Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity and simplicity have become a suitable and vital tool in the rapid diagnosis of hepatitis B since the patent. Different strategies have been presented, such as graphene oxide and gold nanorods (GO-GNRs), graphene oxide (GO), copper metal–organic framework/ electrochemically reduced graphene oxide (Cu-MOF/ErGO) composite, Label-free graphene oxide/FeO/Prussian Blue (GO/FeO/PB) immunosensor, and graphene oxide–ferrocene-CS/Au (GO-Fc-CS/Au) nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105285022240311062943
2024-03-22
2025-10-10
Loading full text...

Full text loading...

References

  1. MacLachlanJ.H. CowieB.C. Hepatitis B virus epidemiology.Cold Spring Harb. Perspect. Med.201555a02141010.1101/cshperspect.a021410 25934461
    [Google Scholar]
  2. LavanchyD. KaneM. Global epidemiology of hepatitis B virus infection. In: Liaw Y-F, Zoulim F, Eds. Hepatitis B Virus in Human Diseases. LiawY-F. ZoulimF. ChamSpringer International Publishing201618720310.1007/978‑3‑319‑22330‑8_9
    [Google Scholar]
  3. HyunK.B. RayK.W. Epidemiology of hepatitis B virus infection in the united states.Clin. Liver Dis.20181211410.1002/cld.732 30988901
    [Google Scholar]
  4. LokA.S. McMahonB.J. AASLD practice guideline update.Hepatology2009
    [Google Scholar]
  5. ZhengY. LuY. YeQ. Should chronic hepatitis B mothers breastfeed? A meta analysis.BMC Public Health201111150210.1186/1471‑2458‑11‑502 21708016
    [Google Scholar]
  6. ArankalleV.A. GandhiS. LoleK.S. ChadhaM.S. GupteG.M. LokhandeM.U. An outbreak of hepatitis B with high mortality in India: association with precore, basal core promoter mutants and improperly sterilized syringes.J. Viral Hepat.2011184e20e2810.1111/j.1365‑2893.2010.01391.x 21108697
    [Google Scholar]
  7. ThompsonN.D. PerzJ.F. MoormanA.C. HolmbergS.D. Nonhospital health care-associated hepatitis B and C virus transmission: United States, 1998-2008.Ann. Intern. Med.20091501333910.7326/0003‑4819‑150‑1‑200901060‑00007 19124818
    [Google Scholar]
  8. McGlynnK.A. PetrickJ.L. El-SeragH.B. Epidemiology of hepatocellular carcinoma.Hepatology202173Suppl. 141310.1002/hep.31288 32319693
    [Google Scholar]
  9. LupbergerJ. HildtE. Hepatitis B virus-induced oncogenesis.World J. Gastroenterol.2007131748110.3748/wjg.v13.i1.74 17206756
    [Google Scholar]
  10. RaimondoG. CacciamoG. SaittaC. Hepatitis B virus and hepatitis C virus co-infection: Additive players in chronic liver disease?Ann. Hepatol.20054210010610.1016/S1665‑2681(19)32072‑1 16010242
    [Google Scholar]
  11. KocÖM KremerC HensN Early detection of chronic hepatitis B and risk factor assessment in Turkish migrants, Middle Limburg, Belgium.PLoS One2020157e023474010.1371/journal.pone.0234740 32716949
    [Google Scholar]
  12. KhosraviA.H. Recent progress in nanobiosensors for precise detection of blood glucose level.Biochem. Res. Int.20222022296470510.1155/2022/2964705
    [Google Scholar]
  13. WalcariusA. MinteerS.D. WangJ. LinY. MerkoçiA. Nanomaterials for bio-functionalized electrodes: Recent trends.J. Mater. Chem. B Mater. Biol. Med.20131384878490810.1039/c3tb20881h 32261078
    [Google Scholar]
  14. HashemiS.A. MousaviS.M. BahraniS. Bio-enhanced polyrhodanine/graphene Oxide/Fe0O4 nanocomposite with kombucha solvent supernatant as ultra-sensitive biosensor for detection of doxorubicin hydrochloride in biological fluids.Mater. Chem. Phys.202227912574310.1016/j.matchemphys.2022.125743
    [Google Scholar]
  15. MousaviS.M. Precise blood glucose sensing by nitrogen-doped graphene quantum dots for tight control of diabetes.J. Sens.2021202111410.1155/2021/5580203
    [Google Scholar]
  16. MousaviS.M. HashemiS.A. KalashgraniM.Y. Bioactive graphene quantum dots based polymer composite for biomedical applications.Polymers202214361710.3390/polym14030617 35160606
    [Google Scholar]
  17. MousaviS.M. Recent progress in electrochemical detection of human papillomavirus (HPV) via graphene-based nanosensors.J. Sens.20212021115
    [Google Scholar]
  18. MousaviS.M. HashemiS.A. Yari KalashgraniM. Recent advances in inflammatory diagnosis with graphene quantum dots enhanced SERS detection.Biosensors202212746110.3390/bios12070461 35884264
    [Google Scholar]
  19. SageA.T. BesantJ.D. LamB. SargentE.H. KelleyS.O. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.Acc. Chem. Res.20144782417242510.1021/ar500130m 24961296
    [Google Scholar]
  20. HashemiS.A. BahraniS. MousaviS.M. Ultrasensitive biomolecule‐less nanosensor based on β‐cyclodextrin/quinoline decorated graphene oxide toward prompt and differentiable detection of corona and influenza viruses.Adv. Mater. Technol.2021611210034110.1002/admt.202100341
    [Google Scholar]
  21. FengQ. LiY. WangN. A biomimetic nanogenerator of reactive nitrogen species based on battlefield transfer strategy for enhanced immunotherapy.Small20201625200213810.1002/smll.202002138 32468692
    [Google Scholar]
  22. HashemiS.A. BahraniS. MousaviS.M. Differentiable detection of ethanol/methanol in biological fluids using prompt graphene-based electrochemical nanosensor coupled with catalytic complex of nickel oxide/8-hydroxyquinoline.Anal. Chim. Acta2022119433940710.1016/j.aca.2021.339407 35063153
    [Google Scholar]
  23. GholamiA. FarjamiF. GhasemiY. The development of an amperometric enzyme biosensor based on a polyaniline-multiwalled carbon nanocomposite for the detection of a chemotherapeutic agent in serum samples from patients.J. Sens.202120211910.1155/2021/5515728
    [Google Scholar]
  24. MousaviS.M. HashemiS.A. YariK.M. The pivotal role of quantum dots-based biomarkers integrated with ultra-sensitive probes for multiplex detection of human viral infections.Pharmaceuticals202215788010.3390/ph15070880 35890178
    [Google Scholar]
  25. MousaviS.M. HashemiS.A. KalashgraniM.Y. Biomedical applications of an ultra-sensitive surface plasmon resonance biosensor based on smart mxene quantum dots (SMQDs).Biosensors202212974310.3390/bios12090743 36140128
    [Google Scholar]
  26. LinJ. CaiX. LiuZ. Anti‐liquid‐interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie‐Baxter wetting state.Adv. Funct. Mater.20203023200039810.1002/adfm.202000398
    [Google Scholar]
  27. StuyverL. De GendtS. Van GeytC. A new genotype of hepatitis B virus: Complete genome and phylogenetic relatedness.J. Gen. Virol.200081Pt 16774 10640543
    [Google Scholar]
  28. KrajdenM. McNabbG. PetricM. The laboratory diagnosis of hepatitis B virus.Can. J. Infect. Dis. Med. Microbiol.2005162657210.1155/2005/450574 18159530
    [Google Scholar]
  29. MahoneyF.J. Update on diagnosis, management, and prevention of hepatitis B virus infection.Clin. Microbiol. Rev.199912235136610.1128/CMR.12.2.351 10194463
    [Google Scholar]
  30. HeiatM. RanjbarR. AlavianS.M. Classical and modern approaches used for viral hepatitis diagnosis.Hepat. Mon.2014144e1763210.5812/hepatmon.17632 24829586
    [Google Scholar]
  31. CoboF. Application of molecular diagnostic techniques for viral testing.Open Virol. J.20125110411410.2174/1874357901206010104 23248732
    [Google Scholar]
  32. AlabdallatN.G. Bin DukhyilA.A.A. Significance of HBV NAT among HBs antigen–negative blood donors in Saudi Arabia.Lab. Med.201849434234610.1093/labmed/lmy023 29767761
    [Google Scholar]
  33. LiZ. BaiY. YouM. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care.Biosens. Bioelectron.202117711295210.1016/j.bios.2020.112952 33453463
    [Google Scholar]
  34. SuL. JiaW. HouC. LeiY. Microbial biosensors: A review.Biosens. Bioelectron.20112651788179910.1016/j.bios.2010.09.005 20951023
    [Google Scholar]
  35. MonosikR. StredanskýM. SturdikE. Biosensors-classification, characterization and new trends.Acta Chim. Slov.201251109
    [Google Scholar]
  36. YoshikawaA. GotandaY. ItabashiM. MinegishiK. KanemitsuK. NishiokaK. Hepatitis B NAT virus‐positive blood donors in the early and late stages of HBV infection: Analyses of the window period and kinetics of HBV DNA.Vox Sang.2005882778610.1111/j.1423‑0410.2005.00602.x 15720604
    [Google Scholar]
  37. PänkeO. KirbsA. LisdatF. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay.Biosens. Bioelectron.200722112656266210.1016/j.bios.2006.10.033 17141493
    [Google Scholar]
  38. LiF. FengY. DongP. TangB. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor.Biosens. Bioelectron.20102592084208810.1016/j.bios.2010.02.004 20207131
    [Google Scholar]
  39. PalečekE. Past, present and future of nucleic acids electrochemistry.Talanta200256580981910.1016/S0039‑9140(01)00649‑X 18968559
    [Google Scholar]
  40. XueD. ElliottC.M. GongP. GraingerD.W. BignozziC.A. CaramoriS. Indirect electrochemical sensing of DNA hybridization based on the catalytic oxidation of cobalt (II).J. Am. Chem. Soc.200712971854185510.1021/ja067339r 17260990
    [Google Scholar]
  41. PeiF. WangP. MaE. A sandwich-type electrochemical immunosensor based on RhPt NDs/NH2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen.Bioelectrochemistry2019126929810.1016/j.bioelechem.2018.11.008 30530260
    [Google Scholar]
  42. TanZ. CaoL. HeX. A label-free immunosensor for the sensitive detection of hepatitis B e antigen based on PdCu tripod functionalized porous graphene nanoenzymes.Bioelectrochemistry202013310746110.1016/j.bioelechem.2020.107461 32018170
    [Google Scholar]
  43. TeengamP. SiangprohW. TontisirinS. NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection.Sens. Actuators B Chem.202132612882510.1016/j.snb.2020.128825
    [Google Scholar]
  44. BraungardtC.B. Evaluation of analytical instrumentation. Part XXVI: Instrumentation for voltammetry.Anal. Methods2015741249126010.1039/C4AY90088J
    [Google Scholar]
  45. NouraniS. GhourchianH. BoutorabiS.M. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen.Anal. Biochem.201344111710.1016/j.ab.2013.06.011 23831477
    [Google Scholar]
  46. JanekR.P. FawcettW.R. UlmanA. Impedance spectroscopy of self-assembled monolayers on Au (111): evidence for complex double-layer structure in aqueous NaClO4 at the potential of zero charge.J. Phys. Chem. B1997101428550855810.1021/jp971698e
    [Google Scholar]
  47. YaoC.Y. FuW-L. Biosensors for hepatitis B virus detection.World J. Gastroenterol.20142035124851249210.3748/wjg.v20.i35.12485 25253948
    [Google Scholar]
  48. PeruskiA.H. PeruskiL.F.Jr Immunological methods for detection and identification of infectious disease and biological warfare agents.Clin. Diagn. Lab. Immunol.2003104506513 12853377
    [Google Scholar]
  49. LingM.M. RicksC. LeaP. Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies.Expert Rev. Mol. Diagn.200771879810.1586/14737159.7.1.87 17187487
    [Google Scholar]
  50. MousaviS.M. HashemiS.A. KalashgraniM.Y. Recent advances in plasma-engineered polymers for biomarker-based viral detection and highly multiplexed analysis.Biosensors202212528610.3390/bios12050286 35624587
    [Google Scholar]
  51. ChhipaH. Applications of nanotechnology in agriculture. In: Methods in microbiology.Elsevier20191154210.1016/bs.mim.2019.01.002
    [Google Scholar]
  52. ZeebareeA.Y.S. ZebariO.I.H. ZeebareeS.Y.S. ThanoonR.D. YaseenY.N. Current contributions of novel nanoparticles-based colorimetric sensors for detection of SCN ions in different aqueous models. A review.Arab. J. Chem.2023161210529710.1016/j.arabjc.2023.105297
    [Google Scholar]
  53. Yockell-LelièvreH. BukarN. ToulouseJ.L. PelletierJ.N. MassonJ.F. Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate.Analyst2016141269770310.1039/C5AN00996K 26229988
    [Google Scholar]
  54. PriyadarsiniS. MohantyS. MukherjeeS. BasuS. MishraM. Graphene and graphene oxide as nanomaterials for medicine and biology application.J. Nanostructure Chem.20188212313710.1007/s40097‑018‑0265‑6
    [Google Scholar]
  55. ZhaoF. CaoL. LiangY. WuZ. ChenZ. ZengR. Label-free amperometric immunosensor based on graphene oxide and ferrocene-chitosan nanocomposites for detection of hepatis B virus antigen.J. Biomed. Nanotechnol.201713101300130810.1166/jbn.2017.2415
    [Google Scholar]
  56. LiuM. ZhengC. CuiM. Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen.Mikrochim. Acta20181851045810.1007/s00604‑018‑2989‑x 30218157
    [Google Scholar]
  57. JangH. RyooS.R. KimY.K. Discovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide.Angew. Chem. Int. Ed.20135282340234410.1002/anie.201209222 23355441
    [Google Scholar]
  58. GholamiA. Functionalization of graphene oxide nanosheets can reduce their cytotoxicity to dental pulp stem cells.J. Nanomater.2020202011410.1155/2020/6942707
    [Google Scholar]
  59. EmadiF. EmadiA. GholamiA. A comprehensive insight towards pharmaceutical aspects of graphene nanosheets.Curr. Pharm. Biotechnol.202021111016102710.2174/1389201021666200318131422 32188383
    [Google Scholar]
  60. KalluriA. Graphene quantum dots: Synthesis and applications. In: Methods in enzymology.Elsevier2018335354
    [Google Scholar]
  61. IannazzoD. PistoneA. CelestiC. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots.Nanomaterials20199228210.3390/nano9020282 30781623
    [Google Scholar]
  62. HuangK.J. LiJ. LiuY-M. CaoX. YuS. YuM. Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate.Mikrochim. Acta20121773-441942610.1007/s00604‑012‑0805‑6
    [Google Scholar]
  63. Peña-BahamondeJ. NguyenH.N. FanourakisS.K. RodriguesD.F. Recent advances in graphene-based biosensor technology with applications in life sciences.J. Nanobiotechnology20181617510.1186/s12951‑018‑0400‑z 30243292
    [Google Scholar]
  64. WuX. XingY. ZengK. HuberK. ZhaoJ.X. Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer.Langmuir201834260361110.1021/acs.langmuir.7b03465 29275632
    [Google Scholar]
  65. SuvarnaphaetP. PechprasarnS. Graphene-based materials for biosensors: A review.Sensors20171710216110.3390/s17102161 28934118
    [Google Scholar]
  66. BenvidiA. RajabzadehN. Mazloum-ArdakaniM. HeidariM.M. MulchandaniA. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.Biosens. Bioelectron.20145814515210.1016/j.bios.2014.01.053 24632459
    [Google Scholar]
  67. WangF. HorikawaS. HuJ. Detection of Salmonella Typhimurium on spinach using phage-based magnetoelastic biosensors.Sensors201717238610.3390/s17020386 28212322
    [Google Scholar]
  68. ChaT.G. BakerB.A. SaufferM.D. Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes.ACS Nano2011554236424410.1021/nn201323h 21520951
    [Google Scholar]
  69. FerrierD.C. HoneychurchK.C. Carbon nanotube (CNT)-based biosensors.Biosensors2021111248610.3390/bios11120486 34940243
    [Google Scholar]
  70. ZhangL. SunY. LiangY.Y. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis.Biosens. Bioelectron.20168593093410.1016/j.bios.2016.06.018 27315518
    [Google Scholar]
  71. DeviP. SainiS. KimK.H. The advanced role of carbon quantum dots in nanomedical applications.Biosens. Bioelectron.201914111115810.1016/j.bios.2019.02.059 31323605
    [Google Scholar]
  72. HuT. XuJ. YeY. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor.Biosens. Bioelectron.201913611211710.1016/j.bios.2019.04.036 31054518
    [Google Scholar]
  73. ŞahinS. ÜnlüC. TrabzonL. Affinity biosensors developed with quantum dots in microfluidic systems.Emergent Materials20214118720910.1007/s42247‑021‑00195‑5 33718778
    [Google Scholar]
  74. XuS. Cost-Effectiveness of tenofovir alafenamide (TAF) compared to entecavir (ETV) and tenofovir disoproxil fumarate (TDF) for treatment of hepatitis B e antigen-positive chronic hepatitis B in China.(Master’s Thesis)2020
    [Google Scholar]
  75. (a AspinallE.J. HawkinsG. FraserA. HutchinsonS.J. GoldbergD. Hepatitis B prevention, diagnosis, treatment and care: A review.Occup. Med.201161853154010.1093/occmed/kqr136 22114089
    [Google Scholar]
  76. (b ZhangY ZhangL ChenM ShenQ PIY WangY. Alkylated modified hepatitis B virus immunoadsorbent and preparation method thereof.CN111659355A,2020
    [Google Scholar]
  77. XiangQ. HuangJ. HuangH. MaoW. YeZ. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots.RSC Advances2018841820182510.1039/C7RA11945C 35542626
    [Google Scholar]
  78. ZhaoF. BaiY. ZengR. An electrochemical immunosensor with graphene‐oxide‐ferrocene‐based nanocomposites for hepatitis B surface antigen detection.Electroanalysis201830112774278010.1002/elan.201800476
    [Google Scholar]
  79. OhJ. YooS. ChangY.W. LimK. YooK-H. Carbon nanotube-based biosensor for detection hepatitis B.Curr. Appl. Phys.200994e229e23110.1016/j.cap.2009.06.045
    [Google Scholar]
  80. GholamiA. MousaviS.M. MasoumzadehR. Advanced theranostic strategies for viral hepatitis using carbon nanostructures.Micromachines2023146118510.3390/mi14061185 37374770
    [Google Scholar]
  81. CabralD.G.A. LimaE.C.S. MouraP. DutraR.F. A label-free electrochemical immunosensor for hepatitis B based on hyaluronic acid–carbon nanotube hybrid film.Talanta201614820921510.1016/j.talanta.2015.10.083 26653442
    [Google Scholar]
  82. NovoselovKS Electric field effect in atomically thin carbon films.science20043065696666910.1126/science.1102896
    [Google Scholar]
  83. LinX. LianX. LuoB. HuangX-C. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF.Inorg. Chem. Commun.202011910809510.1016/j.inoche.2020.108095
    [Google Scholar]
  84. WeiS. XiaoH. CaoL. ChenZ. A label-free immunosensor based on graphene oxide/Fe3O4/prussian blue nanocomposites for the electrochemical determination of HBsAg.Biosensors20201032410.3390/bios10030024 32183297
    [Google Scholar]
  85. NeethirajanS. AhmedS.R. ChandR. BuozisJ. NagyÉ. Recent advances in biosensor development for foodborne virus detection.Nanotheranostics20171327229510.7150/ntno.20301 29071193
    [Google Scholar]
  86. DiculescuV.C. Chiorcea-PaquimA.M. Oliveira-BrettA.M. Applications of a DNA-electrochemical biosensor.Trends Analyt. Chem.201679233610.1016/j.trac.2016.01.019
    [Google Scholar]
  87. RavanH. KashanianS. SanadgolN. Badoei-DalfardA. KaramiZ. Strategies for optimizing DNA hybridization on surfaces.Anal. Biochem.2014444414610.1016/j.ab.2013.09.032 24121011
    [Google Scholar]
  88. LeeL.G. ConnellC.R. BlochW. Allelic discrimination by nick-translation PCR with fluorgenic probes.Nucleic Acids Res.199321163761376610.1093/nar/21.16.3761 8367293
    [Google Scholar]
  89. DuF. TangZ. Colorimetric detection of PCR product with DNAzymes induced by 5′-nuclease activity of DNA polymerases.ChemBioChem2011121434610.1002/cbic.201000650 21161971
    [Google Scholar]
  90. XiaoY. PavlovV. NiazovT. DishonA. KotlerM. WillnerI. Catalytic beacons for the detection of DNA and telomerase activity.J. Am. Chem. Soc.2004126247430743110.1021/ja031875r 15198576
    [Google Scholar]
  91. DengM. ZhangD. ZhouY. ZhouX. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme.J. Am. Chem. Soc.200813039130951310210.1021/ja803507d 18763776
    [Google Scholar]
  92. KarlssonR. MichaelssonA. MattssonL. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system.J. Immunol. Methods19911451-222924010.1016/0022‑1759(91)90331‑9 1765656
    [Google Scholar]
  93. MullettW.M. LaiE.P.C. YeungJ.M. Surface plasmon resonance-based immunoassays.Methods2000221779110.1006/meth.2000.1039 11020321
    [Google Scholar]
  94. WinkT. van ZuilenS.J. BultA. van BennekomW.P. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry.Anal. Chem.199870582783210.1021/ac971049z 9511463
    [Google Scholar]
  95. MushahwarI.K. DienstagJ.L. PoleskyH.F. McgrathL.C. DeckerR.H. OverbyL.R. Interpretation of various serological profiles of hepatitis B virus infection.Am. J. Clin. Pathol.198176677377710.1093/ajcp/76.6.773 7315794
    [Google Scholar]
  96. ÇulhaM. Raman spectroscopy for cancer diagnosis: How far have we come?Bioanalysis20157212813282410.4155/bio.15.190 26563592
    [Google Scholar]
  97. LuY. LinY. ZhengZ. Label free hepatitis B detection based on serum derivative surface enhanced Raman spectroscopy combined with multivariate analysis.Biomed. Opt. Express20189104755476610.1364/BOE.9.004755 30319900
    [Google Scholar]
  98. GanT. HuS. Electrochemical sensors based on graphene materials.Mikrochim. Acta20111751119
    [Google Scholar]
  99. WujcikE.K. WeiH. ZhangX. Antibody nanosensors: A detailed review.RSC Advances2014482437254374510.1039/C4RA07119K
    [Google Scholar]
  100. FischerM.J. Amine coupling through EDC/NHS: A practical approach. In: Surface plasmon resonance.Springer2010557310.1007/978‑1‑60761‑670‑2_3
    [Google Scholar]
  101. ChoI.H. LeeJ. KimJ. Current technologies of electrochemical immunosensors: Perspective on signal amplification.Sensors201818220710.3390/s18010207 29329274
    [Google Scholar]
  102. FarmaniH. FarmaniA. NguyenT.A. Graphene-based field effect transistor (GFET) as nanobiosensors. In: Silicon-Based Hybrid Nanoparticles.Elsevier2022269275
    [Google Scholar]
  103. KaistiM. Detection principles of biological and chemical FET sensors.Biosens. Bioelectron.20179843744810.1016/j.bios.2017.07.010 28711826
    [Google Scholar]
  104. ChenK.I. LiB.R. ChenY.T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.Nano Today20116213115410.1016/j.nantod.2011.02.001
    [Google Scholar]
  105. SuP.C. ChenB.H. LeeY.C. YangY.S. Silicon nanowire field-effect transistor as biosensing platforms for post-translational modification.Biosensors2020101221310.3390/bios10120213 33371301
    [Google Scholar]
  106. ZafarS. D’EmicC. JagtianiA. Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics.ACS Nano20181276577658710.1021/acsnano.8b01339 29932634
    [Google Scholar]
  107. SyuY.C. HsuW.E. LinC.T. Field-effect transistor biosensing: Devices and clinical applications.ECS J. Solid State Sci. Technol.201877Q3196Q320710.1149/2.0291807jss
    [Google Scholar]
  108. LinH.C. LeeM-H. SuC-J. HuangT-Y. LeeC.C. YangY-S. A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel.IEEE Electron Device Lett.200526964364510.1109/LED.2005.853669
    [Google Scholar]
  109. BasuJ. BaralA. SamantaN. MukherjeeN. RoychaudhuriC. Low noise field effect biosensor with electrochemically reduced graphene oxide.J. Electrochem. Soc.20181658B3201B320710.1149/2.0261808jes
    [Google Scholar]
  110. HsiaoC.Y. LinC.H. HungC.H. Novel poly-silicon nanowire field effect transistor for biosensing application.Biosens. Bioelectron.20092451223122910.1016/j.bios.2008.07.032 18760914
    [Google Scholar]
  111. RayR. BasuJ. GaziW.A. SamantaN. BhattacharyyaK. Roy-ChaudhuriC. Label-free biomolecule detection in physiological solutions with enhanced sensitivity using graphene nanogrids FET biosensor.IEEE Trans. Nanobiosci.201817443344210.1109/TNB.2018.2863734 30106685
    [Google Scholar]
  112. (a SadighbayanD. HasanzadehM. Ghafar-ZadehE. Biosensing based on field-effect transistors (FET): Recent progress and challenges.Trends Analyt. Chem.202013311606710.1016/j.trac.2020.116067 33052154
    [Google Scholar]
  113. (b EricM RoglioC TsuyoshiY connected field effect transistor.US1182751-2B2,2023
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105285022240311062943
Loading
/content/journals/nanotec/10.2174/0118722105285022240311062943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test