Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Fungal infections are becoming one of the most common diseases in recent years, especially when it comes about dealing skin infections. Different drugs are available commercially with antifungal activity for topical application and are effective for treatment of mild to moderate fungal infections. However they lack dermal bioavailability due to their poor penetrability, and less retention at the site thereby resulting in poor efficacy. The remaining systemic treatment options available so far may cause adverse drug effects and many other complications. In recent years nano carrier based formulations promised to overcome the limitations of the conventional topical dosage forms. Lipid based nano carriers and their importance for potential use in delivery of antifungal agents for the treatment of superficial fungal infections have been well discussed in this review article. It comprises of different nano lipid systems involved in treatment of topical fungal infections, effect of different polymers on their size, stability, and their mechanistic action behind skin penetration and dermal retention of drug into deeper epidermal layers is also highlighted to depict recent efforts of researchers in this context. Further, addressing of the disease by novel drug delivery systems for the efficacious treatment, status of clinical trials, novel commercial formulations available for use in dermal drug delivery and patents claimed/granted in the respective fields have been discussed in detail.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210517666230727090314
2023-09-22
2025-08-27
Loading full text...

Full text loading...

References

  1. MosallamS. AlbashR. AbdelbariM.A. Advanced vesicular systems for antifungal drug delivery.AAPS PharmSciTech202223620610.1208/s12249‑022‑02357‑y 35896903
    [Google Scholar]
  2. AbrigachF. RokniY. TakfaouiA. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives.Biomed. Pharmacother.201810365366110.1016/j.biopha.2018.04.061 29679907
    [Google Scholar]
  3. AsadiP. MehravaranA. SoltanlooN. AbastabarM. AkhtariJ. Nanoliposome-loaded antifungal drugs for dermal administration: A review.Curr. Med. Mycol.202171717810.18502/cmm.7.1.6247 34553102
    [Google Scholar]
  4. LengertE.V. TalnikovaE.E. TuchinV.V. SvenskayaY.I. Prospective nanotechnology-based strategies for enhanced intra- and transdermal delivery of antifungal drugs.Skin Pharmacol. Physiol.202033526126910.1159/000511038 33091913
    [Google Scholar]
  5. ManjuN. MalkietK. Nanomaterials for skin antifungal therapy: An updated review.J. Appl. Pharm. Sci.2021111152510.7324/JAPS.2021.11s102
    [Google Scholar]
  6. NeneS. ShahS. RangarajN. MehraN.K. SinghP.K. SrivastavaS. Lipid based nanocarriers: A novel paradigm for topical antifungal therapy.J. Drug Deliv. Sci. Technol.20216210239710.1016/j.jddst.2021.102397
    [Google Scholar]
  7. Martinez-RossiN.M. PeresN.T.A. BitencourtT.A. MartinsM.P. RossiA. State-of-the-art dermatophyte infections: Epidemiology aspects, pathophysiology, and resistance mechanisms.J. Fungi20217862910.3390/jof7080629 34436168
    [Google Scholar]
  8. BaldoA. MonodM. MathyA. Mechanisms of skin adherence and invasion by dermatophytes.Mycoses201255321822310.1111/j.1439‑0507.2011.02081.x 21831104
    [Google Scholar]
  9. VermoutS. TabartJ. BaldoA. MathyA. LossonB. MignonB. Pathogenesis of dermatophytosis.Mycopathologia20081665-626727510.1007/s11046‑008‑9104‑5 18478361
    [Google Scholar]
  10. USFDA.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214900s000lbl.pdf (accessed 18-11-2022).
  11. USFDA.Isavuconazonium.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207500s008,207501s007lbl.pdf (accessed 18-11-2022).
  12. USFDAEfinaconazole.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/203567s000lbl.pdf (accessed 18-11-2022).2014
  13. USFDATavaborale.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/204427s006lbl.pdf (acessed 11-01-2023).2014
  14. USFDA TolsuraAvailable from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208901Orig1s000Approv.pdf (acessed 11-01-2023).
  15. Available from: accessdata.fda.gov/drugsatfda_docs/label/2019/021266s039,021267s050,021630s029lbl.pdf (acessed 11-01-2023).
  16. FDA internet application site.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022003s018s020,0205053s002s004,0205596s001s003lbl.pdf (acessed 11-01-2023).
  17. VIVJOA™ (oteseconazole) capsules, for oral use Initial U.S. Approval.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215888s000lbl.pdf (acessed 11-01-2023).2022
  18. SwannG. Editorial.J. Vis. Commun. Med.201033414814910.3109/17453054.2010.525439 21087182
    [Google Scholar]
  19. SomeyaT. AmagaiM. Toward a new generation of smart skins.Nat. Biotechnol.201937438238810.1038/s41587‑019‑0079‑1 30940942
    [Google Scholar]
  20. VenusM. WatermanJ. McNabI. Basic physiology of the skin.Surgery2010281046947210.1016/j.mpsur.2010.07.011
    [Google Scholar]
  21. BragazziN. SellamiM. SalemI. Fasting and its impact on skin anatomy, physiology, and physiopathology: A comprehensive review of the literature.Nutrients201911224910.3390/nu11020249 30678053
    [Google Scholar]
  22. BanghamA.D. Surrogate cells or trojan horses. The discovery of liposomes.BioEssays199517121081108810.1002/bies.950171213 8634070
    [Google Scholar]
  23. MezeiM. GulasekharamV. Liposomes—A selective drug delivery system for the topical route of administration: Gel dosage form.J. Pharm. Pharmacol.201134747347410.1111/j.2042‑7158.1982.tb04767.x 6126554
    [Google Scholar]
  24. SharmaY. PatelP. KurmiB.D. A mini-review on new developments in nanocarriers and polymers for ophthalmic drug delivery strategies.Curr. Drug Deliv.202320121 37143264
    [Google Scholar]
  25. AlomraniA.H. ShazlyG.A. AmaraA.A. BadranM.M. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model.Colloids Surf. B Biointerfaces2014121748110.1016/j.colsurfb.2014.05.030 24937135
    [Google Scholar]
  26. PanditJ. GargM. JainN.K. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection.J. Liposome Res.201424216316910.3109/08982104.2013.871025 24479833
    [Google Scholar]
  27. AlsarraI.A. BoselaA.A. AhmedS.M. MahrousG.M. Proniosomes as a drug carrier for transdermal delivery of ketorolac.Eur. J. Pharm. Biopharm.200559348549010.1016/j.ejpb.2004.09.006 15760729
    [Google Scholar]
  28. AbdelkaderH. AlaniA.W.G. AlanyR.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations.Drug Deliv.20142128710010.3109/10717544.2013.838077 24156390
    [Google Scholar]
  29. AshtikarM. NagarsekarK. FahrA. Transdermal delivery from liposomal formulations: Evolution of the technology over the last three decades.J. Control. Release201624212614010.1016/j.jconrel.2016.09.008 27620074
    [Google Scholar]
  30. HoflandH.E.J. van der GeestR. BoddeH.E. JungingerH.E. BouwstraJ.A. Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro.Pharm. Res.199411565966410.1023/A:1018963910260 8058633
    [Google Scholar]
  31. KomatsuH. HigakiK. OkamotoH. MiyagawaK. HashidaM. SezakiH. Preservative activity and in vivo percutaneous penetration of butylparaben entrapped in liposomes.Chem. Pharm. Bull.19863483415342210.1248/cpb.34.3415 3791515
    [Google Scholar]
  32. BrewerJ. BloksgaardM. KubiakJ. SørensenJ.A. BagatolliL.A. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration.J. Invest. Dermatol.201313351260126810.1038/jid.2012.461 23223136
    [Google Scholar]
  33. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Can drug-bearing liposomes penetrate intact skin?J. Pharm. Pharmacol.201058441542910.1211/jpp.58.4.0001 16597359
    [Google Scholar]
  34. GanesanM.G. WeinerN.D. FlynnG.L. HoN.F.H. Influence of liposomal drug entrapment on percutaneous absorption.Int. J. Pharm.1984201-213915410.1016/0378‑5173(84)90225‑4
    [Google Scholar]
  35. KatoA. IshibashiY. MiyakeY. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride.J. Pharm. Pharmacol.201139539940010.1111/j.2042‑7158.1987.tb03407.x 2886592
    [Google Scholar]
  36. MarianecciC. Di MarzioL. RinaldiF. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  37. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.Asian J Pharm Sci201914211712910.1016/j.ajps.2018.05.007 32104444
    [Google Scholar]
  38. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  39. YasamV.R. JakkiS.L. NatarajanJ. KuppusamyG. A review on novel vesicular drug delivery: Proniosomes.Drug Deliv201421424324910.3109/10717544.2013.841783 24128089
    [Google Scholar]
  40. MahajanS.S. RY ChaudhariC. VR PatilP. Formulation and evaluation of topical proniosomal gel of ciclopirox for antifungal therapy.Int. J. Pharm. Investig.2021111566210.5530/ijpi.2021.1.11
    [Google Scholar]
  41. VoraB. KhopadeA.J. JainN.K. Proniosome based transdermal delivery of levonorgestrel for effective contraception.J. Control. Release199854214916510.1016/S0168‑3659(97)00100‑4 9724902
    [Google Scholar]
  42. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta Biomembr.19921104122623210.1016/0005‑2736(92)90154‑E 1550849
    [Google Scholar]
  43. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/0929867324666171009120154 28990515
    [Google Scholar]
  44. DasB. NayakA.K. MallickS. Transferosomes: A novel nanovesicular approach for drug delivery. In: Systems of Nanovesicular Drug Delivery.Academic Press2022103114
    [Google Scholar]
  45. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  46. AbdellatifM.M. KhalilI.A. KhalilM.A.F. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In vitro, ex vivo and in vivo evaluation.Int. J. Pharm.20175271-211110.1016/j.ijpharm.2017.05.029 28522423
    [Google Scholar]
  47. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes: Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  48. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/17425240903071029 19569979
    [Google Scholar]
  49. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.001 27865609
    [Google Scholar]
  50. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S105016 27307730
    [Google Scholar]
  51. RaoB.N. ReddyK.R. MounikaB. FathimaS.R. TejaswiniA. Vesicular drug delivery system: A review.Int. J. Chemtech Res.2019125395310.20902/IJCTR.2019.120505
    [Google Scholar]
  52. HajareA. DolH. PatilK. Design and development of terbinafine hydrochloride ethosomal gel for enhancement of transdermal delivery: In vitro, in vivo, molecular docking, and stability study.J. Drug Deliv. Sci. Technol.20216110228010.1016/j.jddst.2020.102280
    [Google Scholar]
  53. LinB. WangW. BaW. LiH. FanJ. Preparation and partial pharmacodynamic studies of luliconazole ethosomes.Clin. Exp. Pharmacol. Physiol.202249554955710.1111/1440‑1681.13623 35090058
    [Google Scholar]
  54. DaveV BhardwajN GuptaN TakK Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine.3 Biotech202010397
    [Google Scholar]
  55. ShajiJ. In Transethosomes: A new prospect for enhanced transdermal delivery.Int. J. Pharm Sci.20189726812685
    [Google Scholar]
  56. BajajK.J. ParabB.S. ShidhayeS.S. Nano-transethosomes: A novel tool for drug delivery through skin.Indian J Pharm Educ Res202155110
    [Google Scholar]
  57. MishraK.K. KaurC.D. GuptaA. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex vivo and in vivo studies.J. Drug Deliv. Sci. Technol.20226710299810.1016/j.jddst.2021.102998
    [Google Scholar]
  58. VermaS. UtrejaP. Transethosomes of econazole nitrate for transdermal delivery: Development, in vitro characterization, and ex vivo assessment.Pharm. Nanotechnol.20186317117910.2174/2211738506666180813122102 30101725
    [Google Scholar]
  59. AhmedT.A. AlzahraniM.M. SirwiA. AlhakamyN.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles.Pharmaceutics202113215110.3390/pharmaceutics13020151 33498849
    [Google Scholar]
  60. PatelD.M. PatelC.N. JaniR.H. Ufasomes: A vesicular drug delivery.Sys Rev Pharm201122727810.4103/0975‑8453.86290
    [Google Scholar]
  61. BhattacharyaS. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to trigger Candida albicans fungal infection.Future J Pharm Sci202171310.1186/s43094‑020‑00143‑w
    [Google Scholar]
  62. KhalifaM.K.A. Miconazole Nitrate based cubosome hydrogels for topical application.Int. J. Drug Deliv.20157112
    [Google Scholar]
  63. AlamM.M. AramakiK. Effect of molecular weight of triglycerides on the formation and rheological behavior of cubic and hexagonal phase based gel emulsions.J. Colloid Interface Sci.2009336132933410.1016/j.jcis.2009.03.054 19394623
    [Google Scholar]
  64. LeeK. NguyenT. HanleyT. BoydB. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.Int. J. Pharm.20093651-219019910.1016/j.ijpharm.2008.08.022 18790030
    [Google Scholar]
  65. RosenblattK.M. DouroumisD. BunjesH. Drug release from differently structured monoolein/poloxamer nanodispersions studied with differential pulse polarography and ultrafiltration at low pressure.J. Pharm. Sci.20079661564157510.1002/jps.20808 17094136
    [Google Scholar]
  66. CaoB. WangY. WenD. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa2001282 32187464
    [Google Scholar]
  67. AlamM.M. UshiyamaK. AramakiK. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.J. Oleo Sci.200958736136710.5650/jos.58.361 19491531
    [Google Scholar]
  68. PanX. HanK. PengX. Nanostructured cubosomes as advanced drug delivery system.Curr. Pharm. Des.201319356290629710.2174/1381612811319350006 23470001
    [Google Scholar]
  69. RapalliV.K. BanerjeeS. KhanS. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes.Mater. Sci. Eng. C202111911154810.1016/j.msec.2020.111548 33321612
    [Google Scholar]
  70. KovacevicA. SavicS. VuletaG. MüllerR.H. KeckC.M. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure.Int. J. Pharm.20114061-216317210.1016/j.ijpharm.2010.12.036 21219990
    [Google Scholar]
  71. GuimarãesK.L. RéM.I. Lipid nanoparticles as carriers for cosmetic ingredients: The First (SLN) and the Second Generation (NLC). Nanocosmetics and Nanomedicines: New Approaches for Skin Care.Berlin, HeidelbergSpringer Berlin Heidelberg201110112210.1007/978‑3‑642‑19792‑5_5
    [Google Scholar]
  72. MüllerR.H. ShegokarR. KeckC.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications.Curr. Drug Discov. Technol.20118320722710.2174/157016311796799062 21291409
    [Google Scholar]
  73. BattagliaL. GallarateM. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery.Expert Opin. Drug Deliv.20129549750810.1517/17425247.2012.673278 22439808
    [Google Scholar]
  74. ShresthaH. BalaR. AroraS. Lipid-based drug delivery systems.J. Pharm.2014201411010.1155/2014/801820 26556202
    [Google Scholar]
  75. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  76. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  77. del Pozo-RodríguezA. DelgadoD. GascónA.R. SolinísM.Á. Lipid nanoparticles as drug/gene delivery systems to the retina.J. Ocul. Pharmacol. Ther.201329217318810.1089/jop.2012.0128 23286300
    [Google Scholar]
  78. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  79. GratieriT. Krawczyk-SantosA.P. da RochaP.B.R. SLN- and NLC-encapsulating antifungal agents: Skin drug delivery and their unexplored potential for treating onychomycosis.Curr. Pharm. Des.2017234366846695 29141535
    [Google Scholar]
  80. MahmoudR.A. HusseinA.K. NasefG.A. MansourH.F. Oxiconazole nitrate solid lipid nanoparticles: Formulation, in vitro characterization and clinical assessment of an analogous loaded carbopol gel.Drug Dev. Ind. Pharm.202046570671610.1080/03639045.2020.1752707 32266837
    [Google Scholar]
  81. ElkomyM.H. ElmowafyM. ShalabyK. Development and machine-learning optimization of mucoadhesive nanostructured lipid carriers loaded with fluconazole for treatment of oral candidiasis.Drug Dev. Ind. Pharm.202147224625810.1080/03639045.2020.1871005 33416006
    [Google Scholar]
  82. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.017 30463794
    [Google Scholar]
  83. YaparN. Epidemiology and risk factors for invasive candidiasis.Ther. Clin. Risk Manag.2014109510510.2147/TCRM.S40160 24611015
    [Google Scholar]
  84. DanielssonI. LindmanB. The definition of microemulsion.Colloids Surf.19813439139210.1016/0166‑6622(81)80064‑9
    [Google Scholar]
  85. FribergS. MandellL. LarssonM. Mesomorphous phases, a factor of importance for the properties of emulsions.J. Colloid Interface Sci.196929115515610.1016/0021‑9797(69)90357‑9
    [Google Scholar]
  86. SjöblomJ. LindbergR. FribergS.E. Microemulsions: Phase equilibria characterization, structures, applications and chemical reactions.Adv. Colloid Interface Sci.19966512528710.1016/0001‑8686(96)00293‑X
    [Google Scholar]
  87. AlexanderA. PatelR.J. SarafS. SarafS. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.J. Control. Release201624111012410.1016/j.jconrel.2016.09.017 27663228
    [Google Scholar]
  88. ShinodaK. LindmanB. Organized surfactant systems: Microemulsions.Langmuir19873213514910.1021/la00074a001
    [Google Scholar]
  89. LagouretteB. PeyrelasseJ. BonedC. ClausseM. Percolative conduction in microemulsion type systems.Nature19792815726606210.1038/281060b0
    [Google Scholar]
  90. AgrawalM. SarafS. SarafS. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region.Expert Opin. Drug Deliv.201815658961710.1080/17425247.2018.1471058 29733231
    [Google Scholar]
  91. ChiappisiL. NoirezL. GradzielskiM. A journey through the phase diagram of a pharmaceutically relevant microemulsion system.J. Colloid Interface Sci.2016473525910.1016/j.jcis.2016.03.064 27054766
    [Google Scholar]
  92. ShahR.M. EldridgeD.S. PalomboE.A. HardingI.H. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.Eur. J. Pharm. Biopharm.201711714115010.1016/j.ejpb.2017.04.007 28411057
    [Google Scholar]
  93. GradzielskiM. Recent developments in the characterisation of microemulsions.Curr. Opin. Colloid Interface Sci.200813426326910.1016/j.cocis.2007.10.006
    [Google Scholar]
  94. López-QuintelaM.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control.Curr. Opin. Colloid Interface Sci.20038213714410.1016/S1359‑0294(03)00019‑0
    [Google Scholar]
  95. HoarT.P. SchulmanJ.H. Transparent water-in-oil dispersions: The oleopathic hydro-micelle.Nature1943152384710210310.1038/152102a0
    [Google Scholar]
  96. OliveiraA.G. ScarpaM.V. CorreaM.A. CeraL.F.R. FormarizT.P. Microemulsões: Estrutura e aplicações como sistema de liberação de fármacos.Quim. Nova200427113113810.1590/S0100‑40422004000100023
    [Google Scholar]
  97. MishraR. PrabhavalkarK.S. BhattL.K. Preparation, optimization, and evaluation of Zaltoprofen-loaded microemulsion and microemulsion-based gel for transdermal delivery.J. Liposome Res.201626429730610.3109/08982104.2015.1120746 26785055
    [Google Scholar]
  98. CaoM. RenL. ChenG. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery.AAPS PharmSciTech20171861960197110.1208/s12249‑016‑0667‑z 27914040
    [Google Scholar]
  99. HenggeU.R. CurrieB.J. JägerG. LupiO. SchwartzR.A. Scabies: A ubiquitous neglected skin disease.Lancet Infect. Dis.200661276977910.1016/S1473‑3099(06)70654‑5 17123897
    [Google Scholar]
  100. GuptaN. GuptaG. SiinghD. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects.Front Nanotechnol2022410006628
    [Google Scholar]
  101. TalaatS.M. ElnaggarY.S.R. AbdallaO.Y. Lecithin microemulsion lipogels versus conventional gels for skin targeting of terconazole: In vitro, ex vivo, and in vivo investigation.AAPS PharmSciTech201920416110.1208/s12249‑019‑1374‑3 30969396
    [Google Scholar]
  102. ThacharodiD. PandurangaR.K. Transdermal absorption of nifedipine from microemulsions of lipophilic skin penetration enhancers.Int. J. Pharm.1994111323524010.1016/0378‑5173(94)90346‑8
    [Google Scholar]
  103. AbdellatifM.M. KhalilI.A. ElakkadY.E. EliwaH.A. SamirT. Al-MokaddemA.K. Formulation and characterization of sertaconazole nitrate mucoadhesive liposomes for vaginal candidiasis.Int. J. Nanomedicine2020154079409010.2147/IJN.S250960 32606665
    [Google Scholar]
  104. ZhangL. LiX. ZhuS. Dermal targeting delivery of terbinafine hydrochloride using novel multi-ethosomes: A new approach to fungal infection treatment.Coatings202010430410.3390/coatings10040304
    [Google Scholar]
  105. SinghA.K. MukerjeeA. PandeyH. MishraS.B. Miconazole nitrate–loaded solid lipid nanoparticle-based hydrogel ameliorate Candida albicans induced mycoses in experimental animals.Bionanoscience202212251252610.1007/s12668‑022‑00948‑4
    [Google Scholar]
  106. CarboneC. FuochiV. ZielińskaA. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis.Colloids Surf. B Biointerfaces202018611070510.1016/j.colsurfb.2019.110705 31830707
    [Google Scholar]
  107. SharmaM. MundliaJ. KumarT. AhujaM. A novel microwave-assisted synthesis, characterization and evaluation of luliconazole-loaded solid lipid nanoparticles.Polym. Bull.20217852553256710.1007/s00289‑020‑03220‑5
    [Google Scholar]
  108. WaghuleT. RapalliV.K. SinghviG. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in vitro and ex vivo evaluation.J. Drug Deliv. Sci. Technol.20195230331510.1016/j.jddst.2019.04.026
    [Google Scholar]
  109. SinghS. SinghM. TripathiC.B. AryaM. SarafS.A. Development and evaluation of ultra-small nanostructured lipid carriers: Novel topical delivery system for athlete’s foot.Drug Deliv. Transl. Res.201661384710.1007/s13346‑015‑0263‑x 26542152
    [Google Scholar]
  110. BaghelS. NairV.S. PiraniA. Luliconazole‐loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections.Dermatol. Ther.2020336e1395910.1111/dth.13959 32618400
    [Google Scholar]
  111. ZafarA. QumberM. AlruwailiN. BBD-based development of itraconazole loaded nanostructured lipid carrier for topical delivery: In vitro evaluation and antimicrobial assessment.J. Pharm. Innov.2020168598
    [Google Scholar]
  112. FerreiraP.G. NoronhaL. TeixeiraR. Investigation of a microemulsion containing clotrimazole and itraconazole for transdermal delivery for the treatment of sporotrichosis.J. Pharm. Sci.202010921026103410.1016/j.xphs.2019.10.009 31604084
    [Google Scholar]
  113. SamyA. RamadanA.A. El-eninA.S.M.A. YasminI. In novel proniosomes as drug delivery system for transdermal application of itraconazole:Development, Characterization, clinical and bioavailability study.J Pharm Biol Sci20181315471
    [Google Scholar]
  114. YangQ. LiuS. GuY. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity.Int. J. Nanomedicine2019143955396610.2147/IJN.S206657 31239665
    [Google Scholar]
  115. Clinical Trial GovClinical assessment of voriconazole self nano emulsifying drug delivery system intermediate gel.Available at: https://clinicaltrials.gov/ct2/show/NCT04110860?term=voriconazole%2C+self+nano+emulsifying&draw=2&rank=1 (accessed 04-11-2022).
  116. Clinical Trial GovClinical assessment of itraconazole self nano emulsifying drug delivery system intermediate gel.Available at: https://clinicaltrials.gov/ct2/show/NCT04110834?term=nct04110834&draw=2&rank=1 (accessed 04-11-2022).
  117. Clinical Trial GovTDT 067 onychomycosis study. tdt 067 onychomycosis study.Available at: https://clinicaltrials.gov/ct2/show/NCT01145807 (accessed 04-11- 2022).
  118. Clinical Trial GovClinical Assessment of Oxiconazole Nitrate Solid Lipid Nanoparticles Loaded Gel.Available at: https://www.clinicaltrials.gov/ct2/show/NCT03823040 (accessed 04-11-2022).
  119. El-HousinyS. Shams EldeenM.A. El-AttarY.A. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study.Drug Deliv.2018251789010.1080/10717544.2017.1413444 29239242
    [Google Scholar]
  120. LamieC. ElmowafyE. RagaieM.H. AttiaD.A. MortadaN.D. Assessment of antifungal efficacy of itraconazole loaded aspasomal cream: Comparative clinical study.Drug Deliv.20222911345135710.1080/10717544.2022.2067601 35506466
    [Google Scholar]
  121. AlbashR. RagaieM.H. HassabM.A.E. Fenticonazole nitrate loaded trans-novasomes for effective management of tinea corporis: Design characterization, in silico study, and exploratory clinical appraisal.Drug Deliv.20222911100111110.1080/10717544.2022.2057619 35373684
    [Google Scholar]
  122. ClinicalTrials.govAdjunctive Sertraline for the Treatment of HIVAssociated Cryptococcal Meningitis.Available at: https://clinicaltrials.gov/ct2/show/NCT01802385
  123. ClinicalTrials.govClinical Study of AK1820 (Isavuconazonium Sulfate) for the Treatment of Deep Mycosis.Available at: https://clinicaltrials.gov/ct2/show/NCT03471988
  124. ClinicalTrials.govPharmacokinetics and Safety of Intravenous Posaconazole (MK-5592) in Chinese Participants at High Risk for Invasive Fungal Infections (MK-5592-120).Available at: https://clinicaltrials.gov/ct2/show/NCT03336502
  125. ClinicalTrials.govEndemic Mycoses Treatment With SUBAitraconazole vs Itraconazole (MSG15).Available at: https://clinicaltrials.gov/ct2/show/NCT03572049
  126. ClinicalTrials.govObservational Study of Efficacy and Safety of Travogen Cream and Travocort Cream in the Treatment of Mycoses.Available at: https://clinicaltrials.gov/ct2/show/NCT00722189
  127. Young-wookChoi Chil-hwanOh Kyung-hoKang Cell penetrating peptide modified nanoliposome and anti-atopic composition comprising the same.KP 101130550B1,2012
    [Google Scholar]
  128. OrzaA. Method for preparing ph dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery.US 10850246B2,2020
    [Google Scholar]
  129. Gary Van NestST KarenL Dino Dina Biodegradable immunomodulatory formulations and methods for use there of.US 8669237B2,2014
    [Google Scholar]
  130. Anita ShuklaSC Eli silvert antifungal nanoparticles for targeted treatment of fungal infections.US 011273124B2,2022
    [Google Scholar]
  131. StephenW. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof.US 010508188B2,2019
    [Google Scholar]
  132. ChariouP.L. Ortega-RiveraO.A. SteinmetzN.F. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients.ACS Nano20201432678270110.1021/acsnano.0c00173 32125825
    [Google Scholar]
  133. CasterJ.M. PatelA.N. ZhangT. WangA. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201791e141610.1002/wnan.1416 27312983
    [Google Scholar]
  134. ShenJ. BurgessD.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges.Drug Deliv. Transl. Res.20133540941510.1007/s13346‑013‑0129‑z 24069580
    [Google Scholar]
  135. LarssonS. JanssonM. BoholmÅ. Expert stakeholders’ perception of nanotechnology: Risk, benefit, knowledge, and regulation.J. Nanopart. Res.20192135710.1007/s11051‑019‑4498‑1
    [Google Scholar]
  136. BussemerT. OttoI. BodmeierR. Pulsatile drug-delivery systems.Crit. Rev. Ther. Drug Carrier Syst.20011852610.1615/CritRevTherDrugCarrierSyst.v18.i5.10 11763497
    [Google Scholar]
  137. MaroniA. ZemaL. CurtoM.D.D. LoretiG. GazzanigaA. Oral pulsatile delivery: Rationale and chronopharmaceutical formulations.Int. J. Pharm.20103981-21810.1016/j.ijpharm.2010.07.026 20655998
    [Google Scholar]
  138. StaplesM. DanielK. CimaM.J. LangerR. Application of micro- and nano-electromechanical devices to drug delivery.Pharm. Res.200623584786310.1007/s11095‑006‑9906‑4 16715375
    [Google Scholar]
  139. SutradharK.B. SumiC.D. Implantable microchip: The futuristic controlled drug delivery system.Drug Deliv.201623111110.3109/10717544.2014.903579 24758139
    [Google Scholar]
  140. WangW. YeZ. GaoH. OuyangD. Computational pharmaceutics: A new paradigm of drug delivery.J. Control. Release202133811913610.1016/j.jconrel.2021.08.030 34418520
    [Google Scholar]
  141. HanR. XiongH. YeZ. Predicting physical stability of solid dispersions by machine learning techniques.J. Control. Release2019311-312162510.1016/j.jconrel.2019.08.030 31465824
    [Google Scholar]
  142. ThotaN. JiangJ. Computat cional amphiphilic materials for drug delivery.Front. Mater.2015264
    [Google Scholar]
  143. HuynhL. NealeC. PomèsR. AllenC. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery.Nanomedicine201281203610.1016/j.nano.2011.05.006 21669300
    [Google Scholar]
  144. HeY. YeZ. LiuX. Can machine learning predict drug nanocrystals?J. Control. Release202032227428510.1016/j.jconrel.2020.03.043 32234511
    [Google Scholar]
  145. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑2 33585972
    [Google Scholar]
  146. DuarteY. Márquez-MirandaV. MiossecM.J. González-NiloF. Integration of target discovery, drug discovery and drug delivery: A review on computational strategies.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019114e155410.1002/wnan.1554 30932351
    [Google Scholar]
  147. MaasJ. KammW. HauckG. An integrated early formulation strategy: From hit evaluation to preclinical candidate profiling.Eur. J. Pharm. Biopharm.200766111010.1016/j.ejpb.2006.09.011 17123801
    [Google Scholar]
  148. Gonzalez-IbanezA.M. Gonzalez-NiloF. CachauR. The collaboratory for structural nanobiology.Biophys. J.200996349a10.1016/j.bpj.2008.12.151
    [Google Scholar]
  149. OstraatM.L. MillsK.C. GuzanK.A. MurryD. The nanomaterial registry: Facilitating the sharing and analysis of data in the diverse nanomaterial community.Int. J. Nanomedicine201381713 24098075
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210517666230727090314
Loading
/content/journals/nanotec/10.2174/1872210517666230727090314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test