Recent Patents on Nanotechnology - Volume 12, Issue 1, 2018
Volume 12, Issue 1, 2018
-
-
Technological Prospection on Membranes Containing Silver Nanoparticles for Water Disinfection
Background: Membrane separation is an established technological process, and since 1980s, it has been used commercially at large industrial plants worldwide. Water and wastewater disinfection is one of the applications of membrane technologies, but fouling and biofouling are still a challenge for the sector. The use of silver nanoparticles in membranes has attracted research interest because of their biocidal action. Methods: This technology foresight study investigates the academic literature and patenting activity to map out the technological progress and difficulties in the area. Results: One hundred and sixty-seven articles on the subject published between 2005 and 2017 were retrieved, and it was found that the greatest number of publications were undertaken in 2016. A wide range of materials being used to make membranes and institutions involved in researching this technology were identified. Fifty-nine patents of relevance were also retrieved, with 2011 and 2013 seeing the highest number of patent applications filed. Conclusion: The countries with the most academic output and priority patents are the United States and China, but no institution stands out from the others in this area.
-
-
-
Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology
Background: Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. Method: The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Results: Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Conclusion: Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products.
-
-
-
Applications of Nanoflowers in Biomedicine
Authors: Masoud Negahdary and Hossein HeliBackground: Nanotechnology has opened new windows for biomedical researches and treatment of diseases. Nanostructures with flower-like shapes (nanoflowers) which have exclusive morphology and properties have been interesting for many researchers. Methods: In this review, various applications of nanoflowers in biomedical researches and patents from various aspects have been investigated and reviewed. Results: Nanoflowers attracted serious attentions in whole biomedical fields such as cardiovascular diseases, microbiology, sensors and biosensors, biochemical and cellular studies, cancer therapy, healthcare, etc. The competitive power of nanoflowers against other in use technologies provides successful achievements in the progress of mentioned biomedical studies. Conclusion: The use of nanoflowers in biomedicine leads to improving accuracy, reducing time to achieve the results, reducing costs, creating optimal treatment conditions as well as avoiding side effects of the treatment of specific diseases, and increasing functional strength.
-
-
-
A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology
Authors: Aleksander Sesek, Andrej Zemva and Janez TronteljBackground: The THz sensors using microbolometers as a sensing element are reported as one of the most sensitive room-temperature THz detectors suitable for THz imaging and spectroscopic applications. Microbolometer detectors are usually fabricated using different types of the MEMS technology. The patent for the detection system presented in this paper describes a method for microbolometer fabrication using a standard CMOS technology with advanced micromachining techniques. The measured sensitivity of the sensors fabricated by the patented method is 1000 V/W at an optimal frequency and is determined by the performance of a double-dipole antenna and quarter-wavelength resonant cavity. Method: The paper presents a patented method for fabrication of a microbolometer system for radiation detection in the THz frequency range (16). The method is divided into several stages regarding the current silicon micromachining process. Main stages are fabrication of supporting structures for micro bridge, creation of micro cavities and fabrication of Aluminum antenna and Titanium microbolometer. Additional method for encapsulation in the vacuum is described which additionally improves the performance of bolometer. The CMOS technology is utilized for fabrication as it is cost effective and provides the possibility of larger sensor systems integration with included amplification. At other wavelengths (e.g. IR region) thermistors are usually also the receivers with the sensor resistance change provoked by self-heating. In the THz region the energy is received by an antenna coupled to a thermistor. Depending on the specific application requirement, two types of the antenna were designed and used; a narrow-band dipole antenna and a wideband log-periodic antenna. Results: With method described in the paper, the microbolometer detector reaches sensitivities up to 500 V/W and noise equivalent power (NEP) down to 10 pW/√Hz. Additional encapsulation in the vacuum improves its performance at least by a factor of 2, therefore the sensitivity reaches approximately 1000 V/W and NEP down to 5 pW/√Hz. The thermal response time of bolometer is 0.5 μs. The thermistor biasing current drops with its resistance (defined by microbolometer active area), but the sensitivity rises. Typical value of biasing current is 300 μA at 680 Ω of resistance, where the sensitivity reaches highest level. Air pressure decrease highly influences the sensitivity due to lower thermal dissipation to surrounding air. The sensitivity is therefore doubled when packaged in the high vacuum (0.1Pa). Conclusion: The main advantage of the presented approach is that the detection devices can be fabricated by a standard silicon micromachining process. Their overall dimension is defined by the receiving antenna and they do not need any additional optic source for the operation. They are robust and appropriate for mass production and can be easily embedded or merged with other vision system in use. The developed microbolometer is highly sensitive, its noise is low and it operates at a room temperature with no additional cooling system at a normal atmospheric pressure. The output of the THz detector connected to a discrete low-noise amplifier increases the total sensitivity up to 106 V/W with no impact on the noise equivalent power of 5 pW/√HZ.
-
-
-
Strategies on Technology Transfer and Patents Commercialization for Nanotechnology at the Spanish National Research Council
Authors: Javier Maira, Javier Etxabe and Pedro A. SerenaNanoscience and nanotechnology made their appearance in the scientific scene at a time when both the economy of Spain and the Spanish Research and Innovation System were experiencing strong growth. This circumstance resulted in a remarkable development of nanoscience and nanotechnology especially in universities and public research institutions such as the Spanish National Research Council (Consejo Superior de Investigaciones Científicas-CSIC). However, this development in academia has not been reflected in a similar increment in the transfer of knowledge to the productive sector despite several efforts and initiatives were launched. The CSIC, the main generator of scientific knowledge in Spain, has designed and implemented a series of actions in order to take advantage of the knowledge generated in nanotechnology by its research groups by mean of an appropriate transfer to both the Spanish and the international industry. Method: Internal methodologies used in CSIC in order to protect and commercialize nanotechnology based intellectual property as well as their effects are reviewed. The evolution of CSIC nanotechnology patents portfolio is also analyzed. Results: There has been a clear increase in the patent license agreements of CSIC in the period 2002- 2015 in the field of nanotechnology. This increase is correlated to these facts: (i) Highly qualified team managing Intellectual Property issues, (ii) The presence of CSIC in international fairs, and (iii) Proactive search of companies and investors. Conclusion: Successful results can be achieved in technology transfer when the appropriate resources are available and properly organized with an adequate combination of efforts in knowledge protection, promotion and commercialization of technologies and support to the scientific entrepreneurs of the institution.
-
-
-
Gold Nanoparticles by Laser Ablation for X-Ray Imaging and Protontherapy Improvements
Authors: Lorenzo Torrisi, Nancy Restuccia and Irene PaternitiBackground: Gold nanoparticles, 5-20 nm in diameter, were generated with a pulsed Nd: YAG laser at 1010 W/cm2 at solution concentrations ranging between 1-100 mg/ml. The incremental X-ray contrast imaging using gold nanoparticles was investigated and measured. The study was performed with the aim to enhance the massive absorption coefficient of X-ray radiation in the tumor for medical image quality and to improve traditional X-ray radiotherapy or proton therapy. A simulation of proton therapy improvement was conducted using a human ocular melanoma model, placed 3 cm behind the eye lens, and testing 60 MeV protons. Calculations suggest that the local injection of a solution containing Au-NPs may increase the proton energy released in the tumor above 50%, with the dose in the surrounding tissues leading to an increased probability of tissue healing. A discussion on recent patents in the ambit of the preparation and use of Au nanoparticles in medical imaging and therapy is presented. Methods: Au nanoparticles were characterized using optical absorbance, X-ray fluorescence, SEM, and TEM microscopies. Biocompatible nanoparticle solutions were injected intravenously into tail veins of mice followed by X-ray imaging using 20-45 keV photons to evaluate the uptake and the clearance by different organs of the nanoparticles. Results: Diagnostic X-ray images of mice in which the Au-NPs were injected showed high spatial resolution contrast of different organs having high up-take. A calculation of the dose released by X-rays, electrons and protons to the tumor site demonstrates that an increment of the order of 50% can be obtained using adapt solution concentration. Conclusion: The use of Au-NPs in biocompatible solutions injected in living organism permits their blood transport up to different organs. The NPs can be employed as contrast medium to enhance the medical image resolution and to prepare the cancer tissues to be exposed to ionization radiations in order to enhance the dose released to the tumor cells. This effect permits to reduce the total dose given to the patient and to increase the dose released to the tumor cells with respect to healthy ones.
-
-
-
Enhancement in Biological Activity of L-Asparginase by its Conjugation on Silica Nanoparticles
Authors: Dorsa Golestaneh and Jaleh VarshosazBackground: L-asparaginase is a drug of choice in the treatment of Hodgkin's lymphoma and acute lymphoblastic leukemia. Production of its bioconjugates can increase its half-life, stability and decrease its immunogenicity. Objective: The aim of the present study was to immobilize this drug on silica nanoparticles by two different cross-linking agents. Method: The drug was conjugated to nanoparticles by two cross-linking agents; 1-ethyl-3-(3- dimethylaminopropyl) carboiimide HCl (EDC) or glutaraldehyde. The effect of the drug to the nanoparticles ratio, the amount of cross-linking agents and the time of conjugation were optimized according to the zeta potential, size particle and the enzyme immobilization efficiency. Conjugation of L-asparaginase to nanoparticles was confirmed by FT-IR and TEM. The activity, kinetic profiles, stability against pH changes, thermal and storage stability of the native and immobilized drug were compared. Results: The results showed significant increase in pH range of the stability and decrease in the km value of the drug after immobilization; indicating an increase in the enzyme tendency for the substrate. The Time of stability of the drug increased after immobilization in plasma and phosphate buffer saline which can increase its half-life of circulation. Conclusion: The activity and stability of immobilized drug by EDC were better than glutaraldehyde.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
