM. MaitiS. KizhakkedathuJ.N. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: A complete biophysical characterization.Langmuir20042062386239610.1021/la035737r 15835700
    [Google Scholar]
  49. OliveiraA.M. Nano spray drying as an innovative technology for encapsulating hydrophilic active pharmaceutical ingredients (API).J. Nanomedicine Nanotechnol.20134616
    [Google Scholar]
  50. HaggagY.A. FaheemA.M. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins.Front. Pharmacol.20156JUL14010.3389/fphar.2015.00140 26217227
    [Google Scholar]
  51. LeeS.H. HengD. NgW.K. ChanH.K. TanR.B.H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy.Int. J. Pharm.20114031-219220010.1016/j.ijpharm.2010.10.012 20951781
    [Google Scholar]
  52. ChampionJ.A. KatareY.K. MitragotriS. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers.J. Control. Release20071211-23910.1016/j.jconrel.2007.03.022 17544538
    [Google Scholar]
  53. BockN. WoodruffM.A. HutmacherD.W. DargavilleT.R. Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications.Polymers20113113114910.3390/polym3010131
    [Google Scholar]
  54. YangY.Y. ZhangM. LiuZ.P. WangK. YuD.G. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying.Appl. Surf. Sci.201843410401047[Internet].10.1016/j.apsusc.2017.11.024
    [Google Scholar]
  55. López-RubioA. LagaronJ.M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives.Innov. Food Sci. Emerg. Technol.201213JANUARY20020610.1016/j.ifset.2011.10.012
    [Google Scholar]
  56. AytacZ. IpekS. DurgunE. UyarT. Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex.J. Mater. Sci.20185321527153910.1007/s10853‑017‑1580‑x
    [Google Scholar]
  57. BatrakovaE.V. BronichT.K. VetroJ.A. Nanoparticulates as Drug Carriers2010
    [Google Scholar]
  58. GongJ. HuoM. ZhouJ. ZhangY. PengX. YuD. ZhangH. LiJ. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles.Int. J. Pharm.20093761-216116810.1016/j.ijpharm.2009.04.033 19409461
    [Google Scholar]
  59. SabraS.A. ElzoghbyA.O. SheweitaS.A. HarounM. HelmyM.W. EldemellawyM.A. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer.Eur. J. Pharm. Biopharm.201812815616910.1016/j.ejpb.2018.04.023
    [Google Scholar]
  60. ZhaoZ. LiY. XieM.B. Silk fibroin-based nanoparticles for drug delivery.Int. J. Mol. Sci.20151634880490310.3390/ijms16034880 25749470
    [Google Scholar]
  61. LangerK. AnhornM.G. SteinhauserI. DreisS. CelebiD. SchrickelN. FaustS. VogelV. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation.Int. J. Pharm.20083471-210911710.1016/j.ijpharm.2007.06.028 17681686
    [Google Scholar]
  62. LangerK. BalthasarS. VogelV. DinauerN. von BriesenH. SchubertD. Optimization of the preparation process for human serum albumin (HSA) nanoparticles.Int. J. Pharm.20032571-216918010.1016/S0378‑5173(03)00134‑0 12711172
    [Google Scholar]
  63. PenalvaR. EsparzaI. LarranetaE. González-NavarroC.J. GamazoC. IracheJ.M. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock.J. Agric. Food Chem.201563235603561110.1021/jf505694e 26027429
    [Google Scholar]
  64. YuX. WuH. HuH. DongZ. DangY. QiQ. WangY. DuS. LuY. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer.Drug Deliv.202027110010910.1080/10717544.2019.1704942 31870183
    [Google Scholar]
  65. MiladL. An investigation into the use of zein proteins as pharmaceutical excipients for modified drug release applications.Doctoral thesis, University of East Anglia.2012
    [Google Scholar]
  66. AsifM. JafariS.F. IqbalZ. RevadigarV. OonC.E. MajidA.S.A. Ethnobotanical and phytopharmacological attributes of Mesua ferrea: A mini review.J. Appl. Pharm. Sci.201774242251
    [Google Scholar]
  67. RamtekeS. JainN.K. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori.J. Drug Target.2008161657210.1080/10611860701733278 18172822
    [Google Scholar]
  68. PandeyV.N. TiwariN. PandeyV.S. RaoA. DasI. Targeted drug delivery and gene therapy through natural biodegradable nanostructures in pharmaceuticals.Nanoarchitectonics in Biomedicine.Nanoarchitectonics in Biomedicine201943744210.1016/B978‑0‑12‑816200‑2.00012‑8
    [Google Scholar]
  69. SripriyalakshmiS. JoseP. RavindranA. AnjaliC.H. Recent trends in drug delivery system using protein nanoparticles.Cell Biochem. Biophys.2014701172610.1007/s12013‑014‑9896‑5 24668188
    [Google Scholar]
  70. TengZ. LuoY. WangQ. Nanoparticles synthesized from soy protein: Preparation, characterization, and application for nutraceutical encapsulation.J. Agric. Food Chem.201260102712272010.1021/jf205238x 22352467
    [Google Scholar]
  71. PujaraN. JambhrunkarS. WongK.Y. McGuckinM. PopatA. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate.J. Colloid Interface Sci.201748830330810.1016/j.jcis.2016.11.015 27838554
    [Google Scholar]
  72. NingF. WangX. ZhengH. ZhangK. BaiC. PengH. HuangQ. XiongH. Improving the bioaccessibility and in vitro absorption of 5-demethylnobiletin from chenpi by se-enriched peanut protein nanoparticles-stabilized pickering emulsion.J. Funct. Foods201955January7685[Internet].10.1016/j.jff.2019.02.019
    [Google Scholar]
  73. MehryarL. EsmaiiliM. ZeynaliF. ImaniM. SadeghiR. Fabrication and characterization of sunflower protein isolate nanoparticles, and their potential for encapsulation and sustainable release of curcumin.Food Chem.202135512957210.1016/j.foodchem.2021.129572 33799269
    [Google Scholar]
  74. YangC. WangY. XieY. LiuG. LuY. WuW. ChenL. Oat protein-shellac nanoparticles as a delivery vehicle for resveratrol to improve bioavailability in vitro and in vivo.Nanomedicine201914212853287110.2217/nnm‑2019‑0244 31752574
    [Google Scholar]
  75. LiuG. ZhouY. ChenL. Intestinal uptake of barley protein-based nanoparticles for β-carotene delivery.Acta Pharm. Sin. B201991879610.1016/j.apsb.2018.10.002 30766780
    [Google Scholar]
  76. AsadiM. SalamiM. HajikhaniM. Emam-DjomehZ. AghakhaniA. GhasemiA. Electrospray production of curcumin-walnut protein nanoparticles.Food Biophys.2021161152610.1007/s11483‑020‑09637‑9
    [Google Scholar]
  77. LiangL. ZhuJ. ZhangZ. LiuY. WenC. LiuX. ZhangJ. LiY. LiuR. RenJ. DengQ. LiuG. XuX. Pickering emulsion stabilized by tea seed cake protein nanoparticles as lutein carrier.Foods20221112171210.3390/foods11121712 35741910
    [Google Scholar]
  78. RajićD. SpasojevićL. Gojković CvjetkovićV. BučkoS. FrajJ. Milinković BudinčićJ. Zein–resin composite nanoparticles with coencapsulated carvacrol.J. Food Process. Preserv.2021April110
    [Google Scholar]
  79. PaulukD. PadilhaA.K. KhalilN.M. MainardesR.M. Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity.Food Hydrocoll.20199441141710.1016/j.foodhyd.2019.03.042
    [Google Scholar]
  80. SonekarS. MishraM.K. PatelA.K. NairS.K. SinghC.S. SinghA.K. Formulation and evaluation of folic acid conjugated gliadin nanoparticles of curcumin for targeting colon cancer cells.J. Appl. Pharm. Sci.20166106874
    [Google Scholar]
  81. Zare-ZardiniH. SoltaninejadH. Ghorani-AzamA. Forouzani-MoghaddamM.J. MozafriS. Akhoundi-MeybodiZ. Investigating the antimicrobial activity of vancomycin-loaded soy protein nanoparticles.Interdiscip. Perspect. Infect. Dis.20222022570999910.1155/2022/5709999
    [Google Scholar]
  82. PengH. GanZ. XiongH. LuoM. YuN. WenT. WangR. LiY. Self-assembly of protein nanoparticles from rice bran waste and their use as delivery system for curcumin.ACS Sustain. Chem.& Eng.2017586605661410.1021/acssuschemeng.7b00851
    [Google Scholar]
  83. PalK. ChakrobortyS. NathN. Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications.Green Process. Synth.202211195196410.1515/gps‑2022‑0081
    [Google Scholar]
  84. QinW. TangS. ChenC. XieJ. Preparation and characterization of cinnamon essential oil Pickering emulsion stabilized by zein/carboxylated cellulose nanocrystals composite nanoparticles.Food Hydrocoll.202414710932110.1016/j.foodhyd.2023.109321
    [Google Scholar]
  85. HuangX. LiuB. MaJ. WeiS. WangL. YinS. YangX. Development of Gliadin@AgNPs hybrid nanoparticles as building blocks for constructing antimicrobial protein-based porous materials.Chem. Eng. J.202448214892410.1016/j.cej.2024.148924
    [Google Scholar]
/content/journals/npj/10.2174/0122103155306353240704072716
Loading
/content/journals/npj/10.2174/0122103155306353240704072716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test