Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Increased environmental occurrences of nanoparticles are reported to be hazardous to aquatic life. The uptake of nano pollutants poses a significant impact on fish behaviour, reproductive function, endocrine system, and immune response, among other physiological factors. The review article highlighted various factors that are involved in nanotoxicity and also listed out the effects and mechanisms of nanoparticle on aquatic system. The behaviour and toxicity of nanoparticles on oxidative stress, DNA damage, and histology abnormalities are recorded from various literature. Additionally, the knowledge gaps on the effect of nanoparticles that could alter the neurological and immunological systems of aquatic creatures, influencing the release of cytokines and neurotransmitters are summarized. Various developmental defects and physiological disorders in fish are caused by mitochondrial malfunction, membrane damage, and DNA changes. Haematological, biochemical, and histological characteristics in the exposed microenvironment affect the natural growth and development of aquatic organisms. Overall, this review highlights the critical information on the toxicity of the nano exudate on the aquatic species and records of their ecotoxicological assessment of aquatic ecosystem.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812325515241121053008
2024-11-29
2025-10-12
Loading full text...

Full text loading...

References

  1. BorrelleS.B. RingmaJ. LawK.L. MonnahanC.C. LebretonL. McGivernA. MurphyE. JambeckJ. LeonardG.H. HillearyM.A. EriksenM. PossinghamH.P. De FrondH. GerberL.R. PolidoroB. TahirA. BernardM. MallosN. BarnesM. RochmanC.M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution.Science202036965101515151810.1126/science.aba365632943526
    [Google Scholar]
  2. AlsinaJ.M. JongedijkC.E. van SebilleE. Laboratory measurements of the wave-induced motion of plastic particles: influence of wave period, plastic size and plastic density.J. Geophys. Res. C: Oceans202012512e2020JC016294
    [Google Scholar]
  3. SousaJ.C.G. RibeiroA.R. BarbosaM.O. PereiraM.F.R. SilvaA.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines.J. Hazard. Mater.201834414616210.1016/j.jhazmat.2017.09.05829032095
    [Google Scholar]
  4. PetosaA.R. JaisiD.P. QuevedoI.R. ElimelechM. TufenkjiN. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Environ. Sci. Technol.201044176532654910.1021/es100598h20687602
    [Google Scholar]
  5. KlaineS.J. AlvarezP.J.J. BatleyG.E. FernandesT.F. HandyR.D. LyonD.Y. MahendraS. McLaughlinM.J. LeadJ.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.Environ. Toxicol. Chem.20082791825185110.1897/08‑090.119086204
    [Google Scholar]
  6. PopovA. TiO2 Nanoparticles as UV Protectors in Skin.Academic dissertation, University of Oulu, 2008.
    [Google Scholar]
  7. Montalvo-QuirosS. Luque-GarciaJ.L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes.Food Chem. Toxicol.201912719720510.1016/j.fct.2019.03.03630910687
    [Google Scholar]
  8. OpršalJ. KnotekP. ZicklerG.A. SiggL. SchirmerK. PouzarM. GeppertM. Cytotoxicity, accumulation and translocation of silver and silver sulfide nanoparticles in contact with rainbow trout intestinal cells.Aquat. Toxicol.202123710586910.1016/j.aquatox.2021.10586934082272
    [Google Scholar]
  9. OsborneO.J. LinS. ChangC.H. JiZ. YuX. WangX. LinS. XiaT. NelA.E. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish.ACS Nano20159109573958410.1021/acsnano.5b0458326327297
    [Google Scholar]
  10. Rodríguez-HernándezA.G. Vazquez-DuhaltR. Huerta-SaqueroA. Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response.Curr. Med. Chem.202027203330334510.2174/092986732566618111209064830417768
    [Google Scholar]
  11. XiangD. ZhengC. ZhengY. LiX. YinJ. O’ ConnerM. MarappanM. MiaoY. XiangB. DuanW. ShigdarS. ZhaoX. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo.Int. J. Nanomedicine201384103411310.2147/IJN.S5362224204140
    [Google Scholar]
  12. XiangQ.Q. WangD. ZhangJ.L. DingC.Z. LuoX. TaoJ. LingJ. SheaD. ChenL.Q. Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity.Environ. Pollut.202025611350410.1016/j.envpol.2019.11350431706775
    [Google Scholar]
  13. KimK.T. ZaikovaT. HutchisonJ.E. TanguayR.L. Gold nanoparticles disrupt zebrafish eye development and pigmentation.Toxicol. Sci.2013133227528810.1093/toxsci/kft08123549158
    [Google Scholar]
  14. ChoiO. HuZ. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.Environ. Sci. Technol.200842124583458810.1021/es703238h
    [Google Scholar]
  15. SharmaV.K. FilipJ. ZborilR. VarmaR.S. Natural inorganic nanoparticles – formation, fate, and toxicity in the environment.Chem. Soc. Rev.201544238410842310.1039/C5CS00236B26435358
    [Google Scholar]
  16. SteerM. ColeM. ThompsonR.C. LindequeP.K. Microplastic ingestion in fish larvae in the western English Channel.Environ. Pollut.201722625025910.1016/j.envpol.2017.03.06228408185
    [Google Scholar]
  17. CanesiL. GalloG. GavioliM. PruzzoC. Bacteria–hemocyte interactions and phagocytosis in marine bivalves.Microsc. Res. Tech.200257646947610.1002/jemt.1010012112429
    [Google Scholar]
  18. TanC. WangW.X. Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna.Environ. Pollut.2017231Pt 131131810.1016/j.envpol.2017.08.02428810200
    [Google Scholar]
  19. KhanS.B. FaisalM. RahmanM.M. JamalA. Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications.Sci. Total Environ.2011409152987299210.1016/j.scitotenv.2011.04.01921570707
    [Google Scholar]
  20. YangX. PanH. WangP. ZhaoF.J. Particle-specific toxicity and bioavailability of Cerium Oxide (CeO) Nanoparticles to Arabidopsis Thaliana.J. Hazard. Mater.2017322Pt A292300
    [Google Scholar]
  21. KleivenM. RosselandB.O. TeienH.C. JonerE.J. Helen OughtonD. Route of exposure has a major impact on uptake of silver nanoparticles in Atlantic salmon ( Salmo salar ).Environ. Toxicol. Chem.201837112895290310.1002/etc.425130125984
    [Google Scholar]
  22. MooreM.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?Environ. Int.200632896797610.1016/j.envint.2006.06.01416859745
    [Google Scholar]
  23. Iara da C. Souza Vitor A.S. Mendes, Ian D. Duarte, Livia D. Rocha, Vinicius C. Azevedo, Silvia T. Matsumoto, Michael Elliott, Daniel A. Wunderlin, Magdalena V. Monferran, Marisa N. Fernandes, Nanoparticle Transport and Sequestration: Intracellular Titanium Dioxide Nanoparticles in a Neotropical Fish.Sci. Total Environ.2019658798808
    [Google Scholar]
  24. BianchiniA. GrosellM. GregoryS.M. WoodC.M. Acute silver toxicity in aquatic animals is a function of sodium uptake rate.Environ. Sci. Technol.20023681763176610.1021/es011028t11993875
    [Google Scholar]
  25. GaiserB.K. BiswasA. RosenkranzP. JepsonM.A. LeadJ.R. StoneV. TylerC.R. FernandesT.F. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J. Environ. Monit.20111351227123510.1039/c1em10060b21499624
    [Google Scholar]
  26. FedericiG. ShawB. HandyR. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects.Aquat. Toxicol.200784441543010.1016/j.aquatox.2007.07.00917727975
    [Google Scholar]
  27. JohnstonB.D. ScownT.M. MogerJ. CumberlandS.A. BaaloushaM. LingeK. van AerleR. JarvisK. LeadJ.R. TylerC.R. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish.Environ. Sci. Technol.20104431144115110.1021/es901971a20050652
    [Google Scholar]
  28. RogersS. RiceK.M. ManneN.D.P.K. ShokuhfarT. HeK. SelvarajV. BloughE.R. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans.SAGE Open Med.20153205031211557538710.1177/205031211557538726770770
    [Google Scholar]
  29. GaraudM. TrappJ. DevinS. Cossu-LeguilleC. Pain-DevinS. FeltenV. GiamberiniL. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquat. Toxicol.2015158637410.1016/j.aquatox.2014.11.00425461746
    [Google Scholar]
  30. GaiserB.K. FernandesT.F. JepsonM. LeadJ.R. TylerC.R. StoneV. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments.Environ. Heal.20098S12
    [Google Scholar]
  31. WuW. MitraN. YanE.C.Y. ZhouS. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH.ACS Nano2010484831483910.1021/nn100831920731458
    [Google Scholar]
  32. XuJ. ZhangQ. LiX. ZhanS. WangL. ChenD. The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish.Aquat. Toxicol.201718813013710.1016/j.aquatox.2017.05.00228521150
    [Google Scholar]
  33. DuanJ. YuY. LiY. YuY. SunZ. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model.Biomaterials201334235853586210.1016/j.biomaterials.2013.04.03223663927
    [Google Scholar]
  34. RamsdenC.S. HenryT.B. HandyR.D. Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish.Aquat. Toxicol.201312640441310.1016/j.aquatox.2012.08.02123084046
    [Google Scholar]
  35. GraverD. Volcanic Ash: Chemical Composition.Environmental Impact, and Health Risks2015
    [Google Scholar]
  36. LeeJ.W. ChoiH. HwangU.K. KangJ.C. KangY.J. KimK.I. KimJ.H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review.Environ. Toxicol. Pharmacol.20196810110810.1016/j.etap.2019.03.01030884452
    [Google Scholar]
  37. FadiaP. TyagiS. BhagatS. NairA. PanchalP. DaveH. DangS. SinghS. Calcium carbonate nano- and microparticles: synthesis methods and biological applications.3 Biotech20211111457
    [Google Scholar]
  38. MatsunagaT. OkamuraY. Molecular mechanism of bacterial magnetite formation and its application.Mat. Res. Soc. Symp. Proc.2002724Available from: https://apps.dtic.mil/sti/tr/pdf/ADP014394.pdf(accessed on 23-10-2024)
    [Google Scholar]
  39. LinK.C. Applications of biogenic silica nanostructures from diatoms.ASU Electronic Theses and Dissertations, Arizona State University, 2014.
    [Google Scholar]
  40. AhmedI. The effect of aluminum oxide nanoparticles addition with jojoba methyl ester-diesel fuel blend on a diesel engine performance.Fuel201822414716610.1016/j.fuel.2018.03.076
    [Google Scholar]
  41. NarayananK.B. SakthivelN. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents.Adv. Colloid Interface Sci.20111692597910.1016/j.cis.2011.08.00421981929
    [Google Scholar]
  42. ChaudharyR.P. Synthesis and characterization of platinum and carbon nanoparticle in benzene by electric plasma discharge in ultrasonic cavitation.Master Thesis, The University of Texas at Arlington,2010.
    [Google Scholar]
  43. SiddiquiM.H. Al-WhaibiM.H. MohammadF. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants.Springer201510.1007/978‑3‑319‑14502‑0
    [Google Scholar]
  44. TishkovaV. Combustion Nanoparticles from Aviation and Shipping.LAP Lambert Academic Publishing2010
    [Google Scholar]
  45. HuangJ.N. WenB. XuL. MaH.C. LiX.X. GaoJ.Z. ChenZ.Z. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis.J. Hazard. Mater.202242112683010.1016/j.jhazmat.2021.12683034396975
    [Google Scholar]
  46. AlkaladiA. AfifiM. AliH. SaddickS. Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J. Biol. Sci.20202751296130110.1016/j.sjbs.2020.01.01032346338
    [Google Scholar]
  47. MicevychP.E. KellyM.J. Membrane estrogen receptor regulation of hypothalamic function.Neuroendocrinology201296210311010.1159/00033840022538318
    [Google Scholar]
  48. TallecK. Paul-PontI. BoulaisM. Le GoïcN. González-FernándezC. Le GrandF. BideauA. QuéréC. CassoneA.L. LambertC. SoudantP. HuvetA. Nanopolystyrene beads affect motility and reproductive success of oyster spermatozoa ( Crassostrea gigas ).Nanotoxicology20201481039105710.1080/17435390.2020.180810432813582
    [Google Scholar]
  49. MawedS.A. MariniC. AlagawanyM. FaragM.R. RedaR.M. El-SaadonyM.T. ElhadyW.M. MagiG.E. Di CerboA. El-NagarW.G. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish.Antioxidants2022118156710.3390/antiox1108156736009286
    [Google Scholar]
  50. WangQ. LiY. ChenY. TianL. GaoD. LiaoH. KongC. ChenX. JunaidM. WangJ. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio).Fish Shellfish Immunol.2022126213310.1016/j.fsi.2022.05.02535597397
    [Google Scholar]
  51. SarasammaS. AudiraG. SiregarP. MalhotraN. LaiY.H. LiangS.T. ChenJ.R. ChenK.H.C. HsiaoC.D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure.Int. J. Mol. Sci.2020214141010.3390/ijms2104141032093039
    [Google Scholar]
  52. SangkhamS. FaikhawO. MunkongN. SakunkooP. ArunlertareeC. ChavaliM. MousazadehM. TiwariA. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health.Mar. Pollut. Bull.202218111383210.1016/j.marpolbul.2022.11383235716489
    [Google Scholar]
  53. WangZ. BiJ. WangH. TanM. Assessment of Potential Toxicity of Onion-like Carbon Nanoparticles from Grilled Turbot L.Foods202111110.3390/foods1101009535010221
    [Google Scholar]
  54. LinX. WangY. YangX. WatsonP. YangF. LiuH. Endocrine disrupting effect and reproductive toxicity of the separate exposure and co-exposure of nano-polystyrene and diethylstilbestrol to zebrafish.Sci. Total Environ.202386516110010.1016/j.scitotenv.2022.16110036566849
    [Google Scholar]
  55. WangQ. QinX. GengL. WangY. Label-free electrochemical aptasensor for sensitive detection of malachite green based on Au nanoparticle/graphene quantum dots/tungsten disulfide nanocomposites.Nanomaterials (Basel)20199222910.3390/nano902022930744009
    [Google Scholar]
  56. MalafaiaG. da LuzT.M. AraujoA.P.C. AhmedM.A.I. SantosT. BarcelóD. Novel methodology for identification and quantification of microplastics in biological samples.Environ. Pollut.202229211846610.1016/j.envpol.2021.118466
    [Google Scholar]
  57. González-DoncelM. García-MauriñoJ.E. BeltránE.M. Fernández TorijaC. Andreu-SánchezO. PablosM.V. Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes).Environ. Pollut.202231112000110.1016/j.envpol.2022.12000135995287
    [Google Scholar]
  58. DingJ. HuangY. LiuS. ZhangS. ZouH. WangZ. ZhuW. GengJ. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless?J. Hazard. Mater.202039612269310.1016/j.jhazmat.2020.12269332353735
    [Google Scholar]
  59. LeeW.S. ChoH.J. KimE. HuhY.H. KimH.J. KimB. KangT. LeeJ.S. JeongJ. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos.Nanoscale20191173173318510.1039/C8NR09321K30534785
    [Google Scholar]
  60. YiJ. MaY. RuanJ. YouS. MaJ. YuH. ZhaoJ. ZhangK. YangQ. JinL. ZengG. SunD. The invisible Threat: Assessing the reproductive and transgenerational impacts of micro- and nanoplastics on fish.Environ. Int.202418310843210.1016/j.envint.2024.10843238219542
    [Google Scholar]
  61. BhagatJ. ZangL. KanecoS. NishimuraN. ShimadaY. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos.Sci. Total Environ.202283515543610.1016/j.scitotenv.2022.15543635461948
    [Google Scholar]
  62. KaramiR. MohsenifarA. Mesbah NaminiS.M. KamelipourN. Rahmani-CheratiT. Roodbar ShojaeiT. TabatabaeiM. A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles.Prep. Biochem. Biotechnol.201646655956610.1080/10826068.2015.108493026503886
    [Google Scholar]
  63. LinX. MaX. HeY. LiS. ChenW. LiL. One‐pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions.Chemistry20243011e20230350510.1002/chem.20230350538143237
    [Google Scholar]
  64. WangT. WenX. HuY. ZhangX. WangD. YinS. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol.20198464865510.1016/j.fsi.2018.10.05330366095
    [Google Scholar]
  65. ColbornT. vom SaalF.S. SotoA.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans.Environ. Health Perspect.1993101537838410.1289/ehp.931013788080506
    [Google Scholar]
  66. CrispT. M. CleggE.D. CooperR.L. WoodW.P. AndersonD.G. BaetckeK.P. HoffmannJ.L. MorrowM.S. RodierD.J. SchaefferJ.E. TouartL.W. ZeemanM.G. PatelY.M. Environmental endocrine disruption: an effects assessment and analysis.Environ. Health Perspect.1998106S11156
    [Google Scholar]
  67. MeekerJ.D. RossanoM.G. ProtasB. DiamondM.P. PuscheckE. DalyD. PanethN. WirthJ.J. Multiple metals predict prolactin and thyrotropin (TSH) levels in men.Environ. Res.2009109786987310.1016/j.envres.2009.06.00419595304
    [Google Scholar]
  68. SinghR.D. KoshtaK. TiwariR. KhanH. SharmaV. SrivastavaV. Developmental exposure to endocrine disrupting chemicals and its impact on cardio-metabolic-renal health.Frontiers in Toxicology2021366337210.3389/ftox.2021.66337235295127
    [Google Scholar]
  69. WangC. ZhengS. ZouX. SunX. ZhangH. A near-infrared persistent luminescence imaging technique for tracking nanoparticles in zebrafish (Danio rerio).Bull. Environ. Contam. Toxicol.2019103226727310.1007/s00128‑019‑02642‑w31172221
    [Google Scholar]
  70. WuG. GaoL. ZhangS. DuD. XueY. Effects of copper oxide nanoparticles on reproductive system of zebrafish.Ecotoxicol. Environ. Saf.202326311525210.1016/j.ecoenv.2023.11525237467561
    [Google Scholar]
  71. SpenglerA. Impact of TiO2 nanoparticles on the aquatic environment:Investigation of cyanobacterial toxin adsorption and oxidative stress mediated nanotoxicity towards the submerged aquatic macrophyte Hydrilla verticillata.Thesis, Technische Universität Berlin, 2019.
    [Google Scholar]
  72. AzimzadaA. Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability.Environ. Sci.: Nano201741339134910.1039/C7EN00093F
    [Google Scholar]
  73. MahayeN. Stability of gold and cerium oxide nanoparticles in aqueous environments, and their effects on Pseudokirchneriella subcapitata and Salvinia minima.PhD Thesis, University of Pretoria, 2019.
    [Google Scholar]
  74. FıratÖ. ErolR. FıratÖ. Effects of individual and co-exposure of copper oxide nanoparticles and copper sulphate on nile tilapia Oreochromis niloticus: Nanoparticles enhance pesticide biochemical toxicity.Acta Chim. Slov.2022691819035298018
    [Google Scholar]
  75. CetinicK.A. The effects of silver nanoparticles on lower trophic levels in aquatic ecosystems.PhD thesis, Trent University, 2019.
    [Google Scholar]
  76. DoyleJ.J. Ingestion, depuration, and potential toxicity of titanium dioxide nanoparticles in the blue mussel, mytilus edulis, and the eastern oyster, Crassostrea virginica.Doctoral Dissertations, Digital commons, 2014.
    [Google Scholar]
  77. García-GómezC. GarcíaS. ObradorA. AlmendrosP. GonzálezD. FernándezM.D. Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies.Sci. Total Environ.202070613571310.1016/j.scitotenv.2019.13571331791765
    [Google Scholar]
  78. SongL. Towards understanding the toxicity of copper nanoparticles in aquatic ecosystems.Phd thesis, Leiden University, 2015.
    [Google Scholar]
  79. RippnerD.A. MargenotA.J. FakraS.C. AguileraL.A. LiC. SohngJ. DynarskiK.A. WaterhouseH. McElroyN. WadeJ. HindS.R. GreenP.G. PeakD. McElroneA.J. ChenN. FengR. ScowK.M. ParikhS.J. Microbial response to copper oxide nanoparticles in soils is controlled by land use rather than copper fate.Environ. Sci. Nano20218123560357610.1039/D1EN00656H
    [Google Scholar]
  80. BergamiE. CorsiI. Uptake disposition and toxicity of polystyrene nanoparticles in sea urchin embryos (“Paracentrotus lividus”); 2013.
    [Google Scholar]
  81. KhanG.B. AkhtarN. KhanM.F. UllahZ. TabassumS. TedesseZ. Toxicological impact of Zinc Nano Particles on tilapia fish (Oreochromis mossambicus).Saudi J. Biol. Sci.20222921221122610.1016/j.sjbs.2021.09.04435197788
    [Google Scholar]
  82. Abdel-LatifH.M.R. ShukryM. El EuonyO.I. Mohamed SolimanM. NoreldinA.E. GhetasH.A. DawoodM.A.O. KhallafM.A. Hazardous effects of SiO nanoparticles on liver and kidney functions, histopathology characteristics, and transcriptomic responses in Nile Tilapia Juveniles.Biology (Basel)202110310.3390/biology1003018333801563
    [Google Scholar]
  83. TemizÖ. KargınF. Toxicological impacts on antioxidant responses, stress protein, and genotoxicity parameters of aluminum oxide nanoparticles in the liver of Oreochromis niloticus. Biol. Trace Elem. Res.202220031339134610.1007/s12011‑021‑02723‑034021468
    [Google Scholar]
  84. CorreiaA.T. RebeloD. MarquesJ. NunesB. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations.Environ. Toxicol. Pharmacol.201968273610.1016/j.etap.2019.02.01230870693
    [Google Scholar]
  85. SternS.T. AdiseshaiahP.P. CristR.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.Part. Fibre Toxicol.2012912010.1186/1743‑8977‑9‑2022697169
    [Google Scholar]
  86. ChenG.H. SongC.C. ZhaoT. HogstrandC. WeiX.L. LvW.H. SongY.F. LuoZ. Mitochondria-dependent oxidative stress mediates ZnO nanoparticle (ZnO NP)-induced mitophagy and lipotoxicity in freshwater teleost fish.Environ. Sci. Technol.20225642407242010.1021/acs.est.1c0719835107266
    [Google Scholar]
  87. LeeY.L. ShihY.S. ChenZ.Y. ChengF.Y. LuJ.Y. WuY.H. WangY.J. Toxic effects and mechanisms of silver and zinc oxide nanoparticles on zebrafish embryos in aquatic ecosystems.Nanomaterials (Basel)202212471710.3390/nano1204071735215043
    [Google Scholar]
  88. MaranoF. HussainS. Rodrigues-LimaF. Baeza-SquibanA. BolandS. Nanoparticles: molecular targets and cell signalling.Arch. Toxicol.201185773374110.1007/s00204‑010‑0546‑420502881
    [Google Scholar]
  89. NapolitanoG. FascioloG. Muscari TomajoliM.T. VendittiP. Changes in the Mitochondria in the Aging Process—Can α-Tocopherol Affect Them?Int. J. Mol. Sci.202324151245310.3390/ijms24151245337569829
    [Google Scholar]
  90. RaiP.K. SonneC. BrownR.J.C. YounisS.A. KimK.H. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes.J. Hazard. Mater.202242712790310.1016/j.jhazmat.2021.12790334895806
    [Google Scholar]
  91. NapolitanoG. FascioloG. VendittiP. Mitochondrial management of reactive oxygen species.Antioxidants20211011182410.3390/antiox1011182434829696
    [Google Scholar]
  92. BalkJ. LeaverC.J. McCabeP.F. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat‐induced programmed cell death in cucumber plants.FEBS Lett.19994631-215115410.1016/S0014‑5793(99)01611‑710601657
    [Google Scholar]
  93. TangQ. LiT. ChenK. DengX. ZhangQ. TangH. ShiZ. ZhuT. ZhuJ. PS-NPs induced neurotoxic effects in SHSY-5Y cells via autophagy activation and mitochondrial dysfunction.Brain Sci.202212795210.3390/brainsci1207095235884757
    [Google Scholar]
  94. LiY. LiuZ. LiM. JiangQ. WuD. HuangY. JiaoY. ZhangM. ZhaoY. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. J. Hazard. Mater.202039812299010.1016/j.jhazmat.2020.12299032516731
    [Google Scholar]
  95. FerranteM.C. MonnoloA. Del PianoF. Mattace RasoG. MeliR. The pressing issue of micro- and nanoplastic contamination: Profiling the reproductive alterations mediated by oxidative stress.Antioxidants202211219310.3390/antiox1102019335204076
    [Google Scholar]
  96. IbrahimD. KishawyA.T.Y. KhaterS.I. KhalifaE. IsmailT.A. MohammedH.A. ElnahriryS.S. TolbaH.A. SheriefW.R.I.A. FaragM.F.M. El-HamidM.I.A. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus).Fish Shellfish Immunol.202111947848910.1016/j.fsi.2021.10.03434699975
    [Google Scholar]
  97. MalafaiaG. NóbregaR.H. LuzT.M. AraújoA.P.C. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos.J. Hazard. Mater.202242712787310.1016/j.jhazmat.2021.12787334863562
    [Google Scholar]
  98. ZhouW. TongD. TianD. YuY. HuangL. ZhangW. YuY. LuL. ZhangX. PanW. ShenJ. ShiW. LiuG. Exposure to polystyrene nanoplastics led to learning and memory deficits in zebrafish by inducing oxidative damage and aggravating brain aging.Adv. Healthc. Mater.20231229230179910.1002/adhm.20230179937611966
    [Google Scholar]
  99. LinY. WangJ. DaiH. MaoF. ChenQ. YanH. ChenM. Salinity moderated the toxicity of zinc oxide nanoparticles (ZnO NPs) towards the early development of Takifugu obscurus. Int. J. Environ. Res. Public Health2023204320910.3390/ijerph2004320936833904
    [Google Scholar]
  100. Fernández-MíguezM. PuvanendranV. BurgerhoutE. PresaP. TveitenH. VorkampK. HansenØ.J. JohanssonG.S. BogevikA.S. Effects of weathered polyethylene microplastic ingestion on sexual maturation, fecundity and egg quality in maturing broodstock Atlantic cod Gadus morhua.Environ. Pollut.202332012105310.1016/j.envpol.2023.12105336632969
    [Google Scholar]
  101. BoboriD. DimitriadiA. KarasialiS. Tsoumaki-TsouroufliP. MastoraM. KastrinakiG. FeidantsisK. PrintziA. KoumoundourosG. KaloyianniM. Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure.Environ. Int.202013810561110.1016/j.envint.2020.10561132126387
    [Google Scholar]
  102. VeversW.F. JhaA.N. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro.Ecotoxicology200817541042010.1007/s10646‑008‑0226‑918491228
    [Google Scholar]
  103. RoccoL. SantonastasoM. MottolaF. CostagliolaD. SueroT. PacificoS. StingoV. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol. Environ. Saf.201511322323010.1016/j.ecoenv.2014.12.01225506637
    [Google Scholar]
  104. VicariT. DagostimA.C. KlingelfusT. GalvanG.L. MonteiroP.S. da Silva PereiraL. Silva de AssisH.C. CestariM.M. Co-Exposure to Titanium Dioxide Nanoparticles (NpTiO) and Lead at Environmentally Relevant Concentrations in the Neotropical Fish Species.Toxicol. Rep.201851032104310.1016/j.toxrep.2018.09.00130386731
    [Google Scholar]
  105. QualhatoG. RochaT.L. de Oliveira LimaE.C. SilvaE. D. M.; Cardoso, J. R.; Koppe Grisolia, C.; de Saboia-Morais, S. M. T. Genotoxic and Mutagenic Assessment of Iron Oxide (maghemite-γ-FeO) Nanoparticle in the Guppy Poecilia Reticulata. Chemosphere201718330531410.1016/j.chemosphere.2017.05.06128551207
    [Google Scholar]
  106. ZhaoX. RenX. ZhuR. LuoZ. RenB. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos.Aquat. Toxicol.2016180567010.1016/j.aquatox.2016.09.01327658222
    [Google Scholar]
  107. AmjadS. SharmaA.K. SerajuddinM. Toxicity assessment of cypermethrin nanoparticles in Channa punctatus: Behavioural response, micronuclei induction and enzyme alteration.Regul. Toxicol. Pharmacol.201810012713310.1016/j.yrtph.2018.10.00430393047
    [Google Scholar]
  108. SovováT. BoyleD. SlomanK.A. Vanegas PérezC. HandyR.D. Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles.Aquat. Toxicol.201415219520410.1016/j.aquatox.2014.04.00324792150
    [Google Scholar]
  109. FariaM. NavasJ.M. SoaresA.M.V.M. BarataC. BarataC. Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos.Sci. Total Environ.2014470-47137938910.1016/j.scitotenv.2013.09.05524140700
    [Google Scholar]
  110. KaloyianniM. DimitriadiA. OvezikM. StamkopoulouD. FeidantsisK. KastrinakiG. GalliosG. TsiaoussisI. KoumoundourosG. BoboriD. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models.J. Hazard. Mater.202038312120410.1016/j.jhazmat.2019.12120431541956
    [Google Scholar]
  111. PushpaK. Gireesh-BabuP. RajendranK.V. PurushothamanC.S. DasguptaS. MakeshM. Molecular cloning, sequencing and tissue-level expression of complement C3 of Labeo rohita (Hamilton, 1822).Fish Shellfish Immunol.201440131933010.1016/j.fsi.2014.07.00825038278
    [Google Scholar]
  112. ZhaoX. WangS. WuY. YouH. LvL. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.Aquat. Toxicol.2013136-137495910.1016/j.aquatox.2013.03.01923643724
    [Google Scholar]
  113. KansaraK. PatelP. ShahD. ShuklaR.K. SinghS. KumarA. DhawanA. TiO 2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.Environ. Mol. Mutagen.201556220421710.1002/em.2192525524809
    [Google Scholar]
  114. BhabraG. SoodA. FisherB. CartwrightL. SaundersM. EvansW.H. SurprenantA. Lopez-CastejonG. MannS. DavisS.A. HailsL.A. InghamE. VerkadeP. LaneJ. HeesomK. NewsonR. CaseC.P. Nanoparticles can cause DNA damage across a cellular barrier.Nat. Nanotechnol.200941287688310.1038/nnano.2009.31319893513
    [Google Scholar]
  115. BrunN.R. van HageP. HuntingE.R. HaramisA.P.G. VinkS.C. VijverM.G. SchaafM.J.M. TudoracheC. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish.Commun. Biol.20192138210.1038/s42003‑019‑0629‑631646185
    [Google Scholar]
  116. LiY. LiuZ. YangY. JiangQ. WuD. HuangY. JiaoY. ChenQ. HuangY. ZhaoY. Nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium Nipponense).Environ. Pollut.2021268Pt A115890
    [Google Scholar]
  117. TallecK. Paul-PontI. PettonB. Alunno-BrusciaM. BourdonC. BernardiniI. BoulaisM. LambertC. QuereC. BideauA. Le GoicN. CassoneA-L. Le GrandF. FabiouxC. SoudantP. HuvetA. Amino-Nanopolystyrene Exposures of Oyster () Embryos Induced No Apparent Intergenerational Effects.Nanotoxicology202115447749310.1080/17435390.2021.187996333555961
    [Google Scholar]
  118. TrevisanR. UzochukwuD. Di GiulioR.T. Pah sorption to nanoplastics and the trojan horse effect as drivers of mitochondrial toxicity and pah localization in zebrafish.Front. Environ. Sci.202087810.3389/fenvs.2020.0007834322495
    [Google Scholar]
  119. TrevisanR. VoyC. ChenS. Di GiulioR.T. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish.Environ. Sci. Technol.201953148405841510.1021/acs.est.9b0200331259535
    [Google Scholar]
  120. MattssonK. EkvallM.T. HanssonL.A. LinseS. MalmendalA. CedervallT. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.Environ. Sci. Technol.201549155356110.1021/es505365525380515
    [Google Scholar]
  121. GrevenA.C. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas).Environ. Toxicol. Chem.2016351230933100
    [Google Scholar]
  122. CedervallT. HanssonL.A. LardM. FrohmB. LinseS. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish.PLoS One201272e3225410.1371/journal.pone.003225422384193
    [Google Scholar]
  123. LuY. ZhangY. DengY. JiangW. ZhaoY. GengJ. DingL. RenH. Response to Comment on “Uptake and Accumulation of Polystyrene Microplastics in Zebrafish ( Danio rerio ) and Toxic Effects in Liver”.Environ. Sci. Technol.20165022125231252410.1021/acs.est.6b0437927808508
    [Google Scholar]
  124. ChaeY. KimD. KimS.W. AnY.J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain.Sci. Rep.20188128410.1038/s41598‑017‑18849‑y29321604
    [Google Scholar]
  125. PittJ.A. KozalJ.S. JayasundaraN. MassarskyA. TrevisanR. GeitnerN. WiesnerM. LevinE.D. Di GiulioR.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio).Aquat. Toxicol.201819418519410.1016/j.aquatox.2017.11.01729197232
    [Google Scholar]
  126. ChenQ. GundlachM. YangS. JiangJ. VelkiM. YinD. HollertH. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity.Sci. Total Environ.2017584-5851022103110.1016/j.scitotenv.2017.01.15628185727
    [Google Scholar]
  127. BlomS. AnderssonT.B. FörlinL. Effects of food deprivation and handling stress on head kidney 17α-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout.Aquat. Toxicol.2000482-326527410.1016/S0166‑445X(99)00031‑410686331
    [Google Scholar]
  128. De MarcoR.J. GronebergA.H. YehC-M. TreviñoM. RyuS. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.Front. Behav. Neurosci.2014836710.3389/fnbeh.2014.0036725368561
    [Google Scholar]
  129. WilkinsonP.O. GoodyerI.M. Childhood adversity and allostatic overload of the hypothalamic–pituitary–adrenal axis: A vulnerability model for depressive disorders.Dev. Psychopathol.20112341017103710.1017/S095457941100047222018079
    [Google Scholar]
  130. HartigE.I. ZhuS. KingB.L. CoffmanJ.A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.Biol. Open2016581134114110.1242/bio.02006527444789
    [Google Scholar]
  131. Wendelaar BongaS.E. The stress response in fish.Physiol. Rev.199777359162510.1152/physrev.1997.77.3.5919234959
    [Google Scholar]
  132. SteenbergenP.J. BardineN. SharifF. Kinetics of glucocorticoid exposure in developing zebrafish: A tracer study.Chemosphere201718314715510.1016/j.chemosphere.2017.05.05928544900
    [Google Scholar]
  133. EloB. VillanoC.M. GovorkoD. WhiteL.A. Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds.J. Mol. Endocrinol.200738443344010.1677/JME‑06‑003717446233
    [Google Scholar]
  134. Win-ShweT.T. FujimakiH. Nanoparticles and Neurotoxicity.Int. J. Mol. Sci.20111296267628010.3390/ijms1209626722016657
    [Google Scholar]
  135. OszláncziG. VezérT. SárköziL. HorváthE. SzabóA. HorváthE. KónyaZ. PappA. Metal deposition and functional neurotoxicity in rats after 3–6 weeks nasal exposure by two physicochemical forms of manganese.Environ. Toxicol. Pharmacol.201030212112610.1016/j.etap.2010.04.00621787641
    [Google Scholar]
  136. BorisovaT. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles.Front. Physiol.2018972810.3389/fphys.2018.0072829997517
    [Google Scholar]
  137. BoyesW.K. van ThrielC. Neurotoxicology of Nanomaterials.Chem. Res. Toxicol.20203351121114410.1021/acs.chemrestox.0c0005032233399
    [Google Scholar]
  138. TruongL. SailiK.S. MillerJ.M. HutchisonJ.E. TanguayR.L. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2012155226927410.1016/j.cbpc.2011.09.00621946249
    [Google Scholar]
  139. DedehA. CiutatA. Treguer-DelapierreM. BourdineaudJ.P. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment.Nanotoxicology201591718010.3109/17435390.2014.88923824559428
    [Google Scholar]
  140. FerreiraG.K. CardosoE. VuoloF.S. GalantL.S. MichelsM. GonçalvesC.L. RezinG.T. Dal-PizzolF. BenavidesR. Alonso-NúñezG. AndradeV.M. StreckE.L. da Silva PaulaM.M. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain.Mater. Sci. Eng. C20177974875510.1016/j.msec.2017.05.11028629076
    [Google Scholar]
  141. MirandaR.R. Damaso da SilveiraA.L.R. de JesusI.P. GrötznerS.R. VoigtC.L. CamposS.X. GarciaJ.R.E. RandiM.A.F. RibeiroC.A.O. Filipak NetoF. Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish.Environ. Sci. Pollut. Res. Int.20162365179518810.1007/s11356‑015‑5732‑826555884
    [Google Scholar]
  142. ShengL. WangL. SuM. ZhaoX. HuR. YuX. HongJ. LiuD. XuB. ZhuY. WangH. HongF. Mechanism of TiO 2 nanoparticle‐induced neurotoxicity in zebrafish ( D anio rerio ).Environ. Toxicol.201631216317510.1002/tox.2203125059219
    [Google Scholar]
  143. HuQ. GuoF. ZhaoF. FuZ. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12.Chemosphere201717337337910.1016/j.chemosphere.2017.01.06328129614
    [Google Scholar]
  144. CarmoT.L.L. SiqueiraP.R. AzevedoV.C. TavaresD. PesentiE.C. CestariM.M. MartinezC.B.R. FernandesM.N. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish.Environ. Toxicol.201934445746810.1002/tox.2269930604913
    [Google Scholar]
  145. MattssonK. JohnsonE.V. MalmendalA. LinseS. HanssonL.A. CedervallT. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.Sci. Rep.2017711145210.1038/s41598‑017‑10813‑028904346
    [Google Scholar]
  146. ChenQ. YinD. JiaY. SchiwyS. LegradiJ. YangS. HollertH. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish.Sci. Total Environ.20176091312132110.1016/j.scitotenv.2017.07.14428793400
    [Google Scholar]
  147. HuM. PalićD. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways.Redox Biol.20203710162010.1016/j.redox.2020.10162032863185
    [Google Scholar]
  148. BrandtsI. TelesM. GonçalvesA.P. BarretoA. Franco-MartinezL. TvarijonaviciuteA. MartinsM.A. SoaresA.M.V.M. TortL. OliveiraM. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine.Sci. Total Environ.201864377578410.1016/j.scitotenv.2018.06.25729958167
    [Google Scholar]
  149. SilvaM.S.S. OliveiraM. ValenteP. FigueiraE. MartinsM. PiresA. Behavior and biochemical responses of the polychaeta Hediste diversicolor to polystyrene nanoplastics.Sci. Total Environ.202070713443410.1016/j.scitotenv.2019.13443431863996
    [Google Scholar]
  150. VaróI. PeriniA. TorreblancaA. GarciaY. BergamiE. VannucciniM.L. CorsiI. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels.Sci. Total Environ.201967557058010.1016/j.scitotenv.2019.04.15731030162
    [Google Scholar]
  151. DingJ. ZhangS. RazanajatovoR.M. ZouH. ZhuW. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus).Environ. Pollut.20182381910.1016/j.envpol.2018.03.00129529477
    [Google Scholar]
  152. JinY. XiaJ. PanZ. YangJ. WangW. FuZ. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.Environ. Pollut.201823532232910.1016/j.envpol.2017.12.08829304465
    [Google Scholar]
  153. BrandtsI. BalaschJ.C. GonçalvesA.P. MartinsM.A. PereiraM.L. TvarijonaviciuteA. TelesM. OliveiraM. Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax).J. Hazard. Mater.202141412556210.1016/j.jhazmat.2021.12556234030413
    [Google Scholar]
  154. JacobH. BessonM. SwarzenskiP.W. LecchiniD. MetianM. Effects of Virgin Micro- and Nanoplastics on Fish: Trends, Meta-Analysis, and Perspectives.Environ. Sci. Technol.20205484733474510.1021/acs.est.9b0599532202766
    [Google Scholar]
  155. Abdel-LatifH.M.R. DawoodM.A.O. MahmoudS.F. ShukryM. NoreldinA.E. GhetasH.A. KhallafM.A. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, and Oxidative Stress Genes in.Animals (Basel)202111310.3390/ani1103065233804566
    [Google Scholar]
  156. AksakalF.I. CiltasA. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio).Comp. Biochem. Physiol. C Toxicol. Pharmacol.2019223788710.1016/j.cbpc.2019.05.01631158555
    [Google Scholar]
  157. WangT. LongX. LiuZ. ChengY. YanS. Effect of copper nanoparticles and copper sulphate on oxidation stress, cell apoptosis and immune responses in the intestines of juvenile Epinephelus coioides. Fish Shellfish Immunol.201544267468210.1016/j.fsi.2015.03.03025839971
    [Google Scholar]
  158. TelesM. Reyes-LópezF.E. Fierro-CastroC. TortL. SoaresA.M.V.M. OliveiraM. Modulation of immune genes mRNA levels in mucosal tissues and DNA damage in red blood cells of Sparus aurata by gold nanoparticles.Mar. Pollut. Bull.201813342843510.1016/j.marpolbul.2018.06.00730041332
    [Google Scholar]
  159. GoetzF. PlanasJ.V. MacKenzieS. Tumor necrosis factors.Dev. Comp. Immunol.200428548749710.1016/j.dci.2003.09.00815062645
    [Google Scholar]
  160. HardieL.J. LaingK.J. DanielsG.D. GrabowskiP.S. CunninghamC. SecombesC.J. ISOLATION OF THE FIRST PISCINE TRANSFORMING GROWTH FACTOR β GENE: ANALYSIS REVEALS TISSUE SPECIFIC EXPRESSION AND A POTENTIAL REGULATORY SEQUENCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS).Cytokine199810855556310.1006/cyto.1997.03349722928
    [Google Scholar]
  161. SavanR. SakaiM. Genomics of fish cytokines.Comp. Biochem. Physiol. Part D Genomics Proteomics2006118910110.1016/j.cbd.2005.08.00520483237
    [Google Scholar]
  162. Reyes-CerpaS. Reyes-LópezF. Toro-AscuyD. MonteroR. MaiseyK. Acuña-CastilloC. SunyerJ.O. ParraD. SandinoA.M. ImaraiM. Induction of anti-inflammatory cytokine expression by IPNV in persistent infection.Fish Shellfish Immunol.201441217218210.1016/j.fsi.2014.08.02925193394
    [Google Scholar]
  163. ZouJ. SecombesC. The Function of Fish Cytokines.Biology (Basel)2016522310.3390/biology502002327231948
    [Google Scholar]
  164. JovanovićB. AnastasovaL. RoweE.W. ZhangY. ClappA.R. PalićD. Effects of Nanosized Titanium Dioxide on Innate Immune System of Fathead Minnow Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820).Ecotoxicol. Environ. Saf.201174467568310.1016/j.ecoenv.2010.10.01721035856
    [Google Scholar]
  165. AlboloushiA. Impact of copper nanoparticles on inactivation and toxicity pathway on model bacteria.Thesis, Arizona State University, 2012.
    [Google Scholar]
  166. La GraveV.L. Environmental Applications and Implications of Iron Based Nanoparticles: Arsenic Removal From Contaminated Water Effluents and Toxicity To Aquatic Organisms.2014
    [Google Scholar]
  167. MohantyK. SaranS. Kumara SwamyB.E. SharmaS.C. Graphene and its derivatives.Water/Wastewater Treatment and Other Environmental ApplicationsSpringer Nature2023
    [Google Scholar]
  168. HaY. Bioavailability of fullerene nanoparticles : factors affecting membrane partitioning and cellular uptake.2015Available from: https://www.semanticscholar.org/paper/Bioavailability-of-fullerene-nanoparticles-%3A-and-Ha/eeaef694afd8654c195aafdb329388849c5cf345(accessed on 23-10-2024)
    [Google Scholar]
  169. BookF. BackhausT. Aquatic ecotoxicity of manufactured silica nanoparticles: A systematic review and meta-analysis.Sci. Total Environ.2022806Pt 415089310.1016/j.scitotenv.2021.15089334653448
    [Google Scholar]
  170. SielskaA. Cembrowska-LechD. Kowalska-GóralskaM. CzerniawskiR. KrepskiT. SkuzaL. Effects of copper nanoparticles on oxidative stress genes and their enzyme activities in common carp ( Cyprinus carpio ).Eur. Zool. J.202491135436510.1080/24750263.2024.2332290
    [Google Scholar]
  171. WuY. ZhouQ. Silver nanoparticles cause oxidative damage and histological changes in medaka ( Oryzias latipes ) after 14 days of exposure.Environ. Toxicol. Chem.201332116517310.1002/etc.203823097154
    [Google Scholar]
  172. LakotaS. RaszkaA. UtrackiT. ChmielZ. Toxic Effect of Deltamethrin and Cypermethrin on Selected Aquatic Organisms.1987
    [Google Scholar]
  173. ZeumerR. HermsenL. KaegiR. KührS. KnopfB. SchlechtriemC. Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss. Sci. Total Environ.202070613569510.1016/j.scitotenv.2019.13569531940723
    [Google Scholar]
  174. AdhikariS. SarkarB. ChatterjeeA. MahapatraC.T. AyyappanS. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton).Ecotoxicol. Environ. Saf.200458222022610.1016/j.ecoenv.2003.12.00315157576
    [Google Scholar]
  175. ValiS. MohammadiG. TavabeK.R. MoghadasF. NaserabadS.S. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses.Ecotoxicol. Environ. Saf.202019411035310.1016/j.ecoenv.2020.11035332146193
    [Google Scholar]
  176. ManikandanA. SaravananA. AntonyS.A. BououdinaM. One-Pot Low Temperature Synthesis and Characterization Studies of Nanocrystalline α-Fe<SUB>2</SUB>O<SUB>3</SUB> Based Dye Sensitized Solar Cells.J. Nanosci. Nanotechnol.20151564358436610.1166/jnn.2015.980426369049
    [Google Scholar]
  177. Abdel-KhalekA.A. Al-QuraishyS. Abdel-GaberR. Evaluation of Nephrotoxicity in Oreochromis niloticus After Exposure to Aluminum Oxide Nanoparticles: Exposure and Recovery Study.Bull. Environ. Contam. Toxicol.2022108229229910.1007/s00128‑021‑03335‑z34331072
    [Google Scholar]
  178. RemyaS. BasuS. VenkateshwarluG. MohanC.O. Quality of shrimp analogue product as affected by addition of modified potato starch.J. Food Sci. Technol.20155274432444010.1007/s13197‑014‑1494‑426139909
    [Google Scholar]
  179. MunirT. LatifM. MahmoodA. MalikA. ShafiqF. Influence of IP-injected ZnO-nanoparticles in Catla catla fish: hematological and serological profile.Naunyn Schmiedebergs Arch. Pharmacol.2020393122453246110.1007/s00210‑020‑01955‑632725284
    [Google Scholar]
  180. IbrahimA.T.A. BanaeeM. SuredaA. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.).Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124210894210.1016/j.cbpc.2020.10894233220515
    [Google Scholar]
  181. LeeJ. KimJ. ShinY. RyuJ. EomI. LeeJ.S. KimY. KimP. ChoiK. LeeB. Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles.Ecotoxicol. Environ. Saf.201410491710.1016/j.ecoenv.2014.01.04024632117
    [Google Scholar]
  182. ChaudharyS. ChauhanP. KumarR. BhasinK.K. Toxicological responses of surfactant functionalized selenium nanoparticles: A quantitative multi-assay approach.Sci. Total Environ.20186431265127710.1016/j.scitotenv.2018.06.29630189543
    [Google Scholar]
  183. KumarN. KrishnaniK.K. SinghN.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish.Environ. Sci. Pollut. Res. Int.20182598914892710.1007/s11356‑017‑1165‑x29332272
    [Google Scholar]
  184. KakakhelM.A. BibiN. MahboubH.H. WuF. SajjadW. DinS.Z.U. HefnyA.A. WangW. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp. Biochem. Physiol. C Toxicol. Pharmacol.202326310947310.1016/j.cbpc.2022.10947336174907
    [Google Scholar]
  185. PurushothamanS. RaghunathA. DhakshinamoorthyV. PanneerselvamL. PerumalE. Acute exposure to titanium dioxide (TiO 2 ) induces oxidative stress in zebrafish gill tissues.Toxicol. Environ. Chem.201496689090510.1080/02772248.2014.987511
    [Google Scholar]
  186. KumarN. GuptaS.K. ChandanN.K. BhushanS. SinghD.K. KumarP. KumarP. WakchaureG.C. SinghN.P. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci. Rep.20201011788310.1038/s41598‑020‑74911‑233087779
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812325515241121053008
Loading
/content/journals/nanoasi/10.2174/0122106812325515241121053008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test