Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Unpredictable situations such as clotting of blood, deep vein thrombosis, and pulmonary embolism arise in the body, which is the leading cause of mortality. Such conditions generally arise after surgery as well as after treatment with oral anticoagulant agents. Apixaban is a novel oral anticoagulant widely recommended for the prevention and treatment of strokes and blood clots suffering from nonvalvular atrial fibrillation by suppressing factor Xa. Apixaban has a log P of 2.71 with poor solubility and reported maximum bioavailability of approximately 50%.

Objective

Hence, the current research mainly focused on the improvement of solubility, bioavailability, and therapeutic efficacy of Apixaban solid lipid nanoparticles (SLN).

Methods

The SLN was developed using the hot-homogenization method using a high-pressure homogenizer. The drug-lipid compatibility study was assessed by the FTIR, and the thermal analysis was performed using differential scanning calorimetry (DSC). During the scrutiny of lipids, the highest solubility of Apixaban was estimated in the glyceryl monostearate, hence selected for the formulation. Moreover, the colloidal solution was stabilized by the polyethylene glycol 200. The Design of Expert software (Version 13, Stat-Ease) was implemented for the optimization analysis by considering the 3-independent factors and 2-dependent parameters. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1.

Results

Box-Behnken design was applied along with ANOVA, which showed a -value less than 0.05 for the dependent parameters such as particle size and entrapment efficiency (-value: 0.0476 and 0.0379). The optimized batch F10 showed a particle size of 167.1 nm, -19.5 mV zeta potential, and an entrapment efficiency of 87.32%. The optimized batch F10 was lyophilized and analyzed by Scanning electron microscopy (SEM), which showed a particle size of 130 nm. The solid powder was filled into the capsule for oral delivery.

Conclusion

The marked improvement in solubility and bioavailability was achieved with F10-loaded Apixaban Solid lipid nanoparticles. Moreover, the sustained released profile also minimizes the unseen complications that occur due to the clotting of blood.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105284862240506045944
2024-08-05
2025-10-10
Loading full text...

Full text loading...

References

  1. ByonW. GaronzikS. BoydR.A. FrostC.E. Apixaban: A clinical pharmacokinetic and pharmacodynamic review.Clin. Pharmacokinet.201958101265127910.1007/s40262‑019‑00775‑z31089975
    [Google Scholar]
  2. Al YamiM.S. QudayrA.H. AlhushanL.M. HakamiF.M. KorayemG.B. AlshayaO.A. AlmohammedO.A. Clinical characteristics and dosing of apixaban and rivaroxaban for the management of venous thromboembolism: A multi-center retrospective observational study.Saudi Pharm. J.202331810167310.1016/j.jsps.2023.06.00637576856
    [Google Scholar]
  3. AmundsenE.K. Ihle-HansenH. KraglundK.L. HagbergG. Acute ischemic stroke and measurement of apixaban and rivaroxaban: An observational cohort implementation study.Res. Pract. Thromb. Haemost.20248110230710.1016/j.rpth.2023.10230738314168
    [Google Scholar]
  4. PayneR.M. BurnsK.M. GlatzA.C. MaleC. DontiA. BrandãoL.R. BallingG. VanderPluymC.J. Bu’LockF. KochilasL.K. StillerB. CnotaJ.F.II RahkonenO. KhanA. AdorisioR. StoicaS. MayL. BurnsJ.C. SaraivaJ.F.K. McHughK.E. KimJ.S. RubioA. VazquezC.N.G. MeadorM.R. DymeJ.L. ReedyA.M. HartmannA.T. JarugulaP. TanejaC.L.E. MillsD. WheatonO. MonagleP. Apixaban for prevention of thromboembolism in pediatric heart disease.J. Am. Coll. Cardiol.202382242296230910.1016/j.jacc.2023.10.01038057072
    [Google Scholar]
  5. Apixaban: Uses, interactions, mechanism of action.Available from: https://go.drugbank.com/drugs/DB06605 (Accessed on: 2023-07-16).
  6. KanugoA. MisraA. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics.Ther Deliv2020111171373210.4155/tde‑2020‑0068
    [Google Scholar]
  7. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  8. StahlM. LüdtkeA.F. GrimaldiL.R. GiganteM. RibeiroP.B.A. Characterization and stability of α-tocopherol loaded solid lipid nanoparticles formulated with different fully hydrogenated vegetable oils.Food Chem.202443913814910.1016/j.foodchem.2023.13814938064825
    [Google Scholar]
  9. KanugoA. GautamR.K. KamalM.A. Recent advances of nanotechnology in the diagnosis and therapy of triple- negative breast cancer (TNBC).Curr. Pharm. Biotechnol.202223131581159510.2174/138920102366621123011365834967294
    [Google Scholar]
  10. MunirM. ZamanM. WaqarM.A. KhanM.A. AlviM.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery.J. Liposome Res.2023202311410.1080/08982104.2023.226871137840238
    [Google Scholar]
  11. PawarS.D. GawaliK. JatS. SinghP. DatusaliaA.K. KulhariH. KumarP. Physiochemical characterization and pharmacokinetic assessment of Bergamottin solid lipid nanoparticles.J. Drug Deliv. Sci. Technol.20249310542610.1016/j.jddst.2024.105426
    [Google Scholar]
  12. MirchandaniY. PatravaleV.B. SB. Solid lipid nanoparticles for hydrophilic drugs.J. Control. Release202133545746410.1016/j.jconrel.2021.05.03234048841
    [Google Scholar]
  13. YaghmurA. MuH. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles.Acta Pharm. Sin. B202111487188510.1016/j.apsb.2021.02.01333996404
    [Google Scholar]
  14. UllahA. RazzaqA. AlfaifiM.Y. ElbehairiS.E.I. MenaaF. UllahN. ShehzadiS. NawazT. IqbalH. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis.Curr. Mol. Pharmacol.202417e1876142926938310.2174/011876142926938323111906223338389415
    [Google Scholar]
  15. StahlM.A. LüdtkeF.L. GrimaldiR. GiganteM.L. RibeiroA.P.B. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils.Food Res. Int.202417611382110.1016/j.foodres.2023.11382138163721
    [Google Scholar]
  16. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  17. KatopodiA. SafariK. KalospyrosA. PolitopoulosK. AlexandratouE. DetsiA. Preparation and characterization of solid lipid nanoparticles incorporating bioactive coumarin analogues as photosensitizing agents.Colloids Surf. B Biointerfaces202322911343910.1016/j.colsurfb.2023.11343937422991
    [Google Scholar]
  18. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A recent update: Solid lipid nanoparticles for effective drug delivery.Adv. Pharm. Bull.2021121173310.34172/apb.2022.00735517874
    [Google Scholar]
  19. SalahE. AbouelfetouhM.M. PanY. ChenD. XieS. Solid lipid nanoparticles for enhanced oral absorption: A review.Colloids Surf. B Biointerfaces202019611130510.1016/j.colsurfb.2020.11130532795844
    [Google Scholar]
  20. CorreiaA.C. MoreiraJ.N. LoboS.J.M. SilvaA.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery.Expert Opin. Drug Deliv.202320121731174810.1080/17425247.2023.227490237905547
    [Google Scholar]
  21. UnerB. OzdemirS. TasC. UnerM. OzsoyY. Loteprednol-loaded nanoformulations for corneal delivery by quality-by-design concepts: Optimization, characterization, and anti-inflammatory activity.AAPS PharmSciTech20232449210.1208/s12249‑023‑02551‑636977841
    [Google Scholar]
  22. MarinelliL. DimmitoM.P. CacciatoreI. TotoE.C. RienzoD.A. PalmerioF. PucaV. FilippoD.E.S. FulleS. StefanoD.A. Solid lipid nanoparticles for efficient delivery of capsaicin-rich extract: Potential neuroprotective effects in Parkinson’s disease.J. Drug Deliv. Sci. Technol.20249110509710.1016/j.jddst.2023.105097
    [Google Scholar]
  23. DugadT. KanugoA. Design optimization and evaluation of solid lipid nanoparticles of azelnidipine for the treatment of hypertension.Recent Pat. Nanotechnol.2024181223210.2174/1872210517666221019102543
    [Google Scholar]
  24. UppuluriC.T. RaviP.R. DalviA.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease.Int. J. Pharm.202160612088110.1016/j.ijpharm.2021.12088134273426
    [Google Scholar]
  25. GargA. TomarD.S. BhalalaK. WahajuddinM. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability.J. Drug Deliv. Sci. Technol.20206010207210.1016/j.jddst.2020.102072
    [Google Scholar]
  26. SharmaS. KanugoA. KaurT. ChaudharyD. Formulation and characterization of self-microemulsifying drug delivery system (SMEDDS) of sertraline hydrochloride.Recent Pat. Nanotechnol.202418131610.2174/187221051666622062315244035747954
    [Google Scholar]
  27. GodboleM. ThanganA. KanugoA. Improvement of solubility and dissolution rate of Repaglinide by Liquisolid Compact technique: QbD approach.J. Pharm. Res.20222661573159210.29228/jrp.250
    [Google Scholar]
  28. El-DakrouryW.A. ZewailM.B. AsaadG.F. AbdallahH.M.I. ShabanaM.E. SaidA.R. DoghishA.S. AzabH.A. AmerD.H. HassanA.E. SayedA.S. SamraG.M. SallamA.A.M. Fexofenadine-loaded chitosan coated solid lipid nanoparticles (SLNs): A potential oral therapy for ulcerative colitis.Eur. J. Pharm. Biopharm.202419611420510.1016/j.ejpb.2024.11420538311187
    [Google Scholar]
  29. RizviS.Z.H. ShahF.A. KhanN. MuhammadI. AliK.H. AnsariM.M. DinF. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model.Int. J. Pharm.201956013614310.1016/j.ijpharm.2019.02.00230753932
    [Google Scholar]
  30. MostafaeiF. HemmatiS. ValizadehH. MahmoudianM. SarfrazM. AbdiM. TorabiS. BaradaranB. VosoughM. MilaniZ.P. Enhanced intracellular accumulation and cytotoxicity of bortezomib against liver cancer cells using N-stearyl lactobionamide surface modified solid lipid nanoparticles.Int. J. Pharm.202464912363510.1016/j.ijpharm.2023.12363538000649
    [Google Scholar]
  31. SharmaS. KanugoA. GaikwadJ. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: A quality by design approach.Mater. Technol.202137811010.1080/10667857.2021.1873637
    [Google Scholar]
  32. FarmoudehA. enayatifardR. SaeediM. TalavakiF. GhasemiM. AkbariJ. NokhodchiA. Methylene blue loaded solid lipid nanoparticles: Preparation, optimization, and in-vivo burn healing assessment.J. Drug Deliv. Sci. Technol.2022707010320910.1016/j.jddst.2022.103209
    [Google Scholar]
  33. (a GranjaA. Lima-SousaR. AlvesC.G. de Melo-DiogoD. NunesC. SousaC.T. CorreiaI.J. ReisS. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer.Biomater. Adv.202315121344310.1016/j.bioadv.2023.21344337146526
    [Google Scholar]
  34. (b LakshmiKS. VarthanVJ. Dispersion of Formononetin solid lipid nanoparticles and process for its preparation.US Patent 10, 973, 798 B22021
    [Google Scholar]
  35. SalviV. R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  36. GanesanP. NarayanasamyD. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustain. Chem. Pharm.20176375610.1016/j.scp.2017.07.002
    [Google Scholar]
  37. WangL. WangC.Y. ZhangY. FuH.J. GaoY. ZhangK.R. Preparation and characterization of solid lipid nanoparticles loaded with salmon calcitonin phospholipid complex.J. Drug Deliv. Sci. Technol.2019525283884510.1016/j.jddst.2019.05.045
    [Google Scholar]
  38. RoutrayS.B. PatraC.N. RajuR. PanigrahiK.C. JenaG.K. Lyophilized SLN of cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study.Drug Dev. Ind. Pharm.20204671080109110.1080/03639045.2020.177563232486863
    [Google Scholar]
  39. TabriziH.M. SoltaniM. haghiE.A. Preparation and characterization of the farnesiferol C-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its in vitro anti-cancer and anti-angiogenic activities.J. Mol. Liq.202338212190810.1016/j.molliq.2023.121908
    [Google Scholar]
  40. KanugoA. DeshpandeA. SharmaR. Formulation optimization and evaluation of nanocochleate gel of famciclovir for the treatment of herpes zoster.Recent Pat. Nanotechnol.202317325926910.2174/187221051666622062211555335733311
    [Google Scholar]
  41. KhanN.U. RazzaqA. RuiZ. ChengfengX. KhanZ.U. UllahA. ElbehairiS.E.I. ShatiA.A. AlfaifiM.Y. IqbalH. JinZ.M. Bio-evaluations of sericin coated hesperidin nanoparticles for gastric ulcer management.Colloids Surf. B Biointerfaces202423411376210.1016/j.colsurfb.2024.11376238244483
    [Google Scholar]
  42. YasirM. ChauhanI. ZafarA. VermaM. NoorullaK.M. TuraA.J. AlruwailiN.K. HajiM.J. PuriD. GobenaW.G. DalechaD.D. SaraU.V.S. KumarN. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation.J. Drug Deliv. Sci. Technol.2021616110216410.1016/j.jddst.2020.102164
    [Google Scholar]
  43. KraisitP. HirunN. MahadlekJ. LimmatvapiratS. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design.J. Drug Deliv. Sci. Technol.2021636310243710.1016/j.jddst.2021.102437
    [Google Scholar]
  44. YuH.T. MengD. FengM.X. RuanK.Y. DongJ.J. Bin-Shen XiaoY-P. ZhangX-H. ShiL-L. JiangX-H. RGD-modified solid lipid nanoparticles improve oral doxorubicin absorption: In vitro and in vivo study.J. Drug Deliv. Sci. Technol.20249110529310.1016/j.jddst.2023.105293
    [Google Scholar]
  45. RampakaR. OmmiK. ChellaN. Role of solid lipid nanoparticles as drug delivery vehicles on the pharmacokinetic variability of Erlotinib HCl.J. Drug Deliv. Sci. Technol.20216610288610.1016/j.jddst.2021.102886
    [Google Scholar]
  46. ElbrinkK. Van HeesS. HolmR. KiekensF. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs.Int. J. Pharm.202363512271710.1016/j.ijpharm.2023.12271736781084
    [Google Scholar]
  47. AlhakamyN.A. HosnyK.M. AldryhimA.Y. RizgW.Y. EshmawiB.A. BukharyH.A. MurshidS.S.A. KhallafR.A. Development and optimization of ofloxacin as solid lipid nanoparticles for enhancement of its ocular activity.J. Drug Deliv. Sci. Technol.20227210337310.1016/j.jddst.2022.103373
    [Google Scholar]
  48. RamadanA.E. ElsayedM.M.A. ElsayedA. FouadM.A. MohamedM.S. LeeS. MahmoudR.A. SabryS.A. GhoneimM.M. HassanA.H.E. ElkarimA.R.A. BelalA. ShenawyE.A.A. Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy.Int. J. Pharm. X2024710023210.1016/j.ijpx.2024.10023238357578
    [Google Scholar]
  49. SharmaS. GoelV. KaurP. GadhaveK. GargN. Das SinglaL. ChoudhuryD. Targeted drug delivery using beeswax-derived albendazole-loaded solid lipid nanoparticles in Haemonchus contortus, an albendazole-tolerant nematode.Exp. Parasitol.202325310859310.1016/j.exppara.2023.10859337595879
    [Google Scholar]
  50. PareekA. KothariR. PareekA. RatanY. KashaniaP. JainV. JeandetP. KumarP. KhanA.A. AlanaziA.M. GuptaM.M. Development of a new inhaled swellable microsphere system for the dual delivery of naringenin-loaded solid lipid nanoparticles and doxofylline for the treatment of asthma.Eur. J. Pharm. Sci.202419310664210.1016/j.ejps.2023.10664237977235
    [Google Scholar]
  51. KaurIP KakkarV SandhuSK GuptaT. Solid lipid nanoparticles of Curcumin.US Patent 2022/0151945A12022
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105284862240506045944
Loading
/content/journals/nanotec/10.2174/0118722105284862240506045944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test