Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Magnetic Nanoparticles (MNPs) have gained significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and ability to be externally controlled. Their roles in targeted drug delivery, hyperthermia, medical imaging, and biomolecule extraction position them as promising tools for advanced medical and technological applications. This review examines recent advancements in the biomedical applications of MNPs, emphasizing their potential in treating chronic diseases, improving drug delivery systems, and enhancing diagnostic techniques, such as electrochemical and optical-based immunoassays. A comprehensive literature review was conducted using relevant scientific databases to examine recent studies focusing on their structural and functional properties, biomedical applications, and technological innovations in targeted therapy and diagnostics. MNPs have demonstrated remarkable efficiency in controlled drug release, hyperthermia-based cancer treatment, and improved imaging contrast in MRI. Their integration into immunoassays has enhanced the accuracy of biosensing. However, challenges such as stability, toxicity, and scalability remain significant obstacles to clinical translation. Despite these limitations, MNPs hold immense potential to revolutionize biomedical applications. Ongoing research focuses on optimizing their performance, enhancing biocompatibility, and overcoming current barriers. Advancements in surface modification and synthesis techniques are expected to further improve their efficacy, solidifying their role in future diagnostic and therapeutic innovations.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812387110250714094126
2025-07-17
2025-11-14
Loading full text...

Full text loading...

References

  1. RezaeiM. Recent advances in magnetic nanoparticles for biomedical applications.J. Nanobiotechnology2024224112135
    [Google Scholar]
  2. GuptaA.K. GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials200526183995402110.1016/j.biomaterials.2004.10.012 15626447
    [Google Scholar]
  3. TorchilinV.P. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers for targeted delivery.Nat. Rev. Drug Discov.2011106457467
    [Google Scholar]
  4. PankhurstQ.A. ConnollyJ. JonesS.K. DobsonJ. Applications of magnetic nanoparticles in biomedicine.J. Phys. D Appl. Phys.20033613R167R18110.1088/0022‑3727/36/13/201
    [Google Scholar]
  5. LaurentS. ForgeD. PortM. RochA. RobicC. Vander ElstL. MullerR.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  6. KetteringM. WinterJ. ZeisbergerM. Magnetic nanoparticles for hyperthermia in experimental oncology.Mol. Oncol.201154405419
    [Google Scholar]
  7. LaurentS. DutzS. HäfeliU.O. MahmoudiM. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles.Adv. Colloid Interface Sci.20111661-282310.1016/j.cis.2011.04.003 21601820
    [Google Scholar]
  8. LaurentS. Magnetic fluid hyperthermia: Advances, challenges, and clinical prospects.Adv. Drug Deliv. Rev.2011631-2244610.1016/j.addr.2010.05.006 20685224
    [Google Scholar]
  9. ColomboM. Carregal-RomeroS. CasulaM.F. GutiérrezL. MoralesM.P. BöhmI.B. HeverhagenJ.T. ProsperiD. ParakW.J. Biological applications of magnetic nanoparticles.Chem. Soc. Rev.201241114306433410.1039/c2cs15337h 22481569
    [Google Scholar]
  10. BhardeA. Biosynthesis of magnetite nanoparticles using bacterial cultures.J. Nanopart. Res.20131561427
    [Google Scholar]
  11. MahmoudiM. Superparamagnetic iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and toxicity.Adv. Mater.201628610301041
    [Google Scholar]
  12. ShinT-H. Magnetic nanoparticles in theranostic applications.ACS Nano2014843590360310.1021/nn500105a 24654926
    [Google Scholar]
  13. ReddyL.H. AriasJ.L. NicolasJ. CouvreurP. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications.Chem. Rev.2012112115818587810.1021/cr300068p 23043508
    [Google Scholar]
  14. WuL. ZhangJ. Applications of polymer-coated magnetic nanoparticles in biomedicine.Nano Rev. Exp.20156126525
    [Google Scholar]
  15. WangY.X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application.Quant. Imaging Med. Surg.201111354010.3978/j.issn.2223‑4292.2011.08.03 23256052
    [Google Scholar]
  16. HuangJ. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.Adv. Funct. Mater.20203021904943
    [Google Scholar]
  17. SunT. Magnetic nanoparticles in nanomedicine: A review of recent advances.Nano Res.2018111046814710
    [Google Scholar]
  18. KumarC.S.S.R. MohammadF. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.Adv. Drug Deliv. Rev.201163978980810.1016/j.addr.2011.03.008 21447363
    [Google Scholar]
  19. WangS. Magnetic nanoparticles in cancer therapy.Nanomedicine (Lond)201712325327110.1016/j.nano.2016.09.001
    [Google Scholar]
  20. GaoJ. Applications of magnetic nanoparticles in biomedicine.Journal of Magnetic Materials20093211100115
    [Google Scholar]
  21. WangY. ZhangL. GuoS. NIR-triggered release of DOX from sophorolipid-coated mesoporous carbon nanoparticles for chemo-photothermal therapy.Int. J. Nanomedicine20201565166310.1039/c8tb02673d
    [Google Scholar]
  22. LeeJ.H. Multifunctional magnetic nanoparticles for biomedical applications.Nano Today20234810167810.1016/B978‑0‑323‑90838‑2.00006‑0
    [Google Scholar]
  23. ZhangY. Advances in the synthesis of iron oxide nanoparticles for biomedical applications.Mater. Sci. Eng. C202213511263710.3390/antibiotics7020046
    [Google Scholar]
  24. ZhangX. LiuY. DongX. Near-infrared photoresponsive drug delivery nanosystems for enhanced cancer therapy: A review.J. Nanobiotechnology202018110110.1186/s12951‑020‑00660‑z32690018
    [Google Scholar]
  25. GuoY. ZhangC. ZhaoZ. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia for synergistic antitumor activity.Adv. Sci.2019624190169010.1002/advs.201901690
    [Google Scholar]
  26. LiX. Magnetic nanoparticles in molecular imaging and targeted therapy.ACS Appl. Nano Mater.20214101072810743
    [Google Scholar]
  27. ReddyL.H. Recent developments in magnetic nanoparticles for cancer therapy.J. Control. Release2020328562581
    [Google Scholar]
  28. WangX. Magnetic nanoparticles for brain-targeted drug delivery.Adv. Healthc. Mater.20231242202446
    [Google Scholar]
  29. SinghG. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma.J. Nanobiotechnology20222017810.1186/s12951‑022‑01275‑2 35164792
    [Google Scholar]
  30. Sandeep KumarS. Review on recent progress in magnetic nanoparticles.Front Chem.2013111010.3389/fchem.2021.629054
    [Google Scholar]
  31. LiY. ZhangT. XuZ. Functionalized magnetic nanoparticles for signal amplification in sandwich immunoassays: Enhancements in biomarker detection.Sens. Actuators B Chem.202030812758510.1016/j.snb.2020.127585
    [Google Scholar]
  32. JavedY. Magnetic nanoparticles in gene therapy applications.Biomater. Sci.202191245024521
    [Google Scholar]
  33. KumarS. Tissue engineering and regenerative medicine using magnetic nanoparticles.Biotechnol. Adv.202043107570
    [Google Scholar]
  34. OliveiraH. Tadpole-like unimolecular nanomotor with Sub-100 nm size swims in a tumor microenvironment model.Nano Lett.201919128749875810.1021/acs.nanolett.9b03456 31671944
    [Google Scholar]
  35. ChoiJ. Recent advances in magnetomechanical stimulation for neurodegenerative disease treatment.Adv. Funct. Mater.20233362209035
    [Google Scholar]
  36. XuF. LiuZ. ZhangZ. Recent advances in exosome-based biosensors for cancer biomarker detection: Challenges and future perspectives.Biosens. Bioelectron.2018106819310.1016/j.bios.2018.01.060
    [Google Scholar]
  37. PatelM. Toxicological perspectives of magnetic nanoparticles.Nanotoxicology20221612338
    [Google Scholar]
  38. ZhaoL. Cytotoxicity and biocompatibility assessments of iron oxide nanoparticles.J. Biomed. Mater. Res. A202110969991012
    [Google Scholar]
  39. FernandesF.A. Advancements in surface functionalization of magnetic nanoparticles for biomedical applications.Curr. Opin. Colloid Interface Sci.202047101236
    [Google Scholar]
  40. KimH. Environmental impact of large-scale production of magnetic nanoparticles.Environ. Sci. Technol.202357314581473
    [Google Scholar]
  41. ParkS. Artificial intelligence-assisted design of magnetic nanoparticles for personalized medicine.Nat. Nanotechnol.2022179823834
    [Google Scholar]
  42. NairS. Magnetic nanoparticles in clinical translation: Challenges and future prospects.ACS Nano20211581234512362
    [Google Scholar]
  43. WangY. WangW. ZhaoL. Dual-responsive immunosensors combining electrochemical and fluorescence detection for cancer biomarker specificity.Anal. Chem.202193245746610.1021/acs.analchem.0c04207
    [Google Scholar]
  44. HeX. LiM. ZhangJ. Magnetic nanoparticles in microfluidic devices for ultrasensitive cancer biomarker detection.Nat. Commun.2019101433110.1038/s41467‑019‑12314‑2 31575871
    [Google Scholar]
  45. JohnsonC. Smart magnetic nanocarriers for precision medicine.Adv. Drug Deliv. Rev.2023192114682
    [Google Scholar]
  46. LiuX. Machine learning-driven optimization of magnetic nanoparticles for drug delivery.Nano Today202244101511
    [Google Scholar]
  47. TorresF.G. Recent advances in nanotechnology for imaging applications.ACS Biomater. Sci. Eng.202173832848
    [Google Scholar]
  48. TeramuraY. ArimaY. IwataH. Surface plasmon resonance (SPR) sensor using biotinylated magnetic nanoparticles for signal amplification in a sandwich assay.Anal. Chem.200678207521752710.1021/ac0610291
    [Google Scholar]
  49. SunY. XiaN. LiuY. TianZ. Magnetic nanoparticle-based surface plasmon resonance (SPR) sensor for enhanced detection sensitivity in direct assays.Anal. Chim. Acta2007601219119810.1016/j.aca.2007.09.022
    [Google Scholar]
  50. AhmadR. Biosensing applications of magnetic nanoparticles: A review.Biosens. Bioelectron.2020165112403
    [Google Scholar]
  51. WeiH. Nanoparticle-based biosensors for early disease detection.ACS Sens.20194613651382
    [Google Scholar]
  52. KangS. Nanomaterials for minimally invasive diagnostics and therapy.Adv. Funct. Mater.202333102210874
    [Google Scholar]
  53. YinH. Current trends in the biomedical applications of iron oxide nanoparticles.J. Nanosci. Nanotechnol.202222519872003
    [Google Scholar]
  54. Enhancements in SPR sensors using magnetic nanoparticle-Au/Ag composites. Multiple studies highlight increased plasmonic effects and sensitivity through core-shell structures.J. Nanomater10.1155/2008/732454
    [Google Scholar]
  55. SoelbergS.D. StevensR.C. LimayeA.P. FurlongC.E. Surface plasmon resonance detection of Staphylococcal enterotoxin B in stool samples using magnetic nanoparticle-conjugated antibodies.Biosens. Bioelectron.200925245646110.1016/j.bios.2009.06.027 19717294
    [Google Scholar]
  56. ZhaoW. XuJ. ChenH. HuangY. Dual-responsive electrochemical/fluorescence immunosensor for carcinoembryonic antigen detection using CdSe nanoparticles and magnetic nanoparticles.Biosens. Bioelectron.20145322723310.1016/j.bios.2013.09.033
    [Google Scholar]
  57. BhandariD. ChenF.C. BridgmanR.C. Magnetic nanoparticles enhanced surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in Romaine Lettuce.Sensors (Basel)202222247510.3390/s22020475 35062436
    [Google Scholar]
  58. ZhangY. Surface plasmon resonance immunosensor with antibody-functionalized magnetoplasmonic nanoparticles for signal amplification.ACS Appl. Mater. Interfaces20221422581258910.1021/acsami.2c02936
    [Google Scholar]
  59. FangY. WangY. ZhuL. LiuH. SuX. LiuY. ChenZ. ChenH. HeN. A novel cartridge for nucleic acid extraction, amplification and detection of infectious disease pathogens with the help of magnetic nanoparticles.Chin. Chem. Lett.202334810809210.1016/j.cclet.2022.108092
    [Google Scholar]
  60. LvX-F. RanX.Y. ZhaoY. ZhangR.R. ZhangL.N. ShiJ. XuJ.X. KongQ.Q. YuX.Q. LiK. Combing NIR-II molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency.Chin. Chem. Lett.202536411002710.1016/j.cclet.2024.110027
    [Google Scholar]
  61. ZouY. WangW. WangX. YangX. Magneto-plasmonic nanoparticles in tuberculosis detection: Signal enhancement through spherical nanoparticle conjugates.Sens. Actuators B Chem.202032012831210.1016/j.snb.2020.128312
    [Google Scholar]
  62. GuptaG. JhaS.K. MahatoT.H. Signal amplification in SPR assays using secondary antibody-conjugated magnetic nanoparticles for biomarker detection.Anal. Biochem.202163011439510.1016/j.ab.2021.114395
    [Google Scholar]
  63. SunY. XiaY. Enhancing SPR sensitivity using biotin-streptavidin functionalized magnetic nanoparticles for detecting proteases and immunoglobulins.Anal. Chim. Acta201810239410210.1016/j.aca.2018.03.041
    [Google Scholar]
  64. LiuT. WangS. WangJ. HuangJ. LiH. LiuY. Magnetic nanoparticle-enhanced surface plasmon resonance sensor for detecting Salmonella enteritidis.Biosens. Bioelectron.201810612813510.1016/j.bios.2018.01.027
    [Google Scholar]
  65. WangY. ZhangC. WangS. Functionalized magnetic nanoparticles for bacterial separation and enhanced SPR detection.Anal. Chem.20209253410341810.1021/acs.analchem.9b05533
    [Google Scholar]
  66. MahmudT. AzizA. RehmanA. Advanced SPR platforms integrated with magnetic nanoparticles for rapid pathogen detection in food samples.Food Chem.202133612772210.1016/j.foodchem.2020.127722
    [Google Scholar]
  67. ChoiJ.R. LimS.A. Enhancing pathogen detection sensitivity using antibody-coated magnetic nanoparticles and SPR biosensors.Trends Analyt. Chem.201912011565910.1016/j.trac.2019.115659
    [Google Scholar]
  68. WangY. SunL. ZhangJ. Development of Fe3O4-based electrochemical sensors for glucose detection.Biosens. Bioelectron.2021176112933
    [Google Scholar]
  69. SharmaA. GuptaR. KumarP. Label-free DNA hybridization detection using gold-coated MNPs and impedance spectroscopy.Sens. Actuators B Chem.2020311127955
    [Google Scholar]
  70. LiX. ChenL. HuangY. Silica-coated Fe3O4 nanoparticles for amperometric detection of PSA.Anal. Chim. Acta20221193338520
    [Google Scholar]
  71. ZhaoW. WangC. LiuH. Detection of heavy metal ions using cobalt ferrite nanoparticles and DPV.Talanta2019197392398
    [Google Scholar]
  72. KhanN. AwanT. AliS. Polymer-coated magnetic nanoparticles for cholesterol biosensing applications.J. Electroanal. Chem. (Lausanne)2023935117927
    [Google Scholar]
  73. KimJ. ParkS. LeeK. Electrochemical impedance-based sensing of pathogenic bacteria using magnetic bead-antibody conjugates.Biosensors (Basel)202010667 32560377
    [Google Scholar]
  74. MaedaH. TsukigawaK. Nano-drug delivery: Is the enhanced permeability and retention effect sufficient for curing tumors?J. Control. Release202032221210.1016/j.jconrel.2020.07.007
    [Google Scholar]
  75. FangJ. NakamuraH. MaedaH. The enhanced permeability and retention (EPR) effect: A new paradigm for drug targeting in cancer therapy.J. Nanomed. Nanotechnol.202112256710.4172/2157‑7439.1000567
    [Google Scholar]
  76. ChauhanV.P. JainR.K. Enhanced permeability and retention effect as a ubiquitous strategy in tumor nanomedicine: Is it a reality?J. Pers. Med.20221212196410.3390/jpm12121964 36556185
    [Google Scholar]
  77. SubhanM.A. ParveenF. FilipczakN. YalamartyS.S.K. TorchilinV.P. Approaches to improve EPR-based drug delivery for cancer treatment.J. Pers. Med.202313338910.3390/jpm13030389 36983571
    [Google Scholar]
  78. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer20161610571587 27834398
    [Google Scholar]
  79. BarenholzY. Doxil®—The first FDA-approved nano-drug: Lessons learned and future directions.J. Control. Release202336011713410.1016/j.jconrel.2023.07.020
    [Google Scholar]
  80. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  81. LuY. ParkK. Polymeric micelles and alternative nanocarriers for tumor-targeted drug delivery.Int. J. Pharm.2023651219821310.1016/j.ijpharm.2023.05.028
    [Google Scholar]
  82. CostaD. ValenteT.A.S. CorreiaI.J. BotelhoC.M. PCL-based formulations for drug delivery: A review of computational and experimental studies.Eur. J. Pharm. Biopharm.202315911710.1016/j.ejpb.2023.06.004
    [Google Scholar]
  83. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges, and opportunities.Nat. Rev. Cancer2023231057158710.1038/nrc.2023.108 27834398
    [Google Scholar]
  84. ZhangL. LeiJ. MaL. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment.Int. J. Nanomedicine2021167015704110.3390/pharmaceutics13020152
    [Google Scholar]
  85. HuangX. El-SayedI.H. El-SayedM.A. Targeted hyperthermia using metal nanoparticles.J. Nanomater.2010201039629810.1016/j.addr.2009.11.006
    [Google Scholar]
  86. LinX. ZhouW. CaoW. An advanced in situ magnetic resonance imaging and ultrasonic nanotheranostic FePt platform for doxorubicin delivery.Biomater. Sci.20219103767378010.1021/acsami.1c04990
    [Google Scholar]
  87. ChenG. LuoZ. ZhangX. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy.Theranostics202010104754477110.7150/thno.42818 32292521
    [Google Scholar]
  88. JordanA. ScholzR. WustP. FählingH. Roland Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles.J. Magn. Magn. Mater.19992011-341341910.1016/S0304‑8853(99)00088‑8
    [Google Scholar]
  89. HuangX. El-SayedI.H. El-SayedM.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.200712939123861238710.1021/ja057254a 16464114
    [Google Scholar]
  90. JainP.K. El-SayedM.A. Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing.Nano Lett.20088124347435210.1021/nl8021835 19367968
    [Google Scholar]
  91. ReinerA.T. FerrerN-G. VenugopalanP. LaiR.C. LimS.K. DostálekJ. Magnetic nanoparticle-enhanced surface plasmon resonance biosensor for extracellular vesicle analysis.Analyst2017142203913392110.1039/c7an00538j
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812387110250714094126
Loading
/content/journals/nanoasi/10.2174/0122106812387110250714094126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test