Skip to content
2000
Volume 10, Issue 6
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity. Objective: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors. Methods: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out. Results: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications. Conclusion: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/2210681209666190807145229
2020-12-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/nanoasi/10.2174/2210681209666190807145229
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test