Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

The combination of carbon-based nanoelectromechanical systems (C-NEMS) and carbon-based microelectromechanical systems (C-MEMS) has become a promising new direction in biotechnology with a wide range of applications that could significantly improve medical research and healthcare. These carbon-based materials, which are highly suited for a variety of biotech applications, include graphene and carbon nanotubes (CNTs). They have special qualities including large surface area, superior electrical conductivity, and biocompatibility. The domain of medication delivery systems is where C-MEMS and C-NEMS are most prominently used. These materials address important issues with therapeutic effectiveness and patient comfort by providing a platform for targeted and regulated medication administration. Biosensors that use graphene and carbon nanotubes (CNTs) have become essential diagnostic instruments because they allow for the sensitive and real-time detection of analytes for biomarker monitoring and disease diagnosis. The incorporation of carbon-based materials into lab-on-a-chip (LOC) devices has transformed biotech tests by providing portable and quick analysis. Neural interfaces, drug screening, wearable health monitoring, diagnostics, imaging, tissue engineering and regenerative medicine, diagnostic imaging, diagnostic imaging, and imaging have all benefited greatly from the use of carbon-based materials. These wide-ranging applications of C-MEMS and C-NEMS highlight their potential to propel developments in science, medicine, healthcare and patents.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105293232240826135124
2024-09-26
2025-10-14
Loading full text...

Full text loading...

References

  1. ForouzanfarS. PalaN. MadouM. WangC. Perspectives on C-MEMS and C-NEMS biotech applications.Biosens. Bioelectron.202118011311910.1016/j.bios.2021.113119 33711652
    [Google Scholar]
  2. WangC. MadouM. From MEMS to NEMS with carbon.Biosens. Bioelectron.200520102181218710.1016/j.bios.2004.09.034 15741096
    [Google Scholar]
  3. ZhuJ. LiuX. ShiQ. Development trends and perspectives of future sensors and MEMS/NEMS.Micromachines (Basel)2019111710.3390/mi11010007 31861476
    [Google Scholar]
  4. WangC. ZaoukR. ParkB.Y. MadouM.J. Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon.Int J Manufac Tech Manag200813236037510.1504/IJMTM.2008.016782
    [Google Scholar]
  5. KumarV. RoutS. TakM.K. DeepakK.R. TechP. Application of biotechnology in forestry: Current status and future perspective.Nat Environ Pollution Tech2015143645663
    [Google Scholar]
  6. PhamP.V. Medical biotechnology: Techniques and applications. Omics technologies and bio-engineering. Debmalya Barh, Vasco Ariston De Car Azevedo.Academic Press201844946910.1016/B978‑0‑12‑804659‑3.00019‑1
    [Google Scholar]
  7. MadanM.L. Animal biotechnology: Applications and economic implications in developing countries.Rev. Sci. Tech.200524112713910.20506/rst.24.1.1555 16110883
    [Google Scholar]
  8. SavadoriL. SavioS. NicotraE. RumiatiR. FinucaneM.L. SlovicP. Expert and public perception of risk from biotechnology. The Feeling of Risk.Routledge2013245260
    [Google Scholar]
  9. CantarelliC. Biotechnology applications in beverage production.Springer2012
    [Google Scholar]
  10. CesanoF. ScaranoD. Dispersion of carbon-based materials (CNTs, Graphene) in polymer matrices. Carbon for sensing devices.ChamSpringer International Publishing20144375
    [Google Scholar]
  11. MonthiouxM. SerpP. FlahautE. Introduction to carbon nanotubes.Springer201010.1007/978‑3‑642‑02525‑9_3
    [Google Scholar]
  12. SiqueiraJ.R.Jr OliveiraO.N.Jr Carbon-based nanomaterials.In: Nanostructures.William Andrew Publishing201723324910.1016/B978‑0‑323‑49782‑4.00009‑7
    [Google Scholar]
  13. NicholasR.J. MainwoodA. EavesL. Introduction. Carbon-based electronics: Fundamentals and device applications.Math, Phy Eng Sci20083661863189193
    [Google Scholar]
  14. ChakrabortyP. MaT. ZahiriA.H. CaoL. WangY. Carbon-based materials for thermoelectrics.Adv. Condens. Matter Phys.2018201810129
    [Google Scholar]
  15. ThamaraiselvanC. WangJ. JamesD.K. Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology.Mater. Today20203411513110.1016/j.mattod.2019.08.014
    [Google Scholar]
  16. ZhuZ. Garcia-GancedoL. FlewittA.J. XieH. MoussyF. MilneW.I. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.Sensors (Basel)20121255996602210.3390/s120505996 22778628
    [Google Scholar]
  17. RaoN. SinghR. BashambuL. Carbon-based nanomaterials: Synthesis and prospective applications.Mater. Today Proc.20214460861410.1016/j.matpr.2020.10.593
    [Google Scholar]
  18. SanjinésR. AbadM.D. VâjuC. SmajdaR. MionićM. MagrezA. Electrical properties and applications of carbon based nanocomposite materials: An overview.Surf. Coat. Tech.2011206472773310.1016/j.surfcoat.2011.01.025
    [Google Scholar]
  19. KumarR. SinghR.K. SinghD.P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs.Renew. Sustain. Energy Rev.201658976100610.1016/j.rser.2015.12.120
    [Google Scholar]
  20. LiZ. WangL. LiY. FengY. FengW. Carbon-based functional nanomaterials: Preparation, properties and applications.Compos. Sci. Technol.2019179104010.1016/j.compscitech.2019.04.028
    [Google Scholar]
  21. KuS.H. LeeM. ParkC.B. Carbon-based nanomaterials for tissue engineering.Adv. Healthc. Mater.20132224426010.1002/adhm.201200307 23184559
    [Google Scholar]
  22. RajakumarG. ZhangX.H. GomathiT. Current use of carbon-based materials for biomedical applications—A prospective and review.Processes (Basel)20208335510.3390/pr8030355
    [Google Scholar]
  23. ZhangY. PetiboneD. XuY. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine.Drug Metab. Rev.201446223224610.3109/03602532.2014.883406 24506522
    [Google Scholar]
  24. TiwariA. ShuklaS.K. Advanced carbon materials and technology.John Wiley & Sons201410.1002/9781118895399
    [Google Scholar]
  25. AvourisP. ChenZ. PerebeinosV. Carbon-based electronics.Nat. Nanotechnol.200721060561510.1038/nnano.2007.300 18654384
    [Google Scholar]
  26. ChenZ. LvZ. SunY. ChiZ. QingG. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications.J. Mater. Chem. B Mater. Biol. Med.20208152951297310.1039/C9TB02271F 32159205
    [Google Scholar]
  27. Morin-CriniN. LichtfouseE. TorriG. CriniG. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry.Environ. Chem. Lett.20191741667169210.1007/s10311‑019‑00904‑x
    [Google Scholar]
  28. AguiarA. MilessiT.S. MulinariD.R. LopesM.S. da CostaS.M. CandidoR.G. Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications.Biomass Bioenergy202114410589610.1016/j.biombioe.2020.105896
    [Google Scholar]
  29. Degli EspostiM. MorselliD. FavaF. The role of biotechnology in the transition from plastics to bioplastics: An opportunity to reconnect global growth with sustainability.FEBS Open Bio202111496798310.1002/2211‑5463.13119 33595898
    [Google Scholar]
  30. YaashikaaP.R. KumarP.S. VarjaniS. SaravananA. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy.Biotechnol. Rep. (Amst.)20202857010.1016/j.btre.2020.e00570 33304842
    [Google Scholar]
  31. StoneKT DenhamGJ HarperR KaiserRA Method and apparatus for coupling soft tissue to a bone.US8361113B22013
  32. RikhoffRS HarrisLD NelsonGN Elastomeric compounds containing recycled materials and silica.US8329810B22012
  33. HuxhamHN O'reganAJ MossTA VanWHA Systems, methods and devices for performing passcode authentication.US9648013B22017
  34. GilesK. Ion guiding device.US8581182B22013
  35. RuprechtRM HumbertM HIV-1 V3 mimotopes capable of inducing cross-clade neutralizing antibodies.US9334310B22016
  36. HillisWD HydeRA JungEKY LangerR MyhrvoldNP WoodJr LL. Systems for genome selection.US7932041B22011
  37. NakanoM TakashimaK AkutsuS AsaoY Permanent magnet type rotating electrical machine and electric power steering device.US8648513B22014
  38. PagailaRA LinY KooJM Semiconductor device and method of forming thermally conductive layer between semiconductor die and build-up interconnect structure.US8999760B22015
    [Google Scholar]
  39. ChoY-J WadaS ChoiJ-S β-ketoimine ligand, method of preparing the same, metal complex comprising the same and method of forming thin film using the same.US9359383B22016
  40. WuC-W LuSW LinJ-C JengS-P YuC-H Assembly method for three dimensional integrated circuit.US8518753B22013
  41. ZhangJ. WangF. ShenoyV.B. TangM. LouJ. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD).Mater. Today20204013213910.1016/j.mattod.2020.06.012
    [Google Scholar]
  42. Syari’atiA. KumarS. ZahidA. Ali El YuminA. YeJ. RudolfP. Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD).Chem. Commun. (Camb.)20195570103841038710.1039/C9CC01577A 31396602
    [Google Scholar]
  43. Hoyos-PalacioL.M. Cuesta CastroD.P. Ortiz-TrujilloI.C. Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD).J. Mater. Res. Technol.2019865893589810.1016/j.jmrt.2019.09.062
    [Google Scholar]
  44. HowellS.T. GrushinaA. HolznerF. BruggerJ. Thermal scanning probe lithography—a review.Microsyst. Nanoeng.2020612110.1038/s41378‑019‑0124‑8 34567636
    [Google Scholar]
  45. HarinarayanaV. ShinY.C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review.Opt. Laser Technol.202114210718010.1016/j.optlastec.2021.107180
    [Google Scholar]
  46. KurianM. Recent progress in the chemical reduction of graphene oxide by green reductants–A Mini review.Carbon Trends2021510012010.1016/j.cartre.2021.100120
    [Google Scholar]
  47. AgarwalV. ZetterlundP.B. Strategies for reduction of graphene oxide – A comprehensive review.Chem. Eng. J.202140512701810.1016/j.cej.2020.127018
    [Google Scholar]
  48. HanM. ZhangX. GaoH. In situ semi-sacrificial template-assisted growth of ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution.Chem. Eng. J.202142613134810.1016/j.cej.2021.131348
    [Google Scholar]
  49. SwainN. SaravanakumarB. KunduM. Schmidt-MendeL. RamadossA. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.2021945252862532410.1039/D1TA06122D
    [Google Scholar]
  50. BiswasS. DasA.K. MannaS.S. PathakB. MandalS. Template-assisted alloying of atom-precise silver nanoclusters: A new approach to generate cluster functionality.Chem. Sci. (Camb.)20221338113941140410.1039/D2SC04390D 36320589
    [Google Scholar]
  51. ChenG. WanH. MaW. Layered metal hydroxides and their derivatives: controllable synthesis, chemical exfoliation, and electrocatalytic applications.Adv. Energy Mater.20201011190253510.1002/aenm.201902535
    [Google Scholar]
  52. ZhouJ. PalisaitisJ. HalimJ. Boridene: Two-dimensional] Mo4/3 B2-x with ordered metal vacancies obtained by chemical exfoliation.Science2021373655680180510.1126/science.abf6239 34385398
    [Google Scholar]
  53. HadzhievaZ. BoccacciniA.R. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications - A review.Curr. Opin. Biomed. Eng.20222110036710.1016/j.cobme.2021.100367
    [Google Scholar]
  54. SikkemaR. BakerK. ZhitomirskyI. Electrophoretic deposition of polymers and proteins for biomedical applications.Adv. Colloid Interface Sci.202028410227210.1016/j.cis.2020.102272 32987293
    [Google Scholar]
  55. ArigaK. LvovY. DecherG. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices.Phys. Chem. Chem. Phys.20222474097411510.1039/D1CP04669A 34942636
    [Google Scholar]
  56. Díez-PascualA.M. Chemical functionalization of carbon nanotubes with polymers: A brief overview.Macromol202112648310.3390/macromol1020006
    [Google Scholar]
  57. TeghilR. CurcioM. De BonisA. Substituted hydroxyapatite, glass, and glass-ceramic thin films deposited by nanosecond pulsed laser deposition (PLD) for biomedical applications: A systematic review.Coatings202111781110.3390/coatings11070811
    [Google Scholar]
  58. LiuG. PetroskoS.H. ZhengZ. MirkinC.A. Evolution of dip-pen nanolithography (DPN): From molecular patterning to materials discovery.Chem. Rev.2020120136009604710.1021/acs.chemrev.9b00725 32319753
    [Google Scholar]
  59. SmithA. LiQ. VyasA. Carbon-based electrode materials for microsupercapacitors in self-powering sensor networks: Present and future development.Sensors (Basel)20191919423110.3390/s19194231 31569477
    [Google Scholar]
  60. ErdemÖ. DerinE. Zeibi ShirejiniS. Carbon-based nanomaterials and sensing tools for wearable health monitoring devices.Adv. Mater. Technol.202273210057210.1002/admt.202100572
    [Google Scholar]
  61. PoklonskiN.A. VyrkoS.A. SiahloA.I. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design.Mater. Res. Express2019644200210.1088/2053‑1591/aafb1c
    [Google Scholar]
  62. LuX. MuniefW.M. DamborskýP. Universal protocol for the wafer-scale manufacturing of 2D carbon-based transducer layers for versatile biosensor applications.MethodsX20231110240210.1016/j.mex.2023.102402 37846355
    [Google Scholar]
  63. TomićM. ŠetkaM. VojkůvkaL. VallejosS. VOCs sensing by metal oxides, conductive polymers, and carbon-based materials.Nanomaterials (Basel)202111255210.3390/nano11020552 33671783
    [Google Scholar]
  64. GuoX. ChengS. CaiW. ZhangY. ZhangX. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties.Mater. Des.202120910993610.1016/j.matdes.2021.109936
    [Google Scholar]
  65. KhanJ. MominS.A. MariattiM. A review on advanced carbon-based thermal interface materials for electronic devices.Carbon20201686511210.1016/j.carbon.2020.06.012
    [Google Scholar]
  66. SheoranK. ThakurV.K. SiwalS.S. Synthesis and overview of carbon-based materials for high performance energy storage application: A review.Mater. Today Proc.20225691710.1016/j.matpr.2021.11.369
    [Google Scholar]
  67. DahlanN.A. ThihaA. IbrahimF. Role of nanomaterials in the fabrication of bionems/mems for biomedical applications and towards pioneering food waste utilisation.Nanomaterials (Basel)20221222402510.3390/nano12224025 36432311
    [Google Scholar]
  68. KosriE. IbrahimF. ThihaA. MadouM. Micro and nano interdigitated electrode array (idea)-based mems/nems as electrochemical transducers: A review.Nanomaterials (Basel)20221223417110.3390/nano12234171 36500794
    [Google Scholar]
  69. HaleemA. JavaidM. SinghR.P. SumanR. RabS. Biosensors applications in medical field: A brief review.Sensors International2021210010010.1016/j.sintl.2021.100100
    [Google Scholar]
  70. MahshidS.S. FlynnS.E. MahshidS. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2.Biosens. Bioelectron.202117611290510.1016/j.bios.2020.112905 33358285
    [Google Scholar]
  71. CrapnellR.D. Dempsey-HibbertN.C. PeetersM. TridenteA. BanksC.E. Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis.Talanta Open2020210001810.1016/j.talo.2020.100018
    [Google Scholar]
  72. DrobyshM. RamanavicieneA. ViterR. Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection.Int. J. Mol. Sci.202223266610.3390/ijms23020666 35054850
    [Google Scholar]
  73. HanF. WangJ. DingL. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia.Front. Bioeng. Biotechnol.202088310.3389/fbioe.2020.00083 32266221
    [Google Scholar]
  74. RamosT. MoroniL. Tissue engineering and regenerative medicine 2019: The role of biofabrication—a year in review.Tissue Eng. Part C Methods20202629110610.1089/ten.tec.2019.0344 31856696
    [Google Scholar]
  75. VansteenselM.J. JarosiewiczB. Brain-computer interfaces for communication.Handb. Clin. Neurol.2020168678510.1016/B978‑0‑444‑63934‑9.00007‑X 32164869
    [Google Scholar]
  76. GaoX. WangY. ChenX. GaoS. Interface, interaction, and intelligence in generalized brain-computer interfaces.Trends Cogn. Sci.202125867168410.1016/j.tics.2021.04.003 34116918
    [Google Scholar]
  77. LuoS. RabbaniQ. CroneN.E. Brain-computer interface: Applications to speech decoding and synthesis to augment communication.Neurotherapeutics202219126327310.1007/s13311‑022‑01190‑2 35099768
    [Google Scholar]
  78. HeB. YuanH. MengJ. GaoS. Neural engineering.Springer202010.1007/978‑3‑030‑43395‑6_4
    [Google Scholar]
  79. Kawala-SterniukA. BrowarskaN. Al-BakriA. Summary of over fifty years with brain-computer interfaces—a review.Brain Sci.20211114310.3390/brainsci11010043 33401571
    [Google Scholar]
  80. TangX. ShenH. ZhaoS. LiN. LiuJ. Flexible brain–computer interfaces.Nat. Electron.20236210911810.1038/s41928‑022‑00913‑9
    [Google Scholar]
  81. YaoD QinY ZhangY From psychosomatic medicine, brain–computer interface to brain–apparatus communication.A J Bacomics202211668810.1080/27706710.2022.2120775
    [Google Scholar]
  82. HramovA.E. MaksimenkoV.A. PisarchikA.N. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states.Phys. Rep.2021918113310.1016/j.physrep.2021.03.002
    [Google Scholar]
  83. WangY. NakanishiM. ZhangD. Neural Interface: Frontiers and Applications.Springer2019
    [Google Scholar]
  84. SahaS. MamunK.A. AhmedK. Progress in brain computer interface: Challenges and opportunities.Front. Syst. Neurosci.20211557887510.3389/fnsys.2021.578875 33716680
    [Google Scholar]
  85. MinguillonJ. VolosyakI. GugerC. TangermannM. LopezM.A. Brain-Computer Interfaces: Novel applications and interactive technologies.Front. Comput. Neurosci.20221693920210.3389/fncom.2022.939202 35800256
    [Google Scholar]
  86. SampleM. AunosM. Blain-MoraesS. Brain–computer interfaces and personhood: Interdisciplinary deliberations on neural technology.J. Neural Eng.201916606300110.1088/1741‑2552/ab39cd 31394509
    [Google Scholar]
  87. LaiwallaF. LeeJ. LeeA.H. MokE. LeungV. ShellhammerS. A distributed wireless network of implantable sub-mm cortical microstimulators for brain-computer interfaces.International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Berlin, Germany23-27 July 2019, pp. 6876-687910.1109/EMBC.2019.8857217
    [Google Scholar]
  88. WolpawJ.R. MillánJ.R. RamseyN.F. Brain-computer interfaces: Definitions and principles.Handb. Clin. Neurol.2020168152310.1016/B978‑0‑444‑63934‑9.00002‑0 32164849
    [Google Scholar]
  89. ZhuangM. WuQ. WanF. HuY. State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review.J Neurorestoratol202081122510.26599/JNR.2020.9040001
    [Google Scholar]
  90. LaiwallaF. NurmikkoA. Neural Interface: Frontiers and Applications.Springer201910.1007/978‑981‑13‑2050‑7_9
    [Google Scholar]
  91. DeviK.N. AnandJ. KothaiR. KrishnaJ.M.A. MuthurampandianR. Sensor based posture detection system.Mater. Today Proc.202255235936410.1016/j.matpr.2021.09.556
    [Google Scholar]
  92. YinZ. WanY. FangH. Bibliometric analysis on Brain-computer interfaces in a 30-year period.Appl. Intell.20235312162051622510.1007/s10489‑022‑04226‑4
    [Google Scholar]
  93. J.Anand K. N.Devi Z. E.Kennedy R.Dhanalakshmi processing techniques for sensor materials: A review.Materials Today Proceedings2022552430433
    [Google Scholar]
  94. Even-ChenN. MuratoreD.G. StaviskyS.D. Power-saving design opportunities for wireless intracortical brain–computer interfaces.Nat. Biomed. Eng.202041098499610.1038/s41551‑020‑0595‑9 32747834
    [Google Scholar]
  95. SimeralJ.D. HosmanT. SaabJ. Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia.IEEE Trans. Biomed. Eng.20216872313232510.1109/TBME.2021.3069119 33784612
    [Google Scholar]
  96. LiuY. XuS. YangY. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain-computer interfaces: A review.Microsyst. Nanoeng.2023911310.1038/s41378‑022‑00479‑8 36726940
    [Google Scholar]
  97. HoE. HettickM. PapageorgiouD. 2022The layer 7 cortical interface: A scalable and minimally invasive brain–computer interface platform.bioRxiv2022
    [Google Scholar]
  98. ArpaiaP. CallegaroL. CultreraA. EspositoA. OrtolanoM. Metrological characterization of a low-cost electroencephalograph for wearable neural interfaces in industry 4.0 applications.2021 IEEE International Workshop on Metrology for Industry07-09 June 2021Rome, Italy202115
    [Google Scholar]
  99. ChenG. XiaoX. ZhaoX. TatT. BickM. ChenJ. Electronic textiles for wearable point-of-care systems.Chem. Rev.202212233259329110.1021/acs.chemrev.1c00502 34939791
    [Google Scholar]
  100. MondalS. ZehraN. ChoudhuryA. IyerP.K. Wearable sensing devices for point of care diagnostics.ACS Appl. Bio Mater.202141477010.1021/acsabm.0c00798 35014276
    [Google Scholar]
  101. PrakashanD. PR R, Gandhi S. A systematic review on the advanced techniques of wearable point-of-care devices and their futuristic applications.Diagnostics (Basel)202313591610.3390/diagnostics13050916 36900059
    [Google Scholar]
  102. KhorS.M. ChoiJ. WonP. KoS.H. Challenges and strategies in developing an enzymatic wearable sweat glucose biosensor as a practical point-of-care monitoring tool for type II diabetes.Nanomaterials (Basel)202212222110.3390/nano12020221 35055239
    [Google Scholar]
  103. OzerT. AgirI. HenryC.S. Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care.Sens. Actuators B Chem.202236513196110.1016/j.snb.2022.131961
    [Google Scholar]
  104. YuB. ZhouL. ZhangX. Respiration-mediated self-switched triboelectric nanogenerator for wearable point-of-care prevention and alarm of asthma.Nano Energy202310610805810.1016/j.nanoen.2022.108058
    [Google Scholar]
  105. HazraR.S. Hasan KhanM.R. KaleN. Bioinspired materials for wearable devices and point-of-care testing of cancer.ACS Biomater. Sci. Eng.2023952103212810.1021/acsbiomaterials.1c01208 35679474
    [Google Scholar]
  106. ZhengL. LiuY. ZhangC. A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat.Sens. Actuators B Chem.202134313013110.1016/j.snb.2021.130131
    [Google Scholar]
  107. ZhangS. ZengJ. WangC. The application of wearable glucose sensors in point-of-care testing.Front. Bioeng. Biotechnol.2021977421010.3389/fbioe.2021.774210 34957071
    [Google Scholar]
  108. Mejía-SalazarJ.R. RodriguesC.K. MaterónV.E.M. Novais de OliveiraO.Jr Microfluidic point-of-care devices: New trends and future prospects for ehealth diagnostics.Sensors (Basel)2020207195110.3390/s20071951 32244343
    [Google Scholar]
  109. WangY. ZhaoQ. DuX. Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring.J. Mater. Chem. B Mater. Biol. Med.20208163519352610.1039/C9TB02389E 31989133
    [Google Scholar]
  110. PaulB. DemuruS. LafayeC. SaubadeM. BriandD. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis.Adv. Mater. Technol.202164200091010.1002/admt.202000910
    [Google Scholar]
  111. TonelloS. AbateG. BorghettiM. LopomoN.F. SerpelloniM. SardiniE. How to assess the measurement performance of mobile/wearable point-of-care testing devices? A systematic review addressing sweat analysis.Electronics (Basel)202211576110.3390/electronics11050761
    [Google Scholar]
  112. StrohmaierJM BoutwellRC DanieleMA Wearable point-of-care devices for assessing immune activity from interstitial fluid and methods of use thereof.US2024081724A12024
/content/journals/nanotec/10.2174/0118722105293232240826135124
Loading
/content/journals/nanotec/10.2174/0118722105293232240826135124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test