Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Para-nitrophenol (p-NP) is a toxic pollutant frequently released from industrial processes, posing risks to both environmental and human health. This study aimed to develop a highly sensitive electrochemical sensor using a TiCTx MXene-based ternary nanocomposite.

Methods

A ternary nanocomposite comprising TiCTx, single-walled carbon nanotubes (SWCNTs), and silver (Ag) nanoparticles was synthesized through ultrasonic dispersion and chemical reduction under alkaline conditions. The resulting material was characterized using UV–Vis spectroscopy, FTIR spectroscopy, XRD, SEM, and electrochemical impedance spectroscopy (EIS). The composite was drop-cast onto a glassy carbon electrode (GCE) and evaluated using cyclic voltammetry (CV).

Results

Multiple characterizations confirmed the formation of the nanocomposite. The TiCTx/SWCNT/Ag/GCE exhibited excellent performance for p-nitrophenol (p-NP) detection at a low reduction potential of –0.47 V. This sensor exhibited a linear detection range of 5–30 µM and 50–500 µM, with a detection limit of 0.32 µM. The TiCTx/SWCNT/Ag/GCE showed good repeatability and stability over multiple cycles.

Discussion

The enhanced electrocatalytic performance was attributed to the high conductivity of MXene, the fast electron transfer properties of SWCNTs, and the catalytic activity of Ag nanoparticles. This synergy enabled sensitive p-NP detection at a lower potential.

Conclusion

The TiCTx/SWCNT/Ag-modified GCE presents a promising platform for the sensitive detection of environmental pollutants, such as p-NP. This study provides insights into the design of multifunctional nanocomposites for advanced electrochemical sensor applications.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812381051250704051713
2025-07-11
2025-11-14
Loading full text...

Full text loading...

References

  1. EllisF. Paracetamol. PackM.J. Cambridge, EnglandRoyal Society of Chemistry2002
    [Google Scholar]
  2. NegiK. KumarM. ChauhanM.S. Solution combustion synthesis of CeO2/ZnO nano-composite as a potential scaffold for detection and degradation of p-nitrophenol.Mater. Chem. Phys.2019226596510.1016/j.matchemphys.2018.12.083
    [Google Scholar]
  3. ScaranoS. PalladinoP. PascaleE. BrittoliA. MinunniM. Colorimetric determination of p-nitrophenol by using ELISA microwells modified with an adhesive polydopamine nanofilm containing catalytically active gold nanoparticles.Mikrochim. Acta2019186314610.1007/s00604‑019‑3259‑2 30707372
    [Google Scholar]
  4. ParkJ. BaeS. Formation of Fe nanoparticles on water-washed coal fly ash for enhanced reduction of p-nitrophenol.Chemosphere201820273374110.1016/j.chemosphere.2018.03.152 29604560
    [Google Scholar]
  5. da SilvaW.P. CarlosT.D. CavalliniG.S. PereiraD.H. Peracetic acid: Structural elucidation for applications in wastewater treatment.Water Res.202016811514310.1016/j.watres.2019.115143 31590037
    [Google Scholar]
  6. ElbarbryF. WilbyK. AlcornJ. Validation of a HPLC method for the determination of p-nitrophenol hydroxylase activity in rat hepatic microsomes.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20068341-219920310.1016/j.jchromb.2006.02.006 16497568
    [Google Scholar]
  7. LinY.C. LinP.Y. BeckD.E. HsuY.C. ChengS.H. HsiehS. Fluorescence quenching detection of p-nitrophenol in river water using functional perovskite quantum dots.Environ. Technol. Innov.20233210329710.1016/j.eti.2023.103297
    [Google Scholar]
  8. KhanA. RehmanZ. KhanA. AmbareenH. UllahH. AbbasS.M. KhanY. KhanR. Solar-light driven photocatalytic conversion of p -nitrophenol to p -aminophenol on CdS nanosheets and nanorods.Inorg. Chem. Commun.2017799910310.1016/j.inoche.2017.03.033
    [Google Scholar]
  9. CachoJ.I. CampilloN. ViñasP. Hernández-CórdobaM. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography–mass spectrometry.J. Chromatogr. A20161456273310.1016/j.chroma.2016.05.098 27317004
    [Google Scholar]
  10. Padilla-SánchezJ.A. Plaza-BolañosP. Romero-GonzálezR. Garrido-FrenichA. Martínez VidalJ.L. Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography–triple quadrupole-mass spectrometry/mass spectrometry.J. Chromatogr. A20101217365724573110.1016/j.chroma.2010.07.004 20684958
    [Google Scholar]
  11. ZhouY. ZhaoJ. LiS. GuoM. FanZ. An electrochemical sensor for the detection of p -nitrophenol based on a cyclodextrin-decorated gold nanoparticle–mesoporous carbon hybrid.Analyst2019144144400440610.1039/C9AN00722A 31210210
    [Google Scholar]
  12. SuR. TangH. XiF. Sensitive electrochemical detection of p-nitrophenol by pre-activated glassy carbon electrode integrated with silica nanochannel array film.Front Chem.20221095474810.3389/fchem.2022.954748 35991606
    [Google Scholar]
  13. SinghS. KumarN. KumarM. Jyoti AgarwalA. MizaikoffB. Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles.Chem. Eng. J.201731328329210.1016/j.cej.2016.12.049
    [Google Scholar]
  14. SridharanG. AtchudanR. MageshV. AryaS. GanapathyD. NallaswamyD. SundramoorthyA.K. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review.Electroanalysis202335920230009310.1002/elan.202300093
    [Google Scholar]
  15. Vinoth KumarJ. KarthikaD. RadhakrishnanK. ArulV. Waqas AlamM. RosaiahP. DhananjayaM. Woo JooS. MXene nanocomposites for current trend applications: Synthesis, properties, and future directions.J. Mol. Liq.202439412378710.1016/j.molliq.2023.123787
    [Google Scholar]
  16. KhorsandiD. YangJ.W. ÜlkerZ. BayraktaroğluK. ZarepourA. IravaniS. KhosraviA. MXene-based nano(bio)sensors for the detection of biomarkers: A move towards intelligent sensors.Microchem. J.202419710987410.1016/j.microc.2023.109874
    [Google Scholar]
  17. Gokul EswaranS. RashadM. Santhana Krishna KumarA. EL-MahdyA.F.M. A comprehensive review of mxene‐based emerging materials for energy storage applications and future perspectives.Chem. Asian J.202520420240118110.1002/asia.202401181 39644135
    [Google Scholar]
  18. ParamasivamG. YadavaliS.P. AtchudanR. AryaS. SundramoorthyA.K. Recent advances in the medical applications of two-dimensional MXene nanosheets.Nanomedicine202419302633265410.1080/17435889.2024.2422806 39552604
    [Google Scholar]
  19. SundramoorthyA.K. Two-dimensional MXene (Ti3C2Tx)-based nano-photosensitizers for enhanced photothermal ablation of tumor cells.Micro Nanosyst.202417
    [Google Scholar]
  20. BalasamyS. GanapathyD. AtchudanR. AryaS. SundramoorthyA.K. Chitosan/MXene composite scaffolds for bone regeneration in oral cancer treatment - A review.Curr. Cancer Ther. Rev.2024212110.2174/0115733947326282240924003811
    [Google Scholar]
  21. YangY. CaoZ. ShiL. WangR. SunJ. Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions.Appl. Surf. Sci.202053314747510.1016/j.apsusc.2020.147475
    [Google Scholar]
  22. KumarS. ParkH.M. SinghT. KumarM. SeoY. Long-term stability studies and applications of Ti3C2Tx MXene.Int. J. Energy Res.2023202311210.1155/2023/5275439
    [Google Scholar]
  23. GogotsiY. AnasoriB. The rise of MXenes.ACS Nano20191388491849410.1021/acsnano.9b06394 31454866
    [Google Scholar]
  24. GogotsiY. HuangQ. MXenes: Two-dimensional building blocks for future materials and devices.ACS Nano20211545775578010.1021/acsnano.1c03161 33906288
    [Google Scholar]
  25. NaguibM. KurtogluM. PresserV. LuJ. NiuJ. HeonM. HultmanL. GogotsiY. BarsoumM.W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.Adv. Mater.201123374248425310.1002/adma.201102306 21861270
    [Google Scholar]
  26. BatiA.S.R. YuL. TawfikS.A. SpencerM.J.S. ShawP.E. BatmunkhM. ShapterJ.G. Electrically sorted single-walled carbon nanotubes-based electron transporting layers for perovskite solar cells.iScience20191410011210.1016/j.isci.2019.03.015 30947087
    [Google Scholar]
  27. NishimuraK. UshiyamaT. VietN.X. InabaM. KishimotoS. OhnoY. Enhancement of the electron transfer rate in carbon nanotube flexible electrochemical sensors by surface functionalization.Electrochim. Acta201929515716310.1016/j.electacta.2018.10.147
    [Google Scholar]
  28. Granados-MartínezF.G. Domratcheva-LvovaL. Flores-RamírezN. García-GonzálezL. Zamora-PeredoL. Mondragón-SánchezM.L. Composite films from polystyrene with hydroxyl end groups and carbon nanotubes.Mater. Res.201719133138(Suppl. 1), 133-3810.1590/1980‑5373‑mr‑2016‑0783
    [Google Scholar]
  29. JanasD. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled carbon nanotubes.Mater. Chem. Front.201821366310.1039/C7QM00427C
    [Google Scholar]
  30. CaiY. ChenX. XuY. ZhangY. LiuH. ZhangH. TangJ. Ti 3 C 2 Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives.Carbon Energy20246250110.1002/cey2.501
    [Google Scholar]
  31. JiangS. LuL. SongY. Recent advances of flexible mxene and its composites for supercapacitors.Chemistry2024302420230403610.1002/chem.202304036 38298129
    [Google Scholar]
  32. XuC. FanC. ZhangX. ChenH. LiuX. FuZ. WangR. HongT. ChengJ. MXene (Ti 3 C 2 Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC.ACS Appl. Mater. Interfaces20201217195391954610.1021/acsami.0c02446 32270995
    [Google Scholar]
  33. AhmedA. SharmaS. AdakB. HossainM.M. LaChanceA.M. MukhopadhyayS. SunL. Two‐dimensional MXenes: New frontier of wearable and flexible electronics.InfoMat2022441229510.1002/inf2.12295
    [Google Scholar]
  34. ZhaoY. XiaY. ZhangJ. LiuH. YiY. ZhuG. Ag-Ti3C2Tx MXenes nanoribbons coupled with carbon nanotubes: Preparation, characterization and application for highly sensitive ratiometric voltammetric sensing of paracetamol.Microchem. J.202318510820710.1016/j.microc.2022.108207
    [Google Scholar]
  35. ThakurD. SharmaA. RanaD.S. ThakurN. SinghD. TamuleviciusT. AndruleviciusM. TamuleviciusS. ShuklaS.K. ThakurS. Facile synthesis of silver-doped zinc oxide nanostructures as efficient scaffolds for detection of p-nitrophenol.Chemosensors20208410810.3390/chemosensors8040108
    [Google Scholar]
  36. PratapR. PandeyS. VishalV. RaghuvanshiI. KumarS. LahiriJ. ParmarA.S. Sensing of p-nitrophenol using highly selective and sensitive Boran, Nitrogen doped quantum dots.Chemical Physics Impact2024910069710.1016/j.chphi.2024.100697
    [Google Scholar]
  37. KadamV.V. BalakrishnanR.M. Ponnan EttiyappanJ. ThomasN.S. D SouzaS.A. ParappanS. Sensing of p-nitrophenol in aqueous solution using zinc oxide quantum dots coated with APTES.Environ. Nanotechnol. Monit. Manag.20211610047410.1016/j.enmm.2021.100474
    [Google Scholar]
  38. KrishnamoorthyR. MuthumalaiK. NagarajaT. RajendrakumarR.T. DasS.R. Chemically exfoliated titanium carbide MXene for highly sensitive electrochemical sensors for detection of 4-nitrophenols in drinking water.ACS Omega2022746426444265410.1021/acsomega.2c06505 36440156
    [Google Scholar]
  39. LeiL. LiC. HuangW. WuK. Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti 3 C 2 Tx MXene based electrochemical sensor.Analyst2021146247593760010.1039/D1AN01799C 34780586
    [Google Scholar]
  40. GopiP.K. SanjayanC.G. AkhilS. Hunsur RavikumarC. ThitamadeeS. KongpatanakulS. BalakrishnaR.G. SurareungchaiW. Silver bismuth sulphide (AgBiS2)-MXene composite as high-performance electrochemical sensing platform for sensitive detection of pollutant 4-nitrophenol.Electrochim. Acta202449814461610.1016/j.electacta.2024.144616
    [Google Scholar]
  41. LiR. ZhangL. ShiL. WangP. MXene Ti 3 C 2: An effective 2D light-to-heat conversion material.ACS Nano20171143752375910.1021/acsnano.6b08415 28339184
    [Google Scholar]
  42. PiralaeeM. AsgariA. The role of silver nanoparticles in performance of multi-quantum well double heterojunction InGaN/GaN solar cells.Chem. Phys. Lett.202075413750010.1016/j.cplett.2020.137500
    [Google Scholar]
  43. TomiyamaT. MukaiI. YamazakiH. TakedaY. Optical properties of silver nanowire/polymer composite films: Absorption, scattering, and color difference.Opt. Mater. Express20201012320210.1364/OME.412015
    [Google Scholar]
  44. MuruganR.V. SridharanG. AtchudanR. AryaS. NallaswamyD. SundramoorthyA.K. A facile synthesis of bimetallic copper-silver nanocomposite and their application in ascorbic acid detection.Curr. Nanosci.202421230931810.2174/0115734137281377240103062220
    [Google Scholar]
  45. SridharanG. BabuK.L. GanapathyD. AtchudanR. AryaS. SundramoorthyA.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract.Crystals202313458910.3390/cryst13040589
    [Google Scholar]
  46. BaluS. VivekP. SundramoorthyA.K. Photocatalytic degradation of binary dyes, methyl orange and methyl green, in aqueous media using 2D g-C3N4/polyaniline/silver nanocomposite.Curr. Nanosci.2025212110.2174/0115734137356016250211063405
    [Google Scholar]
  47. RandviirE.P. BanksC.E. A review of electrochemical impedance spectroscopy for bioanalytical sensors.Anal. Methods202214454602462410.1039/D2AY00970F 36342043
    [Google Scholar]
  48. SridharanG. GodwinC.J.T. AtchudanR. AryaS. GovindasamyM. OsmanS.M. SundramoorthyA.K. Iron oxide decorated hexagonal boron nitride modified electrochemical sensor for the detection of nitrofurantoin in human urine samples.J. Taiwan Inst. Chem. Eng.202416310532010.1016/j.jtice.2023.105320
    [Google Scholar]
  49. VisagamaniM. Electrochemical detection of 4-nitrophenol using a novel SrTiO3/Ag/RGO composite.ACS Omega20238424794249110.1021/acsomega.3c05111
    [Google Scholar]
  50. AttiaK.A.M. Abdel-RaoofA.M. SeragA. EidS.M. AbbasA.E. Innovative electrochemical electrode modified with Al 2 O 3 nanoparticle decorated MWCNTs for ultra-trace determination of tamsulosin and solifenacin in human plasma and urine samples and their pharmaceutical dosage form.RSC Advances20221227175361754910.1039/D2RA01962K 35765456
    [Google Scholar]
  51. LavironE. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems.J. Electroanal. Chem. Interfacial Electrochem.19791011192810.1016/S0022‑0728(79)80075‑3
    [Google Scholar]
  52. LiuZ. DuJ. QiuC. HuangL. MaH. ShenD. DingY. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold.Electrochem. Commun.20091171365136810.1016/j.elecom.2009.05.004
    [Google Scholar]
  53. NdlovuT. ArotibaO.A. KrauseR.W. MambaB.B. Electrochemical detection of o-nitrophenol on a poly(propyleneimine)-gold nanocomposite modified glassy carbon electrode.Int. J. Electrochem. Sci.2010581179118610.1016/S1452‑3981(23)15353‑3
    [Google Scholar]
  54. ShuklaS. ChaudharyS. UmarA. ChaudharyG.R. MehtaS.K. Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor.Sens. Actuators B Chem.201419623123710.1016/j.snb.2014.02.016
    [Google Scholar]
  55. SinghK. KaurA. UmarA. ChaudharyG.R. SinghS. MehtaS.K. A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol.J. Appl. Electrochem.201545325326110.1007/s10800‑014‑0762‑3
    [Google Scholar]
  56. KumarV. SinghK. PanwarS. MehtaS.K. Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol.Int. Nano Lett.20177212313110.1007/s40089‑017‑0205‑3
    [Google Scholar]
  57. TheodorssonE. Limit of detection, limit of quantification and limit of blank.Available from: https://www.eflm.eu/files/efcc/Zagreb-Theodorsson_2.pdf
  58. BarmanK. ChangmaiB. JasimuddinS. Electrochemical detection of para‐nitrophenol using copper metal nanoparticles modified gold electrode.Electroanalysis201729122780278710.1002/elan.201700430
    [Google Scholar]
  59. WienchP. GrzybB. GonzálezZ. MenéndezR. HandkeB. GryglewiczG. pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode.J. Electroanal. Chem.2017787808710.1016/j.jelechem.2017.01.040
    [Google Scholar]
  60. ZhangC. GovindarajuS. GiribabuK. HuhY.S. YunK. AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol.Sens. Actuators B Chem.201725261662310.1016/j.snb.2017.06.039
    [Google Scholar]
  61. LiuB. WangT. YinC. WeiZ. Electrochemical analysis of p-nitrophenol in acidic or alkaline medium using silver nanoparticle decorated multi-walled carbon nanotubes.J. Mater. Sci.201449155398540510.1007/s10853‑014‑8251‑y
    [Google Scholar]
  62. ZhangJ. CuiS. DingY. YangX. GuoK. ZhaoJ.T. Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol.Biosens. Bioelectron.201811217718510.1016/j.bios.2018.03.021 29704786
    [Google Scholar]
  63. HashemzaeiZ. SaravaniH. SharifitabarM. ShahbakhshM. Copper nanowires/poly (naphtoquinone chromium (III)) for simultaneous voltammetric detection of para - aminophenol, phenol and para - nitrophenol.Microchem. J.202217510721010.1016/j.microc.2022.107210
    [Google Scholar]
  64. NarouieS. RounaghiG.H. SaravaniH. ShahbakhshM. Iodine/iodide-doped polymeric nanospheres for simultaneous voltammetric detection of p-aminophenol, phenol, and p-nitrophenol.Mikrochim. Acta2022189826710.1007/s00604‑022‑05361‑y 35779180
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812381051250704051713
Loading
/content/journals/nanoasi/10.2174/0122106812381051250704051713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test