Recent Patents on Nanotechnology - Volume 5, Issue 3, 2011
Volume 5, Issue 3, 2011
-
-
Multifunctional Nanoparticles, Nanocages and Degradable Polymers as a Potential Novel Generation of Non-Invasive Molecular and Cellular Imaging Systems
More LessIn recent years, polymeric scaffolds have been used in several biomedical applications for delivery of drugs or other biologically relevant molecules. Polymeric nanostructures display different (and in some cases more powerful) properties respect to bulk materials. This, lead academic researchers and industry to cooperate in developing pioneering nanostructured materials for industrial and biomedical applications. Moreover, the preparation and use of systems with multiple (multifunctional) properties (i.e., bioconjugation with superparamagnetic, fluorescent or targeting molecules) is positioned to become a viable and innovative tool for application in several clinical fields. Other nanostructured systems like nanocages and degradable nanoparticles, are emerging as potential innovative systems that could be exploited as multifunctional delivery vectors. This brief critical review is aimed at collecting and discussing some recent patents dealing with the preparation and use of multifunctional nanoparticles, nanocages and degradable nanoparticles in biomedicine and non-invasive bioimaging applications. Perspectives for a potential use of these multifunctional nanosystems in pediatries have been also discussed.
-
-
-
Recent Patents of Nanodevices for Single Cell Immunological Assays
More LessThis review focuses on recent patents for the design and implementation of nanodevices to isolate and characterize single immune cells. Specifically, the most common categories of single cell assays were reviewed and new strategies were suggested to expand the capabilities of nanodevices further for the study of human immune disease.
-
-
-
Near-Field Optical Properties of Quantum Dots, Applications and Perspectives
Authors: A. Zora, G. P. Triberis and C. SimseridesRecent years have witnessed tremendous research in quantum dots as excellent models of quantum physics at the nanoscale and as excellent candidates for various applications based on their optoelectronic properties. This review intends to present theoretical and experimental investigations of the near-field optical properties of these structures, and their multimodal applications such as biosensors, biological labels, optical fibers, switches and sensors, visual displays, photovoltaic devices and related patents.
-
-
-
Nano/Micro Lithium Transitionmetal (Fe, Mn, Co and Ni) Silicate Cathode Materials for Lithium Ion Batteries
Authors: Qingtang Zhang, Yongle Zhao, Ce Su and Mingyang LiLithium transitionmetal (Fe, Mn, Co, Ni) silicate cathode materials are new promising substituting cathode materials for lithium ion batteries. They had caught the researchers' eyes in the past several years. Nowadays, there are growing interests for silicate cathode materials in the field of lithium ion batteries. Among the silicate cathode materials, Li2FeSiO4 is the most promising cathode materials because of its high structure stability, high reversible capacity, high electronic conductivity and the abundant resource of iron and silicon. Although Li2MnSiO4 and Li2CoSiO4 have much higher theoretic specific capacity than Li2FeSiO4, they all have inferior electrochemical behaviours due to different reasons. There are only calculation results about Li2NiSiO4 till now. This brief critical review firstly discussed some papers about the first-principle calculation of Li2MSiO4 (M=Fe, Mn, Co Ni), and then collects and discusses relevant papers and recent patents about the fabrication, structure, particle size and electrochemical performance of nano/micro Li2MSiO4 (M=Fe, Mn, Co Ni) and their composites. Finally, the future challenges of Li2FeSiO4 are also discussed.
-
-
-
Al-Si/SiC Nanoparticles Composites Synthesized by Double Stir Casting
More LessThe present invention provides Al-Si/SiC nanoparticles composites with the composition of 7%Si, 15%SiC with average particle size (APS) of SiC, 20, 30, 40 nm and 65μm using a novel double stir casting method. The inventive nano-composites by double stir casting show a nearly uniform distribution and good dispersion of the nano-particles within the Al matrix, although small agglomeration was found in the matrix of the micro-composite. The enhancement in values of impact strength and tensile strength observed in this study is due to small particle size and good distribution of the nano particles, which were confirmed by SEM spectrum. Patents WO 2010135848 and WO2011/011601 have some relevant information about the topic developed in this study, because the principle in both cases relies on the interactions between metal matrix and the nano-particles. Hence, novel double stir casting method can be used to improve the properties of nano-composites.
-
-
-
Nanoparticle-based Cerebral Drug-Delivery Systems and Antiangiogenic Approach in Gliomas Treatment
Authors: Giuseppe Raudino, Mariella Caffo, Gerardo Caruso, Concetta Alafaci and Francesco TomaselloThe efficacy of current anti-cancer multimodal therapeutic strategies in gliomas is limited by the lack of specific therapies against malignant cells and the prognosis in patients affected by cerebral gliomas remains very unfavorable. Glial tumors seem to be able to create a favorable environment for the invasion of neoplastic cells when they combine with the extracellular matrix through the up-regulation of crucial pathways such as angiogenesis and invasion. The major problem in brain drug delivery is the presence of the blood brain barrier which limits the delivery of many chemotherapeutic agents and other kinds of therapeutic molecules. This event often contributes to the failure of the treatment. Nanoparticle systems can represent ideal devices for delivery of specific compounds to brain tumors across the blood brain barrier. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of angiogenesis into gliomas, their importance into tumor progression and the possibilities to block these mechanisms with new nanoparticle-based therapeutic strategies. We will also report the results of preclinical and/or clinical studies that adopt nanoparticle-based antiangiogenic therapeutic approach in cerebral gliomas, considering also some patents deal with antiangiogenic strategy.
-
-
-
Patent Selections
More LessThe patents annotated in this section have been selected from various patent data bases. These recent patents are relevant to the articles published in this journal issue, categorized by different biotechnology methods, processes and techniques involved.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
