Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

The human population ranks third in the occurrence of colorectal cancer (CRC). Cancer of the colon typically begins as a normal polyp on the colon or rectum's inner wall but can progress to cancer if left untreated. Early detection of CRC may be crucial in preventative and therapeutic measures to lower the death rate, even if there are few treatment options for CRC. Several molecular markers are present in CRC-affected tissues, which might provide an entirely new perspective from which to approach the development of more effective treatments. Nanotechnology encompasses a vast range of novel and remarkable nanoparticles that have tremendous potential for use in medical diagnosis and treatment. Dendrimers, silica nanoparticles, carbon nanotubes, liposomes, and gold nanoparticles are only a few examples of the nanomaterials and nanoformulations that have the potential to be utilised for diagnostic and targeted anticancer drug delivery in colorectal cancer. The bioavailability, biocompatibility, and minimal toxicity of selenium nanoparticles (SeNPs) have recently attracted the curiosity of numerous researchers. Because of their increased bioactivity, selenium nanoparticles are finding widespread use in a wide range of biomedical fields. Biological, chemical, and physical processes are all capable of producing selenium nanoparticles. But SeNPs made sustainably are better to human tissues and organs. This review paper covers a lot of ground when it comes to colorectal cancer, covering the many stages of the disease, new diagnostic tools, and treatment methods that make use of nano-formulations. The biomedical uses and synthesis of SeNPs are covered in this review.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812342216241120051723
2024-11-26
2025-10-12
Loading full text...

Full text loading...

References

  1. SpaanderM.C.W. ZauberA.G. SyngalS. BlaserM.J. SungJ.J. YouY.N. KuipersE.J. Young-onset colorectal cancer.Nat. Rev. Dis. Primers2023912110.1038/s41572‑023‑00432‑737105987
    [Google Scholar]
  2. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  3. WeiQ.Y. XuY.M. LauA.T.Y. Recent progress of nanocarrier-based therapy for solid malignancies.Cancers (Basel)20201210278310.3390/cancers1210278332998391
    [Google Scholar]
  4. ChangY. OuQ. ZhouX. NieK. YanH. LiuJ. LiJ. ZhangS. Mapping the intellectual structure and landscape of nano-drug delivery systems in colorectal cancer.Front. Pharmacol.202314125893710.3389/fphar.2023.125893737781707
    [Google Scholar]
  5. BrarB. RanjanK. PalriaA. KumarR. GhoshM. SihagS. MinakshiP. Nanotechnology in colorectal cancer for precision diagnosis and therapy.Front. Nanotechnol.2021369926610.3389/fnano.2021.699266
    [Google Scholar]
  6. KrastevaN. GeorgievaM. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials.Pharmaceutics2022146121310.3390/pharmaceutics1406121335745786
    [Google Scholar]
  7. GogoiP. KaurG. SinghN.K. Nanotechnology for colorectal cancer detection and treatment.World J. Gastroenterol.202228466497651110.3748/wjg.v28.i46.649736569271
    [Google Scholar]
  8. German-CortésJ. Vilar-HernándezM. RafaelD. AbasoloI. AndradeF. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment.Pharmaceutics202315383110.3390/pharmaceutics1503083136986692
    [Google Scholar]
  9. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  10. YaqoobA.A. AhmadH. ParveenT. AhmadA. OvesM. IsmailI.M.I. QariH.A. UmarK. Mohamad IbrahimM.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review.Front Chem.2020834110.3389/fchem.2020.0034132509720
    [Google Scholar]
  11. TruongL.B. Medina-CruzD. MostafaviE. RabieeN. Selenium Nanomaterials to Combat Antimicrobial Resistance.Molecules20212612361110.3390/molecules2612361134204666
    [Google Scholar]
  12. ZhangT. QiM. WuQ. XiangP. TangD. LiQ. Recent research progress on the synthesis and biological effects of selenium nanoparticles.Front. Nutr.202310118348710.3389/fnut.2023.118348737260518
    [Google Scholar]
  13. Sans-SerramitjanaE. ObrequeM. MuñozF. ZarorC. MoraM.L.L. ViñasM. BetancourtP. Antimicrobial activity of selenium nanoparticles (SeNPs) against potentially pathogenic oral microorganisms: A scoping review.Pharmaceutics2023159225310.3390/pharmaceutics1509225337765222
    [Google Scholar]
  14. BishtN. PhalswalP. KhannaP.K. Selenium nanoparticles: a review on synthesis and biomedical applications.Mater. Adv.20223314151431[Internet].10.1039/D1MA00639H
    [Google Scholar]
  15. HaggarF. BousheyR. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors.Clin. Colon Rectal Surg.200922419119710.1055/s‑0029‑124245821037809
    [Google Scholar]
  16. SchroyP.C. DuhovicE. ChenC.A. HeerenT.C. LopezW. ApodacaD.L. WongJ.B. Risk stratification and shared decision making for colorectal cancer screening.Med. Decis. Making201636452653510.1177/0272989X1562562226785715
    [Google Scholar]
  17. XynosI.D. KavantzasN. TsaousiS. ZacharakisM. AgrogiannisG. KosmasC. LazarisA. SarantonisJ. SougioultzisS. TzivrasD. PolyzosA. PatsourisE.S. TsavarisN. Factors influencing survival in stage IV colorectal cancer: The influence of DNA ploidy.ISRN Gastroenterol.201320131610.1155/2013/49057823840958
    [Google Scholar]
  18. LaiY. WangC. CivanJ.M. PalazzoJ.P. YeZ. HyslopT. LinJ. MyersR.E. LiB. JiangB. SamaA. XingJ. YangH. Effects of cancer stage and treatment differences on racial disparities in survival from colon cancer: A United States population-based study.Gastroenterology201615051135114610.1053/j.gastro.2016.01.03026836586
    [Google Scholar]
  19. PestaM. KuldaV. NarsanskaA. FichtlJ. TopolcanO. May CTC technologies promote better cancer management?EPMA J.201561110.1186/s13167‑014‑0023‑x25628770
    [Google Scholar]
  20. YoungP.E. WomeldorphC.M. JohnsonE.K. MaykelJ.A. BrucherB. StojadinovicA. AvitalI. NissanA. SteeleS.R. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: Current status and challenges.J. Cancer20145426227110.7150/jca.798824790654
    [Google Scholar]
  21. SeifiZ. KhazaeiM. CheraghaliD. RezakhaniL. Decellularized tissues as platforms for digestive system cancer models.Heliyon20241011e3158910.1016/j.heliyon.2024.e3158938845895
    [Google Scholar]
  22. AlzahraniS. Al DoghaitherH. Al-GhafariA. General insight into cancer: An overview of colorectal cancer (Review).Mol. Clin. Oncol.202115627110.3892/mco.2021.243334790355
    [Google Scholar]
  23. BalchenV. SimonK. Colorectal cancer development and advances in screening.Clin. Interv. Aging20161196797610.2147/CIA.S10928527486317
    [Google Scholar]
  24. TanakaT. Colorectal carcinogenesis: Review of human and experimental animal studies.J. Carcinog.200981510.4103/1477‑3163.4901419332896
    [Google Scholar]
  25. ArmaghanyT. WilsonJ.D. ChuQ. MillsG. Genetic alterations in colorectal cancer.Gastrointest. Cancer Res.201251192722574233
    [Google Scholar]
  26. ZhuM. NiuG. TangJ. Elemental Se: Fundamentals and its optoelectronic applications.J. Mater. Chem. C Mater. Opt. Electron. Devices2019782199220610.1039/C8TC05873C
    [Google Scholar]
  27. AnsariJ.A. MalikJ.A. AhmedS. ManzoorM. AhemadN. AnwarS. Recent advances in the therapeutic applications of selenium nanoparticles.Mol. Biol. Rep.202451168810.1007/s11033‑024‑09598‑z38796570
    [Google Scholar]
  28. KangL. JiaY. WuY. LiuH. ZhaoD. JuY. PanC. MaoJ. Selenium nanoparticle and melatonin treatments improve melon seedling growth by regulating carbohydrate and polyamine.Int. J. Mol. Sci.20242514783010.3390/ijms2514783039063071
    [Google Scholar]
  29. KrinskyN.I. BeecherG.R. BurkR.F. ChanA.C. ErdmanJ.W. JacobR.A. JialalI. KolonelL.N. MarshallJ.R. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and CarotenoidsWashington DC, USAThe National Academies Press2000
    [Google Scholar]
  30. VahdatiM. Tohidi MoghadamT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties.Sci. Rep.20201051010.1038/s41598‑019‑57333‑731949299
    [Google Scholar]
  31. ForootanfarH. Adeli-SardouM. NikkhooM. MehrabaniM. Amir-HeidariB. ShahverdiA.R. ShakibaieM. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide.J. Trace Elem. Med. Biol.2014281757910.1016/j.jtemb.2013.07.00524074651
    [Google Scholar]
  32. YuB. ZhangY. ZhengW. FanC. ChenT. Zero-dimensional hybrid organic–inorganic indium bromide with blue emission.Inorg. Chem.2012518956896310.1021/ic301050v22873404
    [Google Scholar]
  33. HariharanH. Al-HarbiN. KaruppiahP. RajaramS. Microbial synthesis of selinium nanocomposite using saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection.Chalcogenide Lett.2012912509515
    [Google Scholar]
  34. ShahverdiA.R. FakhimiA. MosavatG. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against aspergillus fumigatus and Candida albicans.World Appl. Sci. J.201010918922
    [Google Scholar]
  35. BeheshtiN. SoflaeiS. ShakibaieM. YazdiM.H. GhaffarifarF. DalimiA. ShahverdiA.R. Leishmanicidal activities of novel methylseleno-imidocarbamates.J. Trace Elem. Med. Biol.20132720320710.1016/j.jtemb.2012.11.00223219368
    [Google Scholar]
  36. ShakibaieM. ForootanfarH. GolkariY. Mohammadi-KhorsandT. ShakibaieM.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.J. Trace Elem. Med. Biol.20152923524110.1016/j.jtemb.2014.07.02025175509
    [Google Scholar]
  37. CongW. BaiR. LiY-F. WangL. ChenC. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections.ACS Appl. Mater. Interfaces201911347253473510.1021/acsami.9b1231931479233
    [Google Scholar]
  38. JohnsonJ.A. SaboungiM.L. ThiyagarajanP. CsencsitsR. MeiselD. J. Selenium nanoparticles: A small-angle neutron scattering study Phys.J. Phys. Chem. B19991031596310.1021/jp983229y
    [Google Scholar]
  39. VidalO. Goff´eB. ArndtN. Metals for a low-carbon society.Nat. Geosci.2013689489610.1038/ngeo1993
    [Google Scholar]
  40. VenugopalS. Therapeutic potential of selenium nanoparticles.Front. Nanotechnol.20224104233810.3389/fnano.2022.1042338
    [Google Scholar]
  41. FortinaP. KrickaL.J. GravesD.J. ParkJ. HyslopT. TamF. HalasN. SurreyS. WaldmanS.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer.Trends Biotechnol.200725414515210.1016/j.tibtech.2007.02.00517316852
    [Google Scholar]
  42. LambeU. PM. BrarB. GurayM. NaI. RanjanK. BansalN. KhuranaS.K. JM. Nanodiagnostics: A new frontier for veterinary and medical sciences.J. Exp. Biol. Agric. Sci.201643S30732010.18006/2016.4(3S).307.320
    [Google Scholar]
  43. BoseS. PandaA.K. MukherjeeS. SaG. Curcumin and tumor immune-editing: Resurrecting the immune system.Cell Div.2015101610.1186/s13008‑015‑0012‑z26464579
    [Google Scholar]
  44. YallapuM.M. NageshP.K.B. JaggiM. ChauhanS.C. Therapeutic applications of curcumin nanoformulations.AAPS J.20151761341135610.1208/s12248‑015‑9811‑z26335307
    [Google Scholar]
  45. ShiY. ShanS. LiC. SongX. ZhangC. ChenJ. YouJ. XiongJ. Application of the tumor site recognizable and dual-responsive nanoparticles for combinational treatment of the drug-resistant colorectal can- cer.Pharm. Res.20203747210.1007/s11095‑020‑02791‑232215748
    [Google Scholar]
  46. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomedicine2020151239125210.2147/IJN.S23277732110020
    [Google Scholar]
  47. ZhangY. LiM. GaoX. ChenY. LiuT. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities.J. Hematol. Oncol.201912113710.1186/s13045‑019‑0833‑331847897
    [Google Scholar]
  48. YusefiM. ChanH.Y. TeowS.Y. KiaP. Lee-Kiun SoonM. SidikN.A.B.C. ShameliK. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells.Nanomaterials (Basel)2021117169110.3390/nano1107169134203241
    [Google Scholar]
  49. GeP. NiuB. WuY. XuW. LiM. SunH. ZhouH. ZhangX. XieJ. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety.Chem. Eng. J.202038312322810.1016/j.cej.2019.123228
    [Google Scholar]
  50. SoeZ.C. PoudelB.K. NguyenH.T. ThapaR.K. OuW. GautamM. PoudelK. JinS.G. JeongJ.H. KuS.K. ChoiH.G. YongC.S. KimJ.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells.Asian J. Pharm. Sci.2019141405110.1016/j.ajps.2018.09.00432104437
    [Google Scholar]
  51. BaiH. WangJ. PhanC.U. ChenQ. HuX. ShaoG. ZhouJ. LaiL. TangG. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment.Nat. Commun.202112175910.1038/s41467‑021‑21071‑033536421
    [Google Scholar]
  52. PanD.C. KrishnanV. SalinasA.K. KimJ. SunT. RavidS. PengK. WuD. NurunnabiM. NelsonJ.A. NiziolekZ. GuoJ. MitragotriS. Hyaluronic acid–doxorubicin nanoparticles for targeted treatment of colorectal cancer.Bioeng. Transl. Med.202161e1016610.1002/btm2.1016633532580
    [Google Scholar]
  53. AfzalM. Ameeduzzafar AlharbiK.S. AlruwailiN.K. Al-AbassiF.A. Al-MalkiA.A.L. KazmiI. KumarV. KamalM.A. NadeemM.S. AslamM. AnwarF. Nanomedicine in treatment of breast cancer – A challenge to conventional therapy.Semin. Cancer Biol.20216927929210.1016/j.semcancer.2019.12.01631870940
    [Google Scholar]
  54. MaedaH. SawaT. KonnoT. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS.J. Control. Release2001741-3476110.1016/S0168‑3659(01)00309‑111489482
    [Google Scholar]
  55. SahuS. GhoshV. JainP. Recent advancement of novel drug delivery systems for topical anaesthesia formulations.Curr. Nanomed.202515117
    [Google Scholar]
  56. WangY. MaJ. QiuT. TangM. ZhangX. DongW. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer.Eur. J. Pharm. Sci.202116310586410.1016/j.ejps.2021.10586433965502
    [Google Scholar]
  57. NicholsJ.W. BaeY.H. EPR: Evidence and fallacy.J. Control. Release201419045146410.1016/j.jconrel.2014.03.05724794900
    [Google Scholar]
  58. GolombekS.K. MayJ.N. TheekB. AppoldL. DrudeN. KiesslingF. LammersT. Tumor targeting via EPR: Strategies to enhance patient responses.Adv. Drug Deliv. Rev.2018130173810.1016/j.addr.2018.07.00730009886
    [Google Scholar]
  59. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.00820965219
    [Google Scholar]
  60. AnithaA. MayaS. SivaramA.J. MonyU. JayakumarR. Combinatorial nanomedicines for colon cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168115115910.1002/wnan.135326061225
    [Google Scholar]
  61. UdompornmongkolP. ChiangB.H. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications.J. Biomater. Appl.201530553754610.1177/088532821559447926170212
    [Google Scholar]
  62. JasmineM.D.C. PrabhuV.V. Polymeric nanoparticles-the new face in Drug Delivery and Cancer Therapy.Malaya J. Biosci.2014117
    [Google Scholar]
  63. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  64. HoosainF.G. ChoonaraY.E. TomarL.K. KumarP. TyagiC. du ToitL.C. PillayV. Bypassing P-glycoprotein drug efflux mechanisms: Possible applications in pharmacoresistant schizophrenia therapy.BioMed Res. Int.2015201512110.1155/2015/48496326491671
    [Google Scholar]
  65. ZhangM. KimY.K. CuiP. ZhangJ. QiaoJ. HeY. LyuJ. LuoC. XingL. JiangH. Folate-conjugated polyspermine for lung cancer–targeted gene therapy.Acta Pharm. Sin. B20166433634310.1016/j.apsb.2016.03.01027471674
    [Google Scholar]
  66. SinhaL. JainS.K. ChoudharyR. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement.Prob. Sci.20241124
    [Google Scholar]
  67. KumarM.K. NarayanS. SinghP.K. A review on advancement of mouth dissolving tablets.Prob. Sci.2024113449
    [Google Scholar]
  68. ShanmuganathanR. EdisonT.N.J.I. LewisOscarF. KumarP. ShanmugamS. PugazhendhiA. Chitosan nanopolymers: An overview of drug delivery against cancer.Int. J. Biol. Macromol.201913072773610.1016/j.ijbiomac.2019.02.06030771392
    [Google Scholar]
  69. TawfeekH.M. YounisM.A. AldosariB.N. AlmurshediA.S. AbdelfattahA. Abdel-AleemJ.A. Impact of the functional coating of silver nanoparticles on their in vivo performance and biosafety.Drug Dev. Ind. Pharm.202349534935610.1080/03639045.2023.221420737184200
    [Google Scholar]
  70. AbdellatifA.A.H. AbdelfattahA. YounisM.A. AldalaanS.M. TawfeekH.M. Chitosan-capped silver nanoparticles with potent and selective intrinsic activity against the breast cancer cells.Nanotechnol. Rev.20231212022054610.1515/ntrev‑2022‑0546
    [Google Scholar]
  71. ChenK. CaiH. ZhangH. ZhuH. GuZ. GongQ. LuoK. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug.Acta Biomater.20198433935510.1016/j.actbio.2018.11.05030503561
    [Google Scholar]
  72. XiaP. ChenJ. LiuY. FletcherM. JensenB.C. ChengZ. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2–mediated activation of forkhead box O1.J. Biol. Chem.2020295134265427610.1074/jbc.RA119.01157132075913
    [Google Scholar]
  73. YangF. CabeM. NowakH.A. LangertK.A. Chitosan/poly(lactic- co-glycolic)acid nanoparticle formulations with finely-tuned size distributions for enhanced mucoadhesion.Pharmaceutics20221419510.3390/pharmaceutics1401009535056991
    [Google Scholar]
  74. UpadhyayJ. ShahK. Implementation of factorial experimental design in chitosan - tripolyphosphate nanoparticles development by ionotropic gelation.Int. J. Health Sci.202268529854310.53730/ijhs.v6nS4.10613
    [Google Scholar]
  75. SahuB. Comprehensive review on non-alcoholic fatty liver disease (NAFLD).Clinical Advancement and Drug Treatments. Prob. Sci.20241117
    [Google Scholar]
  76. TangX. ZengB. GaoJ.K. LiuH.Q. Molecular mechanism of enhanced anticancer effect of nanoparticle formulated LY2835219 via p16-CDK4/6-pRb pathway in colorectal carci- noma cell line.J. Nanomater.201620161810.1155/2016/2095878
    [Google Scholar]
  77. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets20242024122
    [Google Scholar]
  78. ZhouT. LiuY. LeiK. LiuJ. HuM. GuoL. GuoY. YeQ. A “Trojan Horse” strategy: The preparation of bile acid-modifying irinote- can hydrochloride nanoliposomes for liver-targeted anticancer drug delivery system study.Molecules2023284157710.3390/molecules2804157736838565
    [Google Scholar]
  79. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  80. AibaniN. RaiR. PatelP. CuddihyG. WasanE.K. Chitosan nanoparticles at the biological interface: implications for drug delivery.Pharmaceutics20211310168610.3390/pharmaceutics1310168634683979
    [Google Scholar]
  81. FultonM.D. Najahi-MissaouiW. Liposomes in cancer therapy: How did we start and where are we now.Int. J. Mol. Sci.2023247661510.3390/ijms2407661537047585
    [Google Scholar]
  82. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  83. ShiX. SunK. BakerJ.R. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles.J. Phys. Chem. C2008112228251825810.1021/jp801293a19727334
    [Google Scholar]
  84. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model.Advances in Biomedical Engineering and Technology RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore202120722010.1007/978‑981‑15‑6329‑4_19
    [Google Scholar]
  85. ZappavignaS. AbateM. CossuA.M. LusaS. CampaniV. ScottiL. LuceA. YousifA.M. MerlinoF. GriecoP. De RosaG. CaragliaM. Urotensin-II-targeted liposomes as a new drug deliv- ery system towards prostate and colon cancer cells.J. Oncol.2019201911410.1155/2019/929356031929800
    [Google Scholar]
  86. El HallalR. LyuN. WangY. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells.Molecules202126356710.3390/molecules2603056733499047
    [Google Scholar]
  87. WangK. ShenR. MengT. HuF. YuanH. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer.Molecules2022279298110.3390/molecules2709298135566331
    [Google Scholar]
  88. BhattacharyaS. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer.Rec. Pat. Anti-Cancer Drug Discov.202016178410010.2174/1574892815666201221121859
    [Google Scholar]
  89. HuangM. ZhaiB.T. FanY. SunJ. ShiY.J. ZhangX.F. ZouJ.B. WangJ.W. GuoD.Y. Targeted drug delivery systems for curcumin in breast cancer therapy.Int. J. Nanomedicine2023184275431110.2147/IJN.S41068837534056
    [Google Scholar]
  90. JainA. JainS.K. GaneshN. BarveJ. BegA.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer.Nanomedicine20106117919010.1016/j.nano.2009.03.00219447205
    [Google Scholar]
  91. WeiY. GuX. SunY. MengF. StormG. ZhongZ. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo.J. Control. Release202031940741510.1016/j.jconrel.2020.01.01231923538
    [Google Scholar]
  92. LeeK.J. KoE.J. ParkY.Y. ParkS.S. JuE.J. ParkJ. ShinS.H. SuhY.A. HongS.M. ParkI.J. KimK. HwangJ.J. JangS.J. LeeJ.S. SongS.Y. JeongS.Y. ChoiE.K. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer.Biomaterials202025512015110.1016/j.biomaterials.2020.12015132505033
    [Google Scholar]
  93. UllahS. AzadA.K. NawazA. ShahK.U. IqbalM. AlbadraniG.M. Al-JoufiF.A. SayedA.A. Abdel-DaimM.M. 5-Fluorouracil-loaded folic-acid-fabricated chitosan nano- particles for site-targeted drug delivery cargo.Polymers (Basel)20221410201010.3390/polym1410201035631891
    [Google Scholar]
  94. LeveF. BonfimD.P. FontesG. Morgado-DíazJ.A. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells.Nanomedicine (Lond.)201914121565157810.2217/nnm‑2019‑002331215349
    [Google Scholar]
  95. SahuN. JainP. NagoriK. Ajazuddin Recent advancement and novel treatment strategies for breast fibroadenoma: Clinical approach and prospects.Curr. Cancer Ther. Rev.20242011110.2174/0115733947318171240802100419
    [Google Scholar]
  96. DuRossA.N. LandryM.R. ThomasC.R. NeufeldM.J. SunC. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer.Cancer Lett.202150020821910.1016/j.canlet.2020.11.02133232787
    [Google Scholar]
  97. KhatamiF. MatinM.M. DaneshN.M. BahramiA.R. AbnousK. TaghdisiS.M. Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21.Carbohydr. Polym.202126611811110.1016/j.carbpol.2021.11811134044928
    [Google Scholar]
  98. rezakhaniL. FekriK. RostaminasabG. RahmatiS. Exosomes: Special nano-therapeutic carrier for cancers, overview on anticancer drugs.Med. Oncol.20224013110.1007/s12032‑022‑01887‑636460860
    [Google Scholar]
  99. Mary LazerL. SadhasivamB. PalaniyandiK. MuthuswamyT. RamachandranI. BalakrishnanA. PathakS. NarayanS. RamalingamS. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin.Int. J. Biol. Macromol.2018107Pt B1988199810.1016/j.ijbiomac.2017.10.06429032208
    [Google Scholar]
  100. YangC. MerlinD. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy.Nanomaterials2020107142410.3390/nano10071424
    [Google Scholar]
  101. MansooriB. MohammadiA. Abedi-GaballuF. AbbaspourS. GhasabiM. YektaR. ShirjangS. DehghanG. HamblinM.R. BaradaranB. Hyaluronic acid‐decorated liposomal nanoparticles for targeted delivery of 5‐fluorouracil into HT‐29 colorectal cancer cells.J. Cell. Physiol.2020235106817683010.1002/jcp.2957631989649
    [Google Scholar]
  102. XuM. WenY. LiuY. TanX. ChenX. ZhuX. WeiC. ChenL. WangZ. LiuJ. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy.Nanoscale201911199661967810.1039/C9NR01904A31065660
    [Google Scholar]
  103. ChenR. HuangY. WangL. ZhouJ. TanY. PengC. YangP. PengW. LiJ. GuQ. ShengY. WangY. ShaoG. ZhangQ. SunY. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: Toward colorectal cancer treatment.Biomater. Sci.2021962279229410.1039/D0BM01904F33538278
    [Google Scholar]
  104. MinY. CasterJ.M. EblanM.J. WangA.Z. Clinical translation of nanomedicine.Chem. Rev.201511519111471119010.1021/acs.chemrev.5b0011626088284
    [Google Scholar]
  105. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  106. YounisM.A. SatoY. ElewaY.H.A. HarashimaH. Reprogramming activated hepatic stellate cells by siRNA-loaded nanocarriers reverses liver fibrosis in mice.J. Control. Release202336159260310.1016/j.jconrel.2023.08.02137579975
    [Google Scholar]
  107. KieliszekM. BanoI. Selenium as an important factor in various disease states - A review.EXCLI J.20222194896610.17179/excli2022‑513736172072
    [Google Scholar]
  108. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and antioxidant activities of a combination of Terminalia arjuna and Commiphora mukul on experimental animals.Advances in Biomedical Engineering and Technology RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore202117518810.1007/978‑981‑15‑6329‑4_16
    [Google Scholar]
  109. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  110. SapraP. TyagiP. AllenT. Ligand-targeted liposomes for cancer treatment.Curr. Drug Deliv.20052436938110.2174/15672010577437015916305440
    [Google Scholar]
  111. GriecoP. RoveroP. NovellinoE. Recent structure-activity studies of the peptide hormone urotensin-II, a potent vasoconstrictor.Curr. Med. Chem.200411896997910.2174/092986704345549515078159
    [Google Scholar]
  112. MaguireJ.J. DavenportA.P. Is urotensin‐II the new endothelin?Br. J. Pharmacol.2002137557958810.1038/sj.bjp.070492412381671
    [Google Scholar]
  113. TakahashiK. TotsuneK. MurakamiO. ShibaharaS. Expression of urotensin II and urotensin II receptor mRNAs in various human tumor cell lines and secretion of urotensin II-like immunoreactivity by SW-13 adrenocortical carcinoma cells.Peptides20012271175117910.1016/S0196‑9781(01)00441‑711445248
    [Google Scholar]
  114. FedericoA. ZappavignaS. RomanoM. GriecoP. LuceA. MarraM. GravinaA.G. StiusoP. D’ArmientoF.P. VitaleG. TuccilloC. NovellinoE. LoguercioC. CaragliaM. Urotensin‐II receptor is over‐expressed in colon cancer cell lines and in colon carcinoma in humans.Eur. J. Clin. Invest.201444328529410.1111/eci.1223124372535
    [Google Scholar]
  115. García-FernándezA. AznarE. Martínez-MáñezR. SancenónF. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers.Small2020163190224210.1002/smll.20190224231846230
    [Google Scholar]
  116. KankalaR.K. HanY.H. NaJ. LeeC.H. SunZ. WangS.B. KimuraT. OkY.S. YamauchiY. ChenA.Z. WuK.C.W. Nanoarchitectured structure and surface biofunc- tionality of mesoporous silica nanoparticles.Adv. Mater.20203223190703510.1002/adma.20190703532319133
    [Google Scholar]
  117. WangY. HuangH.Y. YangL. ZhangZ. JiH. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance.Sci. Rep.2016612546810.1038/srep2546827151505
    [Google Scholar]
  118. HossainM.S. KaruniawatiH. JairounA.A. UrbiZ. OoiD.J. JohnA. LimY.C. KibriaK.M.K. MohiuddinA.K.M. MingL.C. GohK.W. HadiM.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies.Cancers (Basel)2022147173210.3390/cancers1407173235406504
    [Google Scholar]
  119. StangJ. HaynesM. CarsonP. MoghaddamM. A preclinical system prototype for focused microwave thermal therapy of the breast.IEEE Trans. Biomed. Eng.20125992431243810.1109/TBME.2012.219949222614518
    [Google Scholar]
  120. BlickS.K.A. ScottL.J. CiardielloF. MagrassiF. LanzaraA. Cetuximab: A review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer.Drugs200767172585260710.2165/00003495‑200767170‑0000818034592
    [Google Scholar]
  121. AdamsG.P. WeinerL.M. Monoclonal antibody therapy of cancer.Nat. Biotechnol.20052391147115710.1038/nbt113716151408
    [Google Scholar]
  122. CunninghamD. HumbletY. SienaS. KhayatD. BleibergH. SantoroA. BetsD. MueserM. HarstrickA. VerslypeC. ChauI. Van CutsemE. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer.N. Engl. J. Med.2004351433734510.1056/NEJMoa03302515269313
    [Google Scholar]
  123. UekamaK. HirayamaF. IrieT. Cyclodextrin drug carrier systems.Chem. Rev.19989852045207610.1021/cr970025p11848959
    [Google Scholar]
  124. WengW. FengJ. QinH. MaY. Molecular therapy of colorectal cancer: Progress and future directions.Int. J. Cancer2015136349350210.1002/ijc.2872224420815
    [Google Scholar]
  125. NormannoN. TejparS. MorgilloF. De LucaA. Van CutsemE. CiardielloF. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC.Nat. Rev. Clin. Oncol.20096951952710.1038/nrclinonc.2009.11119636327
    [Google Scholar]
  126. WaddellT. CunninghamD. Evaluation of regorafenib in colorectal cancer and GIST.Lancet2013381986327327510.1016/S0140‑6736(12)62006‑623177516
    [Google Scholar]
  127. DemetriG.D. ReichardtP. KangY.K. BlayJ.Y. RutkowskiP. GelderblomH. HohenbergerP. LeahyM. von MehrenM. JoensuuH. BadalamentiG. BlacksteinM. Le CesneA. SchöffskiP. MakiR.G. BauerS. NguyenB.B. XuJ. NishidaT. ChungJ. KappelerC. KussI. LaurentD. CasaliP.G. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial.Lancet2013381986329530210.1016/S0140‑6736(12)61857‑123177515
    [Google Scholar]
  128. MirO. BrodowiczT. ItalianoA. WalletJ. BlayJ.Y. BertucciF. ChevreauC. Piperno-NeumannS. BompasE. SalasS. PerrinC. DelcambreC. Liegl-AtzwangerB. ToulmondeM. DumontS. Ray-CoquardI. ClisantS. TaiebS. GuillemetC. RiosM. CollardO. BozecL. CupissolD. Saada-BouzidE. LemaignanC. EistererW. IsambertN. ChaigneauL. CesneA.L. PenelN. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): A randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Oncol.201617121732174210.1016/S1470‑2045(16)30507‑127751846
    [Google Scholar]
  129. DienstmannR. VermeulenL. GuinneyJ. KopetzS. TejparS. TaberneroJ. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer.Nat. Rev. Cancer2017172799210.1038/nrc.2016.12628050011
    [Google Scholar]
  130. XiongM. LeiQ. YouX. GaoT. SongX. XiaY. YeT. ZhangL. WangN. YuL. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models.J. Microencapsul.201734651352110.1080/02652048.2017.133973928705043
    [Google Scholar]
  131. FanN.J. ChenH.M. SongW. ZhangZ.Y. ZhangM.D. FengL.Y. GaoC.F. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis.Cancer Biomark.201616223524310.3233/CBM‑15056026682511
    [Google Scholar]
  132. SilvaR. FerreiraH. Cavaco-PauloA. Sonoproduction of liposomes and protein particles as templates for delivery purposes.Biomacromolecules201112103353336810.1021/bm200658b21905662
    [Google Scholar]
  133. SuntresZ.E. Liposomal antioxidants for protection against oxidant-induced damage.J. Toxicol.2011201111610.1155/2011/15247421876690
    [Google Scholar]
  134. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.01124220497
    [Google Scholar]
  135. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑65859039
    [Google Scholar]
  136. AbreuA.S. CastanheiraE.M.S. QueirozM.J.R.P. FerreiraP.M.T. Vale-SilvaL.A. PintoE. Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate.Nanoscale Res. Lett.20116148210.1186/1556‑276X‑6‑48221812989
    [Google Scholar]
  137. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  138. NagO. AwasthiV. Surface engineering of liposomes for stealth behavior.Pharmaceutics20135454256910.3390/pharmaceutics504054224300562
    [Google Scholar]
  139. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.00724210498
    [Google Scholar]
  140. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  141. RiveraE. Liposomal anthracyclines in metastatic breast cancer: Clinical update.Oncologist20038Suppl 23910.1634/theoncologist.8‑suppl_2‑313679590
    [Google Scholar]
  142. LammersT. HenninkW.E. StormG. Tumour-targeted nanomedicines: Principles and practice.Br. J. Cancer200899339239710.1038/sj.bjc.660448318648371
    [Google Scholar]
  143. LamR. HoD. Nanodiamonds as vehicles for systemic and localized drug delivery.Expert Opin. Drug Deliv.20096988389510.1517/1742524090315638219637985
    [Google Scholar]
  144. AbdollahzadeA. RahimiH. YaghoobiE. RamezaniM. AlibolandiM. AbnousK. TaghdisiS.M. Targeted delivery of doxorubicin and therapeutic FOXM1 aptamer to tumor cells using gold nanoparticles modified with AS1411 and ATP aptamers.Iran. J. Basic Med. Sci.202326101177118737736517
    [Google Scholar]
  145. LiW. ChenH. YuM. FangJ. Targeted delivery of doxorubicin using a colorectal cancer-specific ssDNA aptamer.Anat. Rec. (Hoboken)2014297122280228810.1002/ar.2299025044297
    [Google Scholar]
  146. RazaM.A. SharmaM.K. NagoriK. JainP. GhoshV. GuptaU. Ajazuddin Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine.Int. J. Pharm.202466612473410.1016/j.ijpharm.2024.12473439343332
    [Google Scholar]
  147. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  148. HuangW. WangX. ShiC. GuoD. XuG. WangL. BodmanA. LuoJ. Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment.Mol. Pharm.2015a1241216122910.1021/acs.molpharmaceut.5b0005125692376
    [Google Scholar]
  149. WuL. FickerM. ChristensenJ.B. TrohopoulosP.N. MoghimiS.M. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges.Bioconjug. Chem.20152671198121110.1021/acs.bioconjchem.5b0003125654320
    [Google Scholar]
  150. XieJ. GaoY. ZhaoR. SinkoP.J. GuS. WangJ. LiY. LuY. YuS. WangL. ChenS. ShaoJ. JiaL. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials.J. Control. Release201520915916910.1016/j.jconrel.2015.04.03625933713
    [Google Scholar]
  151. XieJ. WangJ. ChenH. ShenW. SinkoP.J. DongH. ZhaoR. LuY. ZhuY. JiaL. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells.Sci. Rep.2015b51944510.1038/srep0944525819426
    [Google Scholar]
  152. XieJ. ZhaoR. GuS. DongH. WangJ. LuY. SinkoP.J. YuT. XieF. WangL. ShaoJ. JiaL. The architecture and biological function of dual antibody-coated dendrimers: Enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention.Theranostics20144121250126310.7150/thno.877525285173
    [Google Scholar]
  153. BanuH. SethiD.K. EdgarA. SheriffA. RayeesN. RenukaN. FaheemS.M. PremkumarK. VasanthakumarG. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines.J. Photochem. Photobiol. B201514911612810.1016/j.jphotobiol.2015.05.00826057021
    [Google Scholar]
  154. MackeyM.A. El-SayedM.A. Chemosensitization of cancer cells via gold nanoparticle-induced cell cycle regulation.Photochem. Photobiol.201490230631210.1111/php.1222624329577
    [Google Scholar]
  155. CuiL. HerS. DunneM. BorstG.R. De SouzaR. BristowR.G. JaffrayD.A. AllenC. Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts.Radiat. Res.2017187214716010.1667/RR14578.128085639
    [Google Scholar]
  156. ZhaoX. PanJ. LiW. YangW. QinL. PanY. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels.Int. J. Nanomedicine2018136207622110.2147/IJN.S17692830349245
    [Google Scholar]
  157. AgabeigiR. RastaS.H. Rahmati-YamchiM. SalehiR. AlizadehE. Novel chemo-photothermal therapy in breast cancer using methotrexate-loaded folic acid conjugated Au@SiO2 nanopar- ticles.Nanoscale Res. Lett.20201516210.1186/s11671‑020‑3295‑132189075
    [Google Scholar]
  158. LiuD. SunJ. ZhuJ. ZhouH. ZhangX. ZhangY. Expression and clinical significance of colorectal cancer stem cell marker EpCAMhigh/CD44+ in colorectal cancer.Oncol. Lett.2014751544154810.3892/ol.2014.190724765173
    [Google Scholar]
  159. QianY. QiuM. WuQ. TianY. ZhangY. GuN. LiS. XuL. YinR. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles.Sci. Rep.201441749010.1038/srep0749025502402
    [Google Scholar]
  160. KaoH.W. LinY.Y. ChenC.C. ChiK.H. TienD.C. HsiaC.C. LinW.J. ChenF.D. LinM.H. WangH.E. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model.Nanotechnology2014252929510210.1088/0957‑4484/25/29/29510224990295
    [Google Scholar]
  161. AndradeL.M. MartinsE.M.N. VersianiA.F. ReisD.S. da FonsecaF.G. SouzaI.P. PaniagoR.M. Pereira-MaiaE. LadeiraL.O. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis.Mater. Sci. Eng. C202010711020310.1016/j.msec.2019.11020331761220
    [Google Scholar]
  162. AmatoG. Silica-encapsulated efficient and stable si quantum dots with high biocompatibility.Nanoscale Res. Lett.2010571156116010.1007/s11671‑010‑9619‑920596494
    [Google Scholar]
  163. KuwarU.C. PradhanM. DhoteN.S. PatelR. SinhaA. JainP. Ajazuddin Novel approaches and applications of nanotechnology in the delivery of topical drugs for psoriasis via nanocarriers.Curr. Nanosci.20242012710.2174/0115734137301584240722054651
    [Google Scholar]
  164. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  165. RadhakrishnanK. GuptaS. GnanadhasD.P. RamamurthyP.C. ChakravorttyD. RaichurA.M. Protamine‐capped mesoporous silica nanoparticles for biologically triggered drug release.Part. Part. Syst. Charact.201431444945810.1002/ppsc.201300219
    [Google Scholar]
  166. YuM. JambhrunkarS. ThornP. ChenJ. GuW. YuC. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.Nanoscale20135117818310.1039/C2NR32145A23076766
    [Google Scholar]
  167. GiddingC. KellieS.J. KampsW.A. de GraafS.S. Vincristine revisited.Crit. Rev. Oncol. Hematol.199929326728710.1016/S1040‑8428(98)00023‑710226730
    [Google Scholar]
  168. Hanafi-BojdM.Y. JaafariM.R. RamezanianN. XueM. AminM. ShahtahmassebiN. Malaekeh-NikoueiB. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells.Eur. J. Pharm. Biopharm.20158924825810.1016/j.ejpb.2014.12.00925511563
    [Google Scholar]
  169. ZhouH.S. SasaharaH. HonmaI. KomiyamaH. HausJ.W. Coated semiconductor nanoparticles: The CdS/PbS system’s photoluminescence properties.Chem. Mater.1994691534154110.1021/cm00045a010
    [Google Scholar]
  170. KumarR. MondalK. PandaP.K. KaushikA. AbolhassaniR. AhujaR. RubahnH.G. MishraY.K. Core–shell nanostructures: Perspectives towards drug delivery applications.J. Mater. Chem. B Mater. Biol. Med.20208398992902710.1039/D0TB01559H32902559
    [Google Scholar]
  171. SimonetB.M. ValcárcelM. Monitoring nanoparticles in the environment.Anal. Bioanal. Chem.20093931172110.1007/s00216‑008‑2484‑z18974979
    [Google Scholar]
  172. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano1007140332707641
    [Google Scholar]
  173. KaleleS. GosaviS. UrbanJ. KulkarniS. Nanoshell particles: Synthesis, properties and applications.Curr. Sci.200691810381052
    [Google Scholar]
  174. BaiY. TengB. ChenS. ChangY. LiZ. Preparation of magnetite nanoparticles coated with an amphiphilic block copolymer: A potential drug carrier with a core‐shell‐corona structure for hydrophobic drug delivery.Macromol. Rapid Commun.200627242107211210.1002/marc.200600504
    [Google Scholar]
  175. SounderyaN. ZhangY. Use of core/shell structured nanoparticles for biomedical applications.Recent Pat. Biomed. Eng.200811344210.2174/1874764710801010034
    [Google Scholar]
  176. StanciuL. WonY.H. GanesanaM. AndreescuS. Magnetic particle-based hybrid platforms for bioanalytical sensors.Sensors (Basel)2009942976299910.3390/s9040297622574058
    [Google Scholar]
  177. WangZ.H. LiuJ.M. LiC.Y. WangD. LvH. LvS.W. ZhaoN. MaH. WangS. Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy.ACS Appl. Mater. Interfaces20191140364093641910.1021/acsami.9b1285331525949
    [Google Scholar]
  178. LiY. DuoY. BaoS. HeL. LingK. LuoJ. ZhangY. HuangH. ZhangH. YuX. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer.Int. J. Nanomedicine2017126239625710.2147/IJN.S14329328894364
    [Google Scholar]
  179. EspinosaA. Di CoratoR. Kolosnjaj-TabiJ. FlaudP. PellegrinoT. WilhelmC. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment.ACS Nano20161022436244610.1021/acsnano.5b0724926766814
    [Google Scholar]
  180. KuoC.Y. LiuT.Y. ChanT.Y. TsaiS.C. HardiansyahA. HuangL.Y. YangM.C. LuR.H. JiangJ.K. YangC.Y. LinC.H. ChiuW.Y. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy.Colloids Surf. B Biointerfaces201614056757310.1016/j.colsurfb.2015.11.00826705859
    [Google Scholar]
  181. EsmaelbeygiE. KhoeiS. KhoeeS. EynaliS. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29.Int. J. Hyperthermia201531548949710.3109/02656736.2015.103576625960148
    [Google Scholar]
  182. FengS.T. LiJ. LuoY. YinT. CaiH. WangY. DongZ. ShuaiX. LiZ.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells.PLoS One201496e10073210.1371/journal.pone.010073224964012
    [Google Scholar]
  183. Costa LimaS.A. GasparA. ReisS. DurãesL. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells.Mater. Sci. Eng. C2017751420142610.1016/j.msec.2017.03.049
    [Google Scholar]
  184. HeX. LiuF. LiuL. DuanT. ZhangH. WangZ. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor.Mol. Pharm.201411373874510.1021/mp400456j24472046
    [Google Scholar]
  185. JainA. BajajS. JainP. MajumdarA. SinghA. SoniP. A review on biotechnologically derived techniques to combat COVID-19 situation.Health Sci. Rev. (Oxf.)2023810011210.1016/j.hsr.2023.100112
    [Google Scholar]
  186. YangC.C. YangS.Y. HoC.S. ChangJ.F. LiuB.H. HuangK.W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use.J. Nanobiotechnology20141214410.1186/s12951‑014‑0044‑625424410
    [Google Scholar]
  187. FangJ. WangS. LiW. YuanD. SongJ. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe.Int. J. Nanomedicine20161123524710.2147/IJN.S9750926834472
    [Google Scholar]
  188. LeowattanaW. LeowattanaP. LeowattanaT. Systemic treatment for metastatic colorectal cancer.World J. Gastroenterol.202329101569158810.3748/wjg.v29.i10.156936970592
    [Google Scholar]
  189. AklM.A. Kartal-HodzicA. OksanenT. IsmaelH.R. AfounaM.M. YliperttulaM. SamyA.M. ViitalaT. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery.J. Drug Deliv. Sci. Technol.201632Part A102010.1016/j.jddst.2016.01.007
    [Google Scholar]
  190. PangeniR. ChoiS.W. JeonO.C. ByunY. ParkJ.W. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation.Int. J. Nanomedicine2016116379639910.2147/IJN.S12111427942212
    [Google Scholar]
  191. ChuahL.H. RobertsC.J. BillaN. AbdullahS. RosliR. ManickamS. Using nanoparticle tracking analysis (NTA) to decipher mucoadhesion propensity of curcumin-containing chitosan nanoparticles and curcumin release.J. Dispers. Sci. Technol.20143591201120710.1080/01932691.2013.800458
    [Google Scholar]
  192. ZhengY. YouX. GuanS. HuangJ. WangL. ZhangJ. WuJ. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy.Adv. Funct. Mater.20192915180864610.1002/adfm.201808646
    [Google Scholar]
  193. MaksimenkoA. AlamiM. ZouhiriF. BrionJ.D. PruvostA. MouginJ. HamzeA. BoissenotT. ProvotO. DesmaëleD. CouvreurP. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: An ongoing search for improved efficacy.ACS Nano2014832018203210.1021/nn500517a24555414
    [Google Scholar]
  194. LeeY. GeckelerK.E. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.Macromol. Biosci.20121281060106710.1002/mabi.20120008522707328
    [Google Scholar]
  195. WuC. ZhangY. YangD. ZhangJ. MaJ. ChengD. ChenJ. DengL. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study.Int. J. Nanomedicine201814758510.2147/IJN.S18790630587986
    [Google Scholar]
  196. HosseinifarT. SheybaniS. AbdoussM. Hassani NajafabadiS.A. Shafiee ArdestaniM. Pressure responsive nanogel base on alginate‐cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery.J. Biomed. Mater. Res. A2018106234935910.1002/jbm.a.3624228940736
    [Google Scholar]
  197. CantonA.S. BroekN.V.D. DanelonC. 2019Development of a lipid-based delivery system for the chemotherapeutic compound SN-38.bioRxiv10.1101/792317
    [Google Scholar]
  198. NieT. WuH. WongK-H. ChenT. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis.Mater. Chem. B201642351235810.1039/C5TB02710A
    [Google Scholar]
  199. Fern´andez-LlamosasH. CastroL. Bl´azquezM.L. D´ıazE. CarmonaM. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB.Microb. Cell Fact201615110910.1186/s12934‑016‑0510‑y
    [Google Scholar]
  200. ShirsatS. KadamA. NaushadM. ManeR.S. Selenium nanostructures: Microbial synthesis and applications.RSC Advances20155112927999281110.1039/C5RA17921A
    [Google Scholar]
  201. KimC. HongJ. ParkJ.-W. Synthesis and thermoelectric properties of selenium nanoparticles coated with PEDOT:PSS.Polymers2019116105210.3390/polym11061052
    [Google Scholar]
  202. XiaY-Y. Ti-based compounds as anode materials for Li-ion batteries.Mater. Lett.2007614321432410.1016/j.matlet.2007.01.095
    [Google Scholar]
  203. El-GhazalyM.A. FadelN. RashedE. El-BatalA. KenawyS.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.Can. J. Physiol. Pharmacol.201795210111010.1139/cjpp‑2016‑018327936913
    [Google Scholar]
  204. TranP.A. O’Brien-SimpsonN. ReynoldsE.C. PantaratN. BiswasD.P. O’ConnorA.J. Comparison of antibacterial activity and cytotoxicity of silver nanoparticles and silver-loaded montmorillonite and saponite.Nanotechnology2016274510110.1088/0957‑4484/27/4/045101
    [Google Scholar]
  205. KhalidA. TranP.A. NorelloR. SimpsonD.A. O’ConnorA.J. Tomljenovic-HanicS. Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications.Nanoscale2016863376338510.1039/C5NR08771F26792107
    [Google Scholar]
  206. ShahC.P. KumarM. PushpaK.K. BajajP.N. Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles.Cryst. Growth Des.20088114159416410.1021/cg800669d
    [Google Scholar]
  207. ZhangY. WangJ. ZhangL. Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water.Langmuir20102622176171762310.1021/la1033959
    [Google Scholar]
  208. HuangT. HoldenJ.A. HeathD.E. O’Brien-SimpsonN.M. O’ConnorA.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size.Nanoscale20191131149371495110.1039/C9NR04424H31363721
    [Google Scholar]
  209. ShiX.D. TianY.Q. WuJ.L. WangS.Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides.Crit. Rev. Food Sci. Nutr.202061132225223610.1080/10408398.2020.1774497
    [Google Scholar]
  210. MellinasC. Jim´enezA. Garrigo´sM. C. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract.Molecules201924404810.3390/molecules24224048
    [Google Scholar]
  211. AbbasianR. Jafarizadeh-MalmiriH. Green approach in gold, silver and selenium nanoparticles using coffee bean extract.Open Agric.2020576176710.1515/opag‑2020‑0074
    [Google Scholar]
  212. ChenH. YooJ.B. LiuY. ZhaoG. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups.Electron. Mater. Lett.2011733333610.1007/s13391‑011‑0420‑4
    [Google Scholar]
  213. PiacenzaE. PresentatoA. HeyneB. TurnerR.J. Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures.Nanophotonics202093615362810.1515/nanoph‑2020‑0239
    [Google Scholar]
  214. AfzalB. YasinD. HusainS. ZakiA. SrivastavaP. KumarR. FatmaT. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles.Biocatal. Agric. Biotechnol.20192110130710.1016/j.bcab.2019.101307
    [Google Scholar]
  215. KumarH. BhardwajK. NepovimovaE. KučaK. Singh DhanjalD. BhardwajS. BhatiaS.K. VermaR. KumarD. Antioxidant functionalized nanoparticles: a combat against oxidative stress.Nanomaterials (Basel)2020107133410.3390/nano10071334
    [Google Scholar]
  216. MaX. YuH. YaleJ. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis.Biol. Med.2006798594
    [Google Scholar]
  217. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  218. DevlinE.J. DensonL.A. WhitfordH.S. The role of response expectancies in cancer treatment.Pain Symptom Manag.20175424525810.1016/j.jpainsymman.2017.03.017
    [Google Scholar]
  219. TanQ. LiJ. YinH. WangL. TangW. ZhaoF. LiuX. ZengH. Drugs that may cause or exacerbate heart failure: A scientific statement from the american heart association invest.New Drugs20102820521510.1007/s10637‑009‑9235‑7
    [Google Scholar]
  220. PuspitasariI.M. AbdulahR. YamazakiC. KameoS. NakanoT. KoyamaH. Advances in biomolecular medicine - Research and publication radiat.Oncol.20149125
    [Google Scholar]
  221. YakubovE. BuchfelderM. Eyu¨pogluI.Y. SavaskanN.E. Brain tumor – Glioblastoma.Biol. Trace Elem. Res.201416124625410.1007/s12011‑014‑0111‑825164034
    [Google Scholar]
  222. EvansS.O. KhairuddinP.F. JamesonM.B. Optimising selenium for modulation of cancer treatments.Anticancer Res.201737126497650910.21873/anticanres.12106
    [Google Scholar]
  223. SongH. HurI. ParkH. NamJ. Bin ParkG. KongK.H. HwangY.M. KimY.S. ChoD.H. LeeW.J. HurD.Y. Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence and what the future may hold.Immune Netw.2009923610.4110/in.2009.9.6.23620157610
    [Google Scholar]
  224. ChenY.C. PrabhuK.S. DasA. MastroA.M. Dietary selenium supplementation modifies breast tumor growth and metastasis.Int. J. Cancer201313392054206410.1002/ijc.2822423613334
    [Google Scholar]
  225. DavisC.D. TsujiP.A. MilnerJ.A. Selenoproteins and cancer prevention.Annu. Rev. Nutr.2012321739510.1146/annurev‑nutr‑071811‑15074022404120
    [Google Scholar]
  226. LavuR.V.S. Van De WieleT. PrattiV.L. TackF. Du LaingG. Selenium and sulfur to produce allium functional crops.Food Chem.201619738238710.1016/j.foodchem.2015.08.00126616964
    [Google Scholar]
  227. Fairweather-TaitS.J. CollingsR. HurstR. Selenium bioavailability: Current knowledge and future research requirements.Am. J. Clin. Nutr.20109151484S1491S10.3945/ajcn.2010.28674J20200264
    [Google Scholar]
  228. EkoueD.N. ZaichickS. Valyi-NagyK. PickloM. LacherC. HoskinsK. WarsoM.A. BoniniM.G. DiamondA.M. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P).J. Trace Elem. Med. Biol.20173922723310.1016/j.jtemb.2016.11.00327908419
    [Google Scholar]
  229. TanV.C. HinchmanA. WilliamsR. TranP.A. FoxK. Nanostructured biomedical selenium at the biological interface (Review) Editor’s Pick.Biointerphases20181306D30110.1116/1.5042693
    [Google Scholar]
  230. FerroC. FlorindoH.F. SantosH.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics.Adv. Healthc. Mater.20211016210059810.1002/adhm.202100598
    [Google Scholar]
  231. El-RamadyH. AbdallaN. TahaH.S. AlshaalT. El-HenawyA. FaizyS.E-D.A. ShamsM.S. YoussefS.M. ShalabyT. BayoumiY. ElhawatN. ShehataS. SztrikA. ProkischJ. F’ariM. Selenium and nano-selenium in plant nutrition.Environ. Chem. Lett.20161412314710.1007/s10311‑015‑0535‑1
    [Google Scholar]
  232. SchrauzerG.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity.J. Nutr.200013071653165610.1093/jn/130.7.165310867031
    [Google Scholar]
  233. ShakibaieM. KhorramizadehM.R. FaramarziM.A. SabzevariO. ShahverdiA.R. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase‐2 expression.Biotechnol. Appl. Biochem.201056171510.1042/BA2010004220408816
    [Google Scholar]
  234. YangF. TangQ. ZhongX. BaiY. ChenT. ZhangY. LiY. ZhengW. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles.Int. J. Nanomedicine2012783584422359460
    [Google Scholar]
  235. IpC. Lessons from basic research in selenium and cancer prevention.J. Nutr.1998128111845185410.1093/jn/128.11.18459808633
    [Google Scholar]
  236. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  237. KhuranaA. TekulaS. SaifiM.A. VenkateshP. GoduguC. Therapeutic applications of selenium nanoparticles.Biomed. Pharmacother.201911180281210.1016/j.biopha.2018.12.14630616079
    [Google Scholar]
  238. RaymanM.P. Selenoproteins and their impact on human health through diverse physiological pathways.Proc. Nutr. Soc.20056452754210.1079/PNS200546716313696
    [Google Scholar]
  239. WallenbergM. MisraS. Bjo¨rnstedtM. Serum levels of selenium and zinc in patients with breast cancer: A case-control study.Basic Clin. Pharmacol. Toxicol.201411437738610.1111/bcpt.1220724529300
    [Google Scholar]
  240. PappL.V. LuJ. HolmgrenA. KhannaK.K. Selenium compounds as therapeutic agents in cancer.Antioxid. Redox Signal.2007977580610.1089/ars.2007.152817508906
    [Google Scholar]
  241. CombsG.F. Biomarkers of selenium status.Nutrients2015742209223610.3390/nu704220925835046
    [Google Scholar]
  242. PrasadK.S. SelvarajK. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes.Biol. Trace Elem. Res.2014157327528310.1007/s12011‑014‑9891‑024469678
    [Google Scholar]
  243. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.10949034271319
    [Google Scholar]
  244. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  245. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.202350102700[Internet].10.1016/j.bcab.2023.102700
    [Google Scholar]
  246. VekariyaK.K. KaurJ. TikooK. An insight into biofabrication of selenium nanostructures and their biomedical application.Toxicol. Appl. Pharmacol.201326821222010.1016/j.taap.2013.01.02823415680
    [Google Scholar]
  247. WadhwaniS.A. ShedbalkarU.U. SinghR. ChopadeB.A. Biogenic selenium nanoparticles: Current status and future prospects.Appl. Microbiol. Biotechnol.201610062555256610.1007/s00253‑016‑7300‑726801915
    [Google Scholar]
  248. PingZ. LiuT. XuH. MengY. LiW. XuX. ZhangL. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts.Nano Res.2017103775378910.1007/s12274‑017‑1590‑7
    [Google Scholar]
  249. ZengD. ZhaoJ. LukK.H. CheungS.T. WongK.H. ChenT. Potentiation of in vivo anticancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration.J. Agric. Food Chem.201967102865287610.1021/acs.jafc.9b0019330785270
    [Google Scholar]
  250. ThubagereA. ReinhardB.M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: Insights from a human intestinal epithelium in vitro model.ACS Nano2010473611362210.1021/nn100389a20560658
    [Google Scholar]
  251. TangS. WangT. JiangM. HuangC. LaiC. FanY. YongQ. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review.Int. J. Biol. Macromol.201912844445110.1016/j.ijbiomac.2019.01.15230703423
    [Google Scholar]
  252. KhirallaG.M. El-DeebB.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens.Lebensm. Wiss. Technol.20156321001100710.1016/j.lwt.2015.03.086
    [Google Scholar]
  253. GaoX. LiX. MuJ. HoC-T. SuJ. ZhangY. LinX. ChenZ. LiB. XieY. Carbon dots: A new type of carbon-based nanomaterial with wide applications.Int. J. Biol. Macromol.202015260561510.1016/j.ijbiomac.2020.02.19932087224
    [Google Scholar]
  254. MullaN.A. OtariS.V. BoharaR.A. YadavH.M. PawarS.H. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity.Mater. Lett.202026412735310.1016/j.matlet.2020.127353
    [Google Scholar]
  255. AliE.N. El-SonbatyS.M. SalemF.M. Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma.Biol. Sci.201323846
    [Google Scholar]
  256. RaoN.G.R. MajumdarA. MishraS. JainP. Biomaterials in the design of nanosensors for disease diagnosis.Biomaterial-Inspired Nanomedicines for Targeted Therapies PradhanM. YadavK. Singh ChauhanN. SingaporeSpringer202420923610.1007/978‑981‑97‑3925‑7_8
    [Google Scholar]
  257. PansareA.V. KulalD.K. ShedgeA.A. PatilV.R. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs.Dalton Trans.20164530121441215510.1039/C6DT01457G27402164
    [Google Scholar]
  258. RamamurthyC. SampathK.S. ArunkumarP. KumarM.S. SujathaV. PremkumarK. ThirunavukkarasuC. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells.Bioprocess Biosyst. Eng.20133681131113910.1007/s00449‑012‑0867‑123446776
    [Google Scholar]
  259. RamosJ.F. TranP.A. WebsterT.J. Selenium nanoparticles for the prevention of PVC-related medical infections.38th Annual Northeast Bioengineering Conference (NEBEC)Philadelphia, PA, USA, 16-18 Mar. 2012, pp. 185-186.10.1109/NEBC.2012.6207025
    [Google Scholar]
  260. PrasanthS. SudarsanakumarC. Elucidating the interaction of 1-cysteine-capped selenium nanoparticles and human serum albumin: spectroscopic and thermodynamic analysis.New J. Chem.201741179521953010.1039/C7NJ00477J
    [Google Scholar]
  261. RamosJ.F. WebsterT.J. Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice.Int. J. Nanomedicine201273907391422915842
    [Google Scholar]
  262. NguyenT.H.D. VardhanabhutiB. LinM. MustaphaA. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells.Food Control201777172410.1016/j.foodcont.2017.01.018
    [Google Scholar]
  263. SharmaG. SharmaA. BhaveshR. ParkJ. GanboldB. NamJ.S. LeeS.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract.Molecules20141932761277010.3390/molecules1903276124583881
    [Google Scholar]
  264. ZhangW. ChenZ. LiuH. ZhangL. GaoP. LiD. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures.Colloids Surf. B Biointerfaces20118819620110.1016/j.colsurfb.2011.06.03121752611
    [Google Scholar]
  265. VyasJ. RanaS. Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract.Int. J. Phytomed.20179463410.5138/09750185.2185
    [Google Scholar]
  266. YazdiM.H. MahdaviM. FaghfuriE. FaramarziM.A. SepehrizadehZ. HassanZ.M. GholamiM. ShahverdiA.R. Biogenic selenium nanoparticles and their anticancer effects pertaining to probiotic bacteria - A review.Iran. J. Biotechnol.2015131910.15171/ijb.105628959284
    [Google Scholar]
  267. ShubharaniR. MaheshM. Yogananda MurthyV.N. Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of bee propolis J.Nanomed. Nanotechnol.20191017
    [Google Scholar]
  268. AfzalB. YasinD. HusainS. ZakiA. SrivastavaP. KumarR. FatmaT. Biocontrol efficacy of mycosynthesized selenium nanoparticle using Trichoderma sp. on insect pest Spodoptera litura.Biocatal. Agric. Biotechnol.20192110130710.1016/j.bcab.2019.101307
    [Google Scholar]
  269. YazdiM.H. MahdaviM. SetayeshN. EsfandyarM. ShahverdiA.R. Bioreduction of Se(IV) by Lactiplantibacillus plantarum NML21 and synthesis of selenium nanospheres Se(0).Daru2013213310.1186/2008‑2231‑21‑3323631392
    [Google Scholar]
  270. KamnevA.A. MamchenkovaP.V. DyatlovaY.A. TugarovaA.V. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles.J. Mol. Struct.2017114010611210.1016/j.molstruc.2016.12.003
    [Google Scholar]
  271. FriteaL. LasloV. CavaluS. CosteaT. VicasS.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract.Stud. Univ. Vasile Goldis Arad Ser. Stiint. Vietii.2017273203208
    [Google Scholar]
  272. KokilaK. ElavarasanN. SujathaV. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications.New J. Chem.201741157481749010.1039/C7NJ01124E
    [Google Scholar]
  273. KaramiM. Asri-RezaeiS. DormaneshB. NazarizadehA. Comparative study of radioprotective effects of selenium nanoparticles and sodium selenite in irradiation-induced nephropathy of mice model.Int. J. Radiat. Biol.2018941172710.1080/09553002.2018.140070929108452
    [Google Scholar]
  274. WuH. LiX. LiuW. ChenT. LiY. ZhengW. ManC.W.Y. WongM.K. WongK.H. Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative activity.J. Mater. Chem.20122219960210.1039/c2jm16828f
    [Google Scholar]
  275. AlabiC. VegasA. AndersonD. Attacking the genome: Emerging siRNA nanocarriers from concept to clinic.Curr. Opin. Pharmacol.201212442743310.1016/j.coph.2012.05.00422726555
    [Google Scholar]
  276. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: A changing paradigm.Nat. Rev. Cancer20099315316610.1038/nrc260219238148
    [Google Scholar]
  277. TianX. NguyenM. FooteH.P. CasterJ.M. RocheK.C. PetersC.G. WuP. JayaramanL. GarmeyE.G. TepperJ.E. EliasofS. WangA.Z. CRLX101, a nanoparticle-drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and HIF1α.Cancer Res.201777111212210.1158/0008‑5472.CAN‑15‑295127784746
    [Google Scholar]
  278. ChibaudelB. Maindrault-GoebelF. BachetJ.B. LouvetC. KhalilA. DupuisO. HammelP. GarciaM.L. BennamounM. BrusquantD. TournigandC. AndréT. ArbaudC. LarsenA.K. WangY.W. YehC.G. BonnetainF. de GramontA. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP02 (MM-398) or irinotecan with leucovorin/5-fluorouracil as second-line therapy in metastatic colorectal cancer.Cancer Med.20165467668310.1002/cam4.63526806397
    [Google Scholar]
  279. LyonP.C. GriffithsL.F. LeeJ. ChungD. CarlisleR. WuF. MiddletonM.R. GleesonF.V. CoussiosC.C. Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours.J. Ther. Ultrasound2017512810.1186/s40349‑017‑0104‑029118984
    [Google Scholar]
  280. GolanT. GrenaderT. OhanaP. AmitayY. ShmeedaH. La-BeckN.M. TahoverE. BergerR. GabizonA.A. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: A phase 1 study in advanced solid tumor patients.Cancer Med.20154101472148310.1002/cam4.49126172205
    [Google Scholar]
  281. MaitraR. HalpinP.A. KarlsonK.H. PageR.L. PaikD.Y. LeavittM.O. MoyerB.D. StantonB.A. HamiltonJ.W. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression.Biochem. J.2001355361762410.1042/bj355061711311122
    [Google Scholar]
  282. NorrisR.E. ShustermanS. GoreL. MuscalJ.A. MacyM.E. FoxE. BerkowitzN. BuchbinderA. BagatellR. Phase 1 evaluation of EZN-2208, a polyethylene glycol conjugate of SN38, in children adolescents and young adults with relapsed or refractory solid tumors.Pediatr. Blood Cancer201461101792179710.1002/pbc.2510524962521
    [Google Scholar]
  283. GarrettC.R. Bekaii-SaabT.S. RyanT. FisherG.A. CliveS. KavanP. Shacham-ShmueliE. BuchbinderA. GoldbergR.M. Randomized phase 2 study of pegylated SN‐38 (EZN‐2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer.Cancer2013119244223423010.1002/cncr.2835824105075
    [Google Scholar]
  284. AbdellatifA.A.H. ZayedG. El-BakryA. ZakyA. SaleemI.Y. TawfeekH.M. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors.Drug Dev. Ind. Pharm.201642111782179110.3109/03639045.2016.117305227032509
    [Google Scholar]
  285. AwosikaA.O. BelowJ. DasJ.M. Vincristine.StatPearlsInternetTreasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  286. IshidaT. HuangC.L. WadaH. Liposome containing shRNA molecule targeting a thymidylate synthase and use thereofUS Patent 20120301537A12012
  287. Phase 2 study of thermodox as adjuvant therapy with thermal ablation (RFA) in treatment of metastatic colorectal cancer(mCRC) (ABLATE).NCT014645932022
  288. PillaiG. Nanomedicines for Cancer Therapy: An Update of FDA Approved and Those under Various Stages of Development.SOJ Pharm. Pharm. Sci.2014121310.15226/2374‑6866/1/1/00109
    [Google Scholar]
  289. DragovichT. MendelsonD. KurtinS. RichardsonK. Von HoffD. HoosA. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer.Cancer Chemother. Pharmacol.200658675976410.1007/s00280‑006‑0235‑416847673
    [Google Scholar]
  290. BalaV. RaoS. BoydB.J. PrestidgeC.A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38.J. Control. Release20131721486110.1016/j.jconrel.2013.07.02223928356
    [Google Scholar]
  291. CabezaL. PerazzoliG. MesasC. Jiménez-LunaC. PradosJ. RamaA.R. MelguizoC. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents.AAPS PharmSciTech202021517810.1208/s12249‑020‑01731‑y32591920
    [Google Scholar]
  292. XiaoB. ZhangM. ViennoisE. ZhangY. WeiN. BakerM.T. JungY. MerlinD. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles.Biomaterials20154814716010.1016/j.biomaterials.2015.01.01425701040
    [Google Scholar]
  293. RampadoR. CrottiS. CalicetiP. PucciarelliS. AgostiniM. Nanovectors design for theranostic applications in colorectal cancer.J. Oncol.2019201912710.1155/2019/274092331662751
    [Google Scholar]
  294. GiglioV. SgarlataC. VecchioG. Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: A spectroscopic and nanocalorimetric investigation.RSC Advances2015522166641667110.1039/C4RA16064A
    [Google Scholar]
  295. HamaguchiT. TsujiA. YamaguchiK. TakedaK. UetakeH. EsakiT. AmagaiK. SakaiD. BabaH. KimuraM. MatsumuraY. TsukamotoT. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients.Cancer Chemother. Pharmacol.20188261021102910.1007/s00280‑018‑3693‑630284603
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812342216241120051723
Loading
/content/journals/nanoasi/10.2174/0122106812342216241120051723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test