Recent Patents on Nanotechnology - Volume 7, Issue 1, 2013
Volume 7, Issue 1, 2013
-
-
A Review of Nanostructured Lithium Ion Battery Materials via Low Temperature Synthesis
By Jiajun ChenNanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet– chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
-
-
-
Stabilized Metal Nanoparticles from Organometallic Precursors for Low Temperature Fuel Cells
Authors: E. Ramirez-Meneses, M. A. Dominguez-Crespo and A. M. Torres-HuertaIn this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.
-
-
-
Pulsed Laser Deposition: The Road to Hybrid Nanocomposites Coatings and Novel Pulsed Laser Adaptive Technique
More LessThe applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.
-
-
-
Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting
Authors: Chia-Lang Fang, Saleh A. Al-Suwayeh and Jia-You FangNanostructured lipid carriers (NLCs) are drug-delivery systems composed of both solid and liquid lipids as a core matrix. It was shown that NLCs reveal some advantages for drug therapy over conventional carriers, including increased solubility, the ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery. NLCs have attracted increasing attention in recent years. This review describes recent developments in drug delivery using NLCs strategies. The structures, preparation techniques, and physicochemical characterization of NLCs are systematically elucidated in this review. The potential of NLCs to be used for different administration routes is highlighted. Special attention is paid to parenteral injection and topical delivery since these are the most common routes for investigating NLCs. Relevant issues for the introduction of NLCs to market, including pharmaceutical and cosmetic applications, are discussed. The related patents of NLCs for drug delivery are also reviewed. Finally, the future development and current obstacles needing to be resolved are elucidated.
-
-
-
Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose
Authors: Hernan Charreau, Maria L. Foresti and Analia VazquezCellulose nanoparticles (i.e. cellulose elements having at least one dimension in the 1-100nm range) have received increasing attention during the last decade. This is not only evident in academic articles, but it is also manifested by the increasing number of nanocellulose patents that are published every year. In the current review, nanocellulose patents are reviewed using specific software which provides valuable information on the annual number of patents that have been published throughout the years, main patent owners, most prolific inventors, and patents on the field that have received more citations. Patent statistics on rod-like cellulose nanoparticles extracted from plants by acid hydrolysis (nanocrystals), mechanical treatment leading to microfibrillated cellulose (MFC), and microbially produced nanofibrils (bacterial cellulose, BC) are analyzed in detail. The aim of the current review is to provide researchers with patent information which may help them in visualizing the evolution of nanocellulose technology, both as a whole and also divided among the different nanosized particles that are currently the subject of outstanding scientific attention. Then, patents are not only analyzed by their content, but also by global statistics which will reveal the moment at which different cellulose nanoparticles technologies achieved a breakthrough, the relative interest received by different nanocellulose particles throughout the years, the companies that have been most interested in this technology, the most prolific inventors, and the patents that have had more influence in further developments. It is expected that the results showing the explosion that nanocellulose technology is experiencing in current days will still bring more research on the topic and contribute to the expansion of nanocellulosics applications.
-
-
-
Recent Developments and Patents on Biological Sensing using Nanoparticles in Microfluidic Systems
By Kin Fong LeiMicrofluidic systems provide a total solution of biological and chemical analysis from the sample application to the display of the analysis results. A lot of developments on the point-of-care diagnostic applications have been reported and the commercial possibility is shown. To achieve sensitive and specific biological sensing, nanoparticles may provide a promising tool because they have similar length scale with the biomolecules. The nano-sensing technology suggests a molecular level detection of the biomolecules to pursue higher performance. In this review, recent developments and patents on the biological sensing using nanoparticles in microfluidic systems are discussed. An updated, systematic and rapid reference in the field of nano-biological sensing is provided.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
