Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Proteins and peptide drugs are easily degraded in the gastrointestinal tract when administered orally, decreasing their bioavailability, and hence are administered intravenously or subcutaneously, creating a demand for how to administer them orally efficiently. The present research aims to develop protein-loaded nanoparticles by the coacervation method using biodegradable polymers and study their different characteristics.

Methods

The nanoparticles are prepared using low molecular-weight Chitosan and sodium alginate and characterized using instruments like Zetasizer, Fourier Transform Infrared spectroscopy (FTIR), & UV Spectrophotometer, . The nanoparticles are further loaded with egg albumin to study protein loading and release characteristics.

Results

The empty nanoparticles have a size range of 226-589 nm and a Polydispersity Index (PDI) of 0.398-0.298. The minimum size of loaded nanoparticles was 180.2±7.82 nm, with a PDI value of 0.314±0.02. The maximum protein entrapment efficiency and loading percentage were 76.12% and 29.78%, respectively. The maximum protein release from 29.78% loaded nanoparticles was 42.30% and 12.80% in phosphate buffer solution (PBS) and water as the test medium, respectively.

Discussion

The particle size, PDI, entrapment statistics, and prolonged protein release profile, , show the possibility of the nanoparticulate system to be used as a suitable vehicle for oral delivery of proteins and peptide drugs.

Conclusion

The optimised standard protein-loaded nanoparticles have all the characteristics making them suitable vehicles for administering proteins and peptide drugs orally. The current Nanoparticulate development system offers a promising solution for the effective oral delivery of protein or peptides.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812388555250724094310
2025-07-31
2025-11-14
Loading full text...

Full text loading...

References

  1. KavimandanN. LosiE. PeppasN. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin–transferrin conjugates.Biomaterials200627203846385410.1016/j.biomaterials.2006.02.026 16529810
    [Google Scholar]
  2. TranH. ElSayedM.E.H. Progress and limitations of oral peptide delivery as a potentially transformative therapy.Expert Opin. Drug Deliv.202219216317810.1080/17425247.2022.2051476 35255753
    [Google Scholar]
  3. BangaA. ChienY. Systemic delivery of therapeutic peptides and proteins.Int. J. Pharm.1988481-3155010.1016/0378‑5173(88)90246‑3
    [Google Scholar]
  4. CaoS. XuS. WangH. LingY. DongJ. XiaR. SunX. Nanoparticles: Oral delivery for protein and peptide drugs.AAPS PharmSciTech201920519010.1208/s12249‑019‑1325‑z 31111296
    [Google Scholar]
  5. PrustyA.K. SahuS.K. Biodegradable nanoparticles - a novel approach for oral administration of biological products.Inter J. Pharma Sci. Nanotech20092250350810.37285/ijpsn.2009.2.2.2
    [Google Scholar]
  6. ShoyeleS.A. SloweyA. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery.Int. J. Pharm.200631411810.1016/j.ijpharm.2006.02.014 16563674
    [Google Scholar]
  7. MullerR.H. KeckC.M. Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles.J. Biotechnol.20041131-315117010.1016/j.jbiotec.2004.06.007 15380654
    [Google Scholar]
  8. SwainS. GhoseD. JenaB.R. Koteswara RaoG.S.N. SahuA. Modern advancements, patents and applications of futuristic nanozymes: A comprehensive review.Nanosci. Nanotechnol. Asia2023132436310.2174/2210681213666230330165806
    [Google Scholar]
  9. BaharloueiP. RahmanA. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing.Mar. Drugs202220746010.3390/md20070460 35877753
    [Google Scholar]
  10. PrustyA. SahuS.K. Development and evaluation of insulin incorporated nanoparticles for oral administration.ISRN Nanotech201320131610.1155/2013/591751
    [Google Scholar]
  11. ChenG. KangW. LiW. ChenS. GaoY. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies.Theranostics20221231419143910.7150/thno.61747 35154498
    [Google Scholar]
  12. DesaiN. RanaD. SalaveS. GuptaR. PatelP. KarunakaranB. SharmaA. GiriJ. BenivalD. KommineniN. Chitosan: A potential biopolymer in drug delivery and biomedical applications.Pharmaceutics2023154131310.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  13. GeorgeM. AbrahamT.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review.J. Control. Release2006114111410.1016/j.jconrel.2006.04.017 16828914
    [Google Scholar]
  14. HejaziR. AmijiM. Chitosan-based gastrointestinal delivery systems.J. Control. Release200389215116510.1016/S0168‑3659(03)00126‑3 12711440
    [Google Scholar]
  15. KrukK. WinnickaK. Alginates combined with natural polymers as valuable drug delivery platforms.Mar. Drugs20222111110.3390/md21010011 36662184
    [Google Scholar]
  16. Ahmad RausR. Wan NawawiW.M.F. NasaruddinR.R. Alginate and alginate composites for biomedical applications.Asian J. Pharm. Sci.202116328030610.1016/j.ajps.2020.10.001 34276819
    [Google Scholar]
  17. FertahM. BelfkiraA. DahmaneE. TaourirteM. BrouilletteF. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed.Arab. J. Chem.201710S3707S371410.1016/j.arabjc.2014.05.003
    [Google Scholar]
  18. TongT. WangL. YouX. WuJ. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability.Biomater. Sci.20208215804582310.1039/D0BM01151G 33016274
    [Google Scholar]
  19. CalvoP. Remunan-LopezC. Vila-JatoJ.L. AlonsoM.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.J. Appl. Polym. Sci.199763112513210.1002/(SICI)1097‑4628(19970103)63:1<125::AID‑APP13>3.0.CO;2‑4
    [Google Scholar]
  20. DeS. RobinsonD. Polymer relationships during preparation of chitosan–alginate and poly-l-lysine–alginate nanospheres.J. Control. Release200389110111210.1016/S0168‑3659(03)00098‑1 12695066
    [Google Scholar]
  21. ParidaP. PrustyK.A. PatroK.S. JenaR.B. Current advancements on oral protein and peptide drug delivery approaches to bioavailability: Extensive review on patents.Recent Adv. Drug Deliv. Formul.202418422724610.2174/0126673878299775240719061653
    [Google Scholar]
  22. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  23. GohC.H. HengP.W.S. ChanL.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications.Carbohydr. Polym.201288111210.1016/j.carbpol.2011.11.012
    [Google Scholar]
  24. PhillipsG.O. WilliamsP.A. Handbook of Hydrocolloids.Boca Raton, FLCRC Press200910.1533/9781845695873
    [Google Scholar]
  25. SachanN.K. PushkarS. JhaA. BhattcharyaA. Sodium alginate: The wonder polymer for controlled drug delivery.J. Pharm. Res.2009211911199
    [Google Scholar]
  26. SellimiS. YounesI. AyedH.B. MaalejH. MonteroV. RinaudoM. DahiaM. MechichiT. HajjiM. NasriM. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed.Int. J. Biol. Macromol.2015721358136710.1016/j.ijbiomac.2014.10.016 25453289
    [Google Scholar]
  27. MorsiN.A. GhorabD.A. RefaiH.A. TebaH.O. Preparation and evaluation of alginate/chitosan nanodispersions for ocular delivery.Int. J. Pharm. Pharm. Sci.201577234240
    [Google Scholar]
  28. ChoukaifeH. DoolaaneaA.A. AlfatamaM. Alginate nanoformulation: Influence of process and selected variables.Pharmaceuticals2020131133510.3390/ph13110335 33114120
    [Google Scholar]
  29. LiJ. JinH. RazzakM.A. KimE.J. ChoiS.S. Crosslinker-free bovine serum albumin-loaded chitosan/alginate nanocomplex for ph-responsive bursting release of oral-administered protein.Biotechnol. Bioprocess Eng.; BBE2022271405010.1007/s12257‑021‑0243‑6
    [Google Scholar]
  30. WathoniN. HerdianaY. SuhandiC. MohammedA. El-RayyesA. NarsaA. Chitosan/alginate-based nanoparticles for antibacterial agents delivery.Int. J. Nanomedicine2024195021504410.2147/IJN.S469572 38832335
    [Google Scholar]
  31. QiaoY. KangJ. SongC. ZhouN. ZhangP. SongG. Further study on particle size, stability, and complexation of silver nanoparticles under the composite effect of bovine serum protein and humic acid.RSC Advances20241442621263210.1039/D3RA06159K 38234870
    [Google Scholar]
  32. BhattaraiN. RamayH.R. ChouS.H. ZhangM. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery.Int. J. Nanomedicine20061218118710.2147/nano.2006.1.2.181 17722534
    [Google Scholar]
  33. WangC. FuX. YangL.S. Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery.Chin. Sci. Bull.200752788388910.1007/s11434‑007‑0127‑y
    [Google Scholar]
  34. AgarwalS. MurthyR.S.R. HarikumarS.L. GargR. Quality by design approach for development and characterisation of solid lipid nanoparticles of quetiapine fumarate.Curr. Computeraided Drug Des.2020161739110.2174/18756697OTk4jMTYuTcVY 31429691
    [Google Scholar]
  35. BeraB. Nanoporous silicon prepared by vapour phase strain etch and sacrificial technique.Proceedings of the International Conference on Microelectronic Circuit and System (Micro)20154245
    [Google Scholar]
  36. RaneS.S. ChoiP. Polydispersity index: How accurately does it measure the breadth of the molecular weight distribution?Chem. Mater.200517492610.1021/cm048594i
    [Google Scholar]
  37. GoochJ.W. Polydispersity. Encyclopedic Dictionary of Polymers. GoochJ.W. New YorkSpringer2011556
    [Google Scholar]
  38. KuzmanD. BuncM. RavnikM. ReiterF. ŽagarL. BončinaM. Long-term stability predictions of therapeutic monoclonal antibodies in solution using Arrhenius-based kinetics.Sci. Rep.20211112053410.1038/s41598‑021‑99875‑9 34654882
    [Google Scholar]
  39. DouglasK.L. TabrizianM. Effect of experimental parameters on the formation of alginate–chitosan nanoparticles and evaluation of their potential application as DNA carrier.J. Biomater. Sci. Polym. Ed.2005161435610.1163/1568562052843339 15796304
    [Google Scholar]
  40. YeerongK. ChantawannakulP. AnuchapreedaS. JuntrapiromS. KanjanakawinkulW. MüllertzA. RadesT. ChaiyanaW. Chitosan alginate nanoparticles of protein hydrolysate from Acheta domesticus with enhanced stability for skin delivery.Pharmaceutics202416672410.3390/pharmaceutics16060724 38931846
    [Google Scholar]
  41. AnandA. IyerB.R. PonnusamyC. PandiyanR. SugumaranA. Design and development of lomustine loaded chitosan nanoparticles for efficient brain targeting.Cardiovasc. Hematol. Agents Med. Chem.2020181455410.2174/1871525718666200203112502 32013840
    [Google Scholar]
  42. Çelik TekeliM. YücelÇ. ÜnalS. AktaşY. Development and characterization of insulin-loaded liposome-chitosan-nanoparticle (LCS-NP) complex and investigation of transport properties through a pancreatic beta tc cell line.Turk. J. Pharm. Sci.20181519196 32454645
    [Google Scholar]
  43. SarmentoB. FerreiraD. VeigaF. RibeiroA. Characterization of insulin loaded alginate nanoparticles produced by inotropic pre-gelation through DSC and FTIR studies.Carbohydr. Polym.20066611710.1016/j.carbpol.2006.02.008
    [Google Scholar]
  44. SrivastavaA. PrajapatiA. Albumin and functionalized albumin nanoparticles: Production strategies, characterization, and target indications.Asian Biomed.202014621724210.1515/abm‑2020‑0032
    [Google Scholar]
  45. de OliveiraJ.K. RonikD.F.V. AscariJ. MainardesR.M. KhalilN.M. Nanoencapsulation of apocynin in bovine serum albumin nanoparticles: Physicochemical characterization.Nanosci. Nanotechnol. Asia201881909910.2174/2210681206666160822112408
    [Google Scholar]
  46. MartinaV.R. VojtechK. A Comparison of Biuret.Lowr Bradf Methods Measur Egg’s Prot Mend Net20151394398
    [Google Scholar]
  47. KielkopfC.L. BauerW. UrbatschI.L. Bradford assay for determining protein concentration.Cold Spring Harb Protoc202020204pdb.prot10226910.1101/pdb.prot10226932238597
    [Google Scholar]
  48. HongS. ChoiD.W. KimH.N. ParkC.G. LeeW. ParkH.H. Protein-based nanoparticles as drug delivery systems.Pharmaceutics202012760410.3390/pharmaceutics12070604 32610448
    [Google Scholar]
  49. NiederquellA. StoyanovE. KuentzM. Physiological buffer effects in drug supersaturation - a mechanistic study of hydroxypropyl cellulose as precipitation inhibitor.J. Pharm. Sci.202311271897190710.1016/j.xphs.2023.02.013 36813134
    [Google Scholar]
  50. Barzegar-JalaliM. DastmalchiS. Kinetic analysis of chlorpropamide dissolution from solid dispersions.Drug Dev. Ind. Pharm.2007331637010.1080/03639040600762636 17192252
    [Google Scholar]
  51. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.2010673217223 20524422
    [Google Scholar]
  52. BácskayI. PappB. PártosP. BudaiI. PetőÁ. FehérP. UjhelyiZ. KósaD. Formulation and evaluation of insulin-loaded sodium-alginate microparticles for oral administration.Pharmaceutics20231614610.3390/pharmaceutics16010046 38258057
    [Google Scholar]
  53. ZhangF. PeiX. PengX. GouD. FanX. ZhengX. SongC. ZhouY. CuiS. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery.Biomater. Adv.202213521274610.1016/j.bioadv.2022.212746 35929218
    [Google Scholar]
  54. SinhaV.R. SinglaA.K. WadhawanS. Chitosan microspheres as a potenticarrier for drugs.Int. J. Pharm.200427413310.1016/j.ijpharm.2003.12.026
    [Google Scholar]
  55. MohanrajV.J. ChenY. SureshB. Chitosan Based Nanoparticles for Delivery of Proteins and Peptides.Indian J. Pharm. Educ. Res.200640106115
    [Google Scholar]
  56. SahuS.K. PrustyA.K. Design and evaluation of a nanoparticulate system prepared by biodegradable polymers for oral administration of protein drugs.Pharmazie20106511824829 21155389
    [Google Scholar]
  57. GuhaS. MajumderK. MineY. Egg proteins. Encyclopedia of Food. Chemistry. MeltonL. ShahidiF. VarelisP. CambridgeAcademic Press2019748410.1016/B978‑0‑08‑100596‑5.21603‑X
    [Google Scholar]
  58. BhumkarD.R. PokharkarV.B. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note.AAPS PharmSciTech200672E138E14310.1208/pt070250 16796367
    [Google Scholar]
  59. ÖzkanS.A. DedeoğluA. Karadaş BakirhanN. ÖzkanY. Nanocarriers used most in drug delivery and drug release: Nanohydrogel, chitosan, graphene, and solid lipid.Turk. J. Pharm. Sci.201916448149210.4274/tjps.galenos.2019.48751 32454753
    [Google Scholar]
  60. ChenG.L. CaiH.Y. ChenJ.P. LiR. ZhongS.Y. JiaX.J. LiuX.F. SongB.B. Chitosan/alginate nanoparticles for the enhanced oral antithrombotic activity of clam heparinoid from the clam coelomactra antiquata.Mar. Drugs202220213610.3390/md20020136 35200665
    [Google Scholar]
  61. LiL. RenS. YangH. LiuJ. ZhangJ. Study of the molecular structure of proteins in eggs under different storage conditions.J. Food Process. Preserv.202320231710.1155/2023/4754074
    [Google Scholar]
  62. KonoY. SugayaT. YasudomeH. OgisoH. OgawaraK. Preparation of stable and monodisperse paclitaxel-loaded bovine serum albumin nanoparticles via intermolecular disulfide crosslinking.Biochem. Biophys. Rep.20243810171310.1016/j.bbrep.2024.101713 38681670
    [Google Scholar]
  63. Quality guidelines.2021Available from: https://www.ich.org/page/quality-guidelines
  64. YadavP. YadavA.B. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system.Future J. Pharm. Sci.20217120010.1186/s43094‑021‑00345‑w
    [Google Scholar]
  65. ThaiH. Thuy NguyenC. Thi ThachL. Thi TranM. Duc MaiH. Thi Thu NguyenT. Duc LeG. Van CanM. Dai TranL. Long BachG. RamadassK. SathishC.I. Van LeQ. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo.Sci. Rep.202010190910.1038/s41598‑020‑57666‑8 31969608
    [Google Scholar]
  66. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon2021810867410.1016/j.heliyon.2021.e08674
    [Google Scholar]
  67. WangS. GaoZ. LiuL. LiM. ZuoA. GuoJ. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle.Eur. J. Pharm. Sci.202216810608510.1016/j.ejps.2021.106085 34856348
    [Google Scholar]
  68. MohammedM. SyedaJ. WasanK. WasanE. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery.Pharmaceutics2017945310.3390/pharmaceutics9040053 29156634
    [Google Scholar]
  69. MuchtaridiM. SuryaniA.I. WathoniN. HerdianaY. MohammedA.F.A. GazzaliA.M. LesmanaR. JoniI.M. Chitosan/alginate polymeric nanoparticle-loaded α-mangostin: Characterization, cytotoxicity, and in vivo evaluation against breast cancer cells.Polymers20231518365810.3390/polym15183658 37765512
    [Google Scholar]
  70. Pourtalebi JahromiL. GhazaliM. AshrafiH. AzadiA. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles.Heliyon2020620345110.1016/j.heliyon.2020.e03451 32140583
    [Google Scholar]
  71. HerediaN.S. VizueteK. Flores-CaleroM. Pazmiño VK. PilaquingaF. KumarB. DebutA. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid).PLoS One2022173026482510.1371/journal.pone.0264825 35271644
    [Google Scholar]
  72. AsadiA. ObidiroO. EleshoR. AgbajeK. KochakzadeM. KarlaP.K. Recent advances and FDA approvals in nanoformulations for drug delivery.J. Nanopart. Res.20252711210.1007/s11051‑024‑06199‑6
    [Google Scholar]
  73. PatelD.M. PatelN.N. PatelJ.K. Nanomedicine Scale-Up Technologies: Feasibilities and Challenges. Emerging Technologies for Nanoparticle Manufacturing. PatelJ.K. PathakY.V. ChamSpringer International Publishing2021511539
    [Google Scholar]
  74. CsókaI. IsmailR. Jójárt-LaczkovichO. PallagiE. Regulatory considerations, challenges and risk-based approach in nanomedicine development.Curr. Med. Chem.202128367461747610.2174/0929867328666210406115529 33823761
    [Google Scholar]
  75. TyagiP. PechenovS. Anand SubramonyJ. Oral peptide delivery: Translational challenges due to physiological effects.J. Control. Release201828716717610.1016/j.jconrel.2018.08.032 30145135
    [Google Scholar]
  76. NiczeM. BorówkaM. DecA. NiemiecA. BułdakŁ. OkopieńB. The current and promising oral delivery methods for protein- and peptide-based drugs.Int. J. Mol. Sci.202425281510.3390/ijms25020815 38255888
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812388555250724094310
Loading
/content/journals/nanoasi/10.2174/0122106812388555250724094310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test