Recent Patents on Nanotechnology - Volume 15, Issue 1, 2021
Volume 15, Issue 1, 2021
-
-
Technological Prospection of Oil Nanoparticles: Primary Characteristics and Profiles
The search for technological applications for oils has been growing largely due to their potential nutritional and economic applications. Encapsulation makes it possible to reduce the disadvantages of oils, such as physical instability or thermodynamics, or to improve their technological properties, enabling their use in various industrial areas. Nanoencapsulated oils have the potential to improve oil bioavailability and achieve controlled release and are able to target bioactive compounds with greater precision than microencapsulated oils. The present study aims to evaluate the primary characteristics and profiles of the technological prospection of oil nanoparticles. This technology foresight study investigates the patenting activity and the academic literature to map out the technological progress and difficulties in the area of nanoencapsulation. Exponential growth in patent filing was noted with a peak in 2017, with China filing the highest number of patents. Regarding the area of application, the food industry was most common followed by the pharmaceutical industry. The most commonly used terms in patent documents on the subject were nanoemulsion and nanoparticle. The most commonly used oil, technique, wall materials and emulsifiers were soybean oil, emulsification, chitosan and lecithin, and Span 80, Tween 80 and Tween 40, respectively. The obtained articles were typically patent documents. The main depositor was Jiangnan University, and most inventors filed the same number of patent documents. Nanoencapsulation of oils has many known advantages that have been widely published in the literature and used by industry. There is a trend in the growth of patent document deposits and related scientific publications, indicating that many innovations have been made, highlighting the importance of oil nanoencapsulation.
-
-
-
An Overview of the Recent Developments and Patents in the Field of Pharmaceutical Nanotechnology
Background: Compared to traditional dosage methods, the Novel Drug Delivery Systems (NDDS) provide various advantages. In the last few years, the interest shifted to works focused on the novel drug delivery methods for small and large molecular drug carriers utilizing particulate drug delivery systems as well. It is evident from the last decade as observed in increased number of patents in this field that the technology has evolved tremendously. Objective: Drug carriers utilized by this novel technology include liposomes, dendrimers, polymeric nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, and carbon nanomaterials. Various forms of polymers have been used in the production of nanocarriers. Methods: Nanocarriers are colloidal systems varying in size from 10 to 1000 nm. This technology is now used to identify, manage and monitor numerous diseases and physical methods to alter and enhance the pharmacokinetic and pharmacodynamic properties of specific types of drug molecules. Results: Nanoparticles can be formulated by a number of techniques including ionic gelation, crosslinking, coacervation/precipitation, nanoprecipitation, spray drying, emulsion- droplet coalescence, nano sonication techniques, etc. Several methods are used with which these nanoparticles can be characterized. These methods include nuclear magnetic resonance, optical microscopy, atomic force microscopy, photon correlation spectroscopy and electron microscopy, surface charge, in-vitro drug release, etc. Conclusion: In the present review, the authors have tried to summarize recent advances in the field of pharmaceutical nanotechnology and also focused on the application and new patents in the area related to NDDS.
-
-
-
Evaluation of the Technological Potential of Grape Peels Through Patent Document Analysis: Agro-industrial Waste with Biotechnological Potential
Authors: Euzelia L. Souza, Ingrid L. Leal, Marcelo A. Umsza-Guez and Bruna A.S. MachadoBackground: Grape (Vitis vinifera L.) is consumed by old-world populations in its natural form and is used to produce wine or juice. Currently, China is the largest grape producer in the world. The red grapes stand out because of their phytochemical composition, more specifically their high resveratrol levels. Resveratrol is a compound that has a number of different beneficial effects on health and is mainly used in the food and cosmetic industries. Grape peel is a waste product and new strategies based on nanotechnology can minimize its environmental impact and add value to this residue. Objectives: The first objective of this study was to evaluate the technological potential of utilizing grape peel by researching and analyzing information extracted from patent documents filed worldwide in order to identify the main countries that hold the research technology, the main depositors and inventors, and the main areas of application. The second aim was to research and investigate grape peel products that have been created using nanotechnology. Methods: An analysis of all patented documents related to grape peel processes, products, or different industrial applications that may use nanotechnology was carried out. This was achieved by undertaking a Derwent Innovation Index (DII) database search. Results: A total of 752 patent documents were identified in the surveyed area. These were assessed for depositor country of origin, type of depositor, inventors, the evolution of deposits over time, and areas of application. Only 6% of the total represented products and processes in the nanotechnology area. There was a growth in the number of patent filings from 2015, which showed that the researched area is a current and developing technology with new application possibilities. The main depositing countries were China, the United States, and Japan, which dominate the researched technology. The identified documents discussed using the grape peel to develop new food, medical and dental products. Conclusion: Over the last few years, different approaches have been suggested for the production of nanoproducts based on grape peel. The results from this study showed that although incipient, nanotechnology is a promising area of research that can be explored by universities and companies because the products could have significant positive characteristics and, even though they are made out of a byproduct, have great application potential.
-
-
-
Tapered Optical Fiber Detector for a Red Dye Concentration Measurement
Background: In this work, a detector based on optical fiber covered with Multi-Wall Carbon Nanotubes (MWCNTs) was used for sensing and removal of Alizarin from wastewaters. Alizarin is a strong anionic red dye that is part of the anthraquinone dye group. As a rule, this dye is used in the textile industry as a coloring agent. Experiments showed a good efficiency of wastewater treatment. This development could resolve the problem of water contamination with Alizarin red dye. Methods: We used a single-mode fiber SMF-28e with a core diameter of 8.2 μm and a cladding diameter of 125 μm as a base for the tapered optical fiber detector. An MWCNTs array was synthesized on the tapered optical fiber detector surface by spray pyrolysis Chemical Vapor Deposition (CVD) method at 800oC for 20 min inside a tubular furnace, using ferrocene solution in toluene as a catalyst precursor. The formed structure was applied for Alizarin detection in water. Results: According to the patent studies, the nanotubes completely covered the optical fiber surface and the array had a high density with minimal distance between nearby nanotubes. Carbon nanotubes were oriented along the radius of the optical fiber. The average diameter of carbon nanotubes was 24 nm. The optical absorbance levels increased as the Alizarin concentration increased from 50 mg/L to 1000 mg/L. MWCNTs on the optical fiber tapered section adsorbed the dye molecules from aqueous solution. Three intensive absorption bands with the wavelength of the 700, 714 and 730 nm appeared and their intensity increased as the Alizarin concentration increased. The accumulated Alizarin can be recovered by multiple immersing clean water. This property may make tapered optical fiber detector reusable and increase the economic expediency of the sensor application. Conclusion: The study showed higher Alizarin adsorption efficiency of the tapered optical fiber detector compared with relative detectors. This structure can be reusable for dye detection. Removal efficiency for Alizarin reached 98.6%, which makes the tapered optical fiber detector promising for wastewater treatment and dye elimination.
-
-
-
Enhanced Solubility and Permeability of Naringenin Across Non-Everted Sacs of Rat Small Intestine by Lipid Nanocapsules
Authors: Hamed Vakilzadeh, Jaleh Varshosaz and Sahel SoghratiBackground: Naringenin (NRG) has many health benefits, including; anti-atherogenic, antiinflammatory, antitumor, and anticancer activity, as well as improvement of lipid metabolism. However, its use is limited due to its low solubility and bioavailability. Objectives: The aim of the present patent study was the preparation and optimization of NRG loaded Novel Lipid Nanocapsules (LNCs) for the improvement of NRG solubility and gut permeability. Methods: Studied variables included; Solutol® HS15 and NRG concentration and the ratio of cold diluent water to primary emulsion. The storage stability of the LNCs was evaluated for 32 days and thermal analyses were conducted by Differential Scanning Calorimetry (DSC). The antioxidant properties of the NRG in LNCs were studied by measuring the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity. The enhancement of permeation of NRG by the LNCs from the intestine was evaluated by the non-everted gut sac method. Results: The optimized NRG-LNCs had a hydrodynamic diameter of 29.41±1.25 nm, a low polydispersity index, and high entrapment efficiency of 99.25±2.31%. The LNCs could retain NRG radical scavenging activity, showed good storage stability, and significantly improved NRG solubility (69 fold) and permeation through non-everted rat intestinal sac (4.33 fold). Conclusion: LNCs of NGR enhance solubility and intestinal permeability of this flavonoid and may be useful in the improvement of its bioavailability.
-
-
-
Antibiotic Loaded Nano Rod Bone Cement for the Treatment of Osteomyelitis
Background: Polymethyl Methacrylate (PMMA) bone cement is the clinical gold standard biomaterial for local antibiotic therapy in osteomyelitis. However, it releases 50% of the antibiotic within the first three days. It generates excessive heat during polymerization and is non-biodegradable. It must be removed by another operation. The best-known alternative for PMMA is hydroxyapatite. Objectives: The present patented work is focused on synthesizing the biodegradable hydroxyapatite in nano form for slow and sustained release of antibiotics and studying the release kinetics of antibiotics. Methods: Nano-hydroxyapatite was synthesized by co-precipitation method and characterized by particle size analyser, transmission electron microscopy, fourier transform infrared spectroscopy and energy dispersive X-Ray analysis. Antibiotic loaded nano-hydroxyapatite was prepared as 7 mm beads. The efficiency of drug-loaded nano-hydroxyapatite beads against osteomyelitic isolates was evaluated by well diffusion assay. Zero-order, first order, second order, Higuchi model, Korsmeyer-Peppas and Gompertz models were fit into the release kinetics of antibiotics from hydroxyapatite. Results: Average size of nano-hydroxyapatite was 5 nm. The bactericidal activity exhibited by antibiotic- loaded micro-sized hydroxyapatite was therapeutic until 10 days only, whereas antibiotic-loaded nano-hydroxyapatite was therapeutic until 8 weeks. This confirms the burst release of antibiotics from micro-sized hydroxyapatite beads. In contrast, the release was slow and sustained up to 8 weeks from nano-hydroxyapatite. Korsmeyer-Peppas model fits into the release kinetics of antibiotics from nanohydroxyapatite. Conclusion: Nano-hydroxyapatite with a Ca/P ratio of 1.78 is suitable for the slow and sustained delivery of antibiotics for 8 weeks.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
