Skip to content
2000
image of Modern Techniques for the Synthesis of 6H-Indolo[2,3-b]quinoxaline from Aryl-1,2-diamines and Indoline-2,3-diones and their Reported Pharmaceutical Activities (Part II): A Review

Abstract

Indolo[2,3-b]quinoxalines belong to a class of heterocyclic compounds with significant promise in medicinal chemistry and materials science due to their different biological and structural properties. This review reports various catalytic methodologies for the synthesis of indolo[2,3-b]quinoxalines, including the use of acids, metal catalysts, ionic liquids, and nano-catalysts. The protocols discussed involve one-pot syntheses, principles of green chemistry, and the efficient recycling of catalysts. The improvements in catalytic methods not only increase the yield and purity of the products but also contribute to the sustainability and ecological friendliness of the synthetic procedures. Moreover, the pharmaceutical properties, including anticancer, antitumor, antibacterial, and antifungal activities, as well as the enhancement of glucose utilization and reduction of insulin resistance, of some synthesized indoloquinoxaline compounds are also outlined.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298393291250824171558
2025-09-30
2025-12-16
Loading full text...

Full text loading...

References

  1. Abdelfattah M.S. Kazufumi T. Ishibashi M. Izumiphenazines A.C. Izumiphenazines A-C: Isolation and structure elucidation of phenazine derivatives from Streptomyces sp. IFM 11204. J. Nat. Prod. 2010 73 12 1999 2002 10.1021/np100400t 21090727
    [Google Scholar]
  2. Blum S. Fiedler H-P. Groth I. Kempter C. Stephan H. Nicholson G. Metzger J.W. Jung G. Biosynthetic capacities of actinomycetes. 4. Echinoserine, a new member of the quinoxaline group, produced by Streptomyces tendae. J. Antibiot. 1995 48 7 619 625 10.7164/antibiotics.48.619 7649858
    [Google Scholar]
  3. Missioui M. Mortada S. Guerrab W. Serdaroğlu G. Kaya S. Mague J.T. Essassi E.M. Faouzi M.E.A. Ramli Y. Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study. J. Mol. Struct. 2021 1239 130484 10.1016/j.molstruc.2021.130484
    [Google Scholar]
  4. Das R. Mehta D.K. Evaluation and docking study of pyrazine containing 1, 3, 4-oxadiazoles clubbed with substituted azetidin-2-one: A new class of potential antimicrobial and antitubercular. Drug Res. 2021 71 1 26 35 10.1055/a‑1252‑2378 33027823
    [Google Scholar]
  5. Fabian L. Taverna Porro M. Gómez N. Salvatori M. Turk G. Estrin D. Moglioni A. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur. J. Med. Chem. 2020 188 111987 10.1016/j.ejmech.2019.111987 31893549
    [Google Scholar]
  6. Tseng C.H. Han C.R. Tang K.W. Discovery of 3-arylquinoxaline derivatives as potential anti-dengue virus agents. Int. J. Mol. Sci. 2019 20 19 4786 10.3390/ijms20194786 31561542
    [Google Scholar]
  7. Tariq S. Somakala K. Amir M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem. 2018 143 542 557 10.1016/j.ejmech.2017.11.064 29207337
    [Google Scholar]
  8. Hayakawa Y. Sone R. Aoki H. Kimata S. Quinomycins H1 and H2, new cytotoxic antibiotics from Streptomyces sp. RAL404. J. Antibiot. 2018 71 10 898 901 10.1038/s41429‑018‑0083‑6 30018424
    [Google Scholar]
  9. Pan Y. Li P. Xie S. Tao Y. Chen D. Dai M. Hao H. Huang L. Wang Y. Wang L. Liu Z. Yuan Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett. 2016 26 16 4146 4153 10.1016/j.bmcl.2016.01.066 27426298
    [Google Scholar]
  10. Pereira J.A. Pessoa A.M. Cordeiro M.N.D.S. Fernandes R. Prudêncio C. Noronha J.P. Vieira M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem. 2015 97 664 672 10.1016/j.ejmech.2014.06.058 25011559
    [Google Scholar]
  11. Dolezal M. Zitko J. Pyrazine derivatives: A patent review (June 2012-present). Expert Opin. Ther. Pat. 2015 25 1 33 47 10.1517/13543776.2014.982533 25523365
    [Google Scholar]
  12. Rodrigues F.A.R. Bom I.D.S. Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Lett. 2014 24 934 939 10.1016/j.bmcl.2013.12.074 24398294
    [Google Scholar]
  13. Wu P. Su Y. Liu X. Yan J. Ye Y. Zhang L. Xu J. Weng S. Li Y. Liu T. Dong X. Sun M. Yang B. He Q. Hu Y. Discovery of novel morpholino-quinoxalines as PI3Kα inhibitors by pharmacophore-based screening. MedChemComm 2012 3 6 659 662 10.1039/c2md00255h
    [Google Scholar]
  14. Hazeldine S.T. Polin L. Kushner J. Paluch J. White K. Edelstein M. Palomino E. Corbett T.H. Horwitz J.P. Design, synthesis, and biological evaluation of analogues of the antitumor agent, 2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid (XK469). J. Med. Chem. 2001 44 1758 1776 10.1021/jm0005149 11356111
    [Google Scholar]
  15. Schopov I. Popov N. Parhi A.K. Zhang Y. Saionz K.W. Pradhan P. Kaul M. Trivedi K. Pilch D.S. LaVoie E.J. Das R. Mehta D.K. Smits R.A. Lim H.D. Hanzer A. Zuiderveld O.P. Guaita E. Adami M. Coruzzi G. Leurs R. de Esch I.J.P. Missioui M. Mortada S. Guerrab W. Serdaroğlu G. Kaya S. Mague J.T. Essassi E.M. Faouzi M.E.A. Ramli Y. Oncken C. Gonzales D. Nides M. Rennard S.I. Watsky E.J. Billing C.B. Anziano R. Reeves K.R. Richards H.C. Housley J.R. Spooner D.F. Melnichenko V.E. Kudryavtseva T.N. Lamanov A.Y. Kudryavcev T.A. Klimova L.G. Antibacterial activity of quinoxalines, quinazolines, and 1, 5-naphthyridines. J. Med. Chem. 2021 51 1571 1577 10.1016/j.cdc.2022.100929
    [Google Scholar]
  16. Moorthy N.S.H. Manivannan E. Karthikeyan C. Trivedi P. 6H-Indolo[2,3-b]quinoxalines: DNA and protein interacting scaffold for pharmacological activities. Mini Rev. Med. Chem. 2013 13 10 1415 1420 10.2174/13895575113139990005 23701655
    [Google Scholar]
  17. Parhi A.K. Zhang Y. Saionz K.W. Pradhan P. Kaul M. Trivedi K. Pilch D.S. LaVoie E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg. Med. Chem. Lett. 2013 23 17 4968 4974 10.1016/j.bmcl.2013.06.048 23891185
    [Google Scholar]
  18. Smits R.A. Lim H.D. Hanzer A. Zuiderveld O.P. Guaita E. Adami M. Coruzzi G. Leurs R. de Esch I.J.P. Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J. Med. Chem. 2008 51 8 2457 2467 10.1021/jm7014217 18357976
    [Google Scholar]
  19. Rong F. Chow S. Yan S. Larson G. Hong Z. Wu J. Structure-activity relationship (SAR) studies of quinoxalines as novel HCV NS5B RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem. Lett. 2007 17 6 1663 1666 10.1016/j.bmcl.2006.12.103 17258458
    [Google Scholar]
  20. Hui X. Desrivot J. Bories C. Loiseau P.M. Franck X. Hocquemiller R. Figadère B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett. 2006 16 4 815 820 10.1016/j.bmcl.2005.11.025 16309903
    [Google Scholar]
  21. Kim Y.B. Kim Y.H. Park J.Y. Kim S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett. 2004 14 2 541 544 10.1016/j.bmcl.2003.09.086 14698199
    [Google Scholar]
  22. Maga J.A. Pyrazine update. Food Rev. Int. 1992 8 4 479 558 10.1080/87559129209540951
    [Google Scholar]
  23. Kos J. Gonec T. Oravec M. Jendrzejewska I. Jampilek J. Photosynthesis-inhibiting activity of N -(disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides. Molecules 2021 26 14 4336 10.3390/molecules26144336 34299611
    [Google Scholar]
  24. Guo Q. Xu M. Guo S. Zhu F. Xie Y. Shen J. The complete synthesis of favipiravir from 2-aminopyrazine. Chem. Pap. 2019 73 5 1043 1051 10.1007/s11696‑018‑0654‑9
    [Google Scholar]
  25. Brown P. Quinoxalines. In:The Chemistry of Heterocyclic Compounds. John Wiley & Sons New York 2004 10.1002/0471533408
    [Google Scholar]
  26. Silva J.F.M. Garden S.J. Pinto A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc. 2001 12 3 273 324 10.1590/S0103‑50532001000300002
    [Google Scholar]
  27. Kamano Y. Zhang H. Ichihara Y. Kizu H. Komiyama K. Pettit G.R. Convolutamydine A. Convolutamydine A, a novel bioactive hydroxyoxindole alkaloid from marine bryozoan Amathia convoluta. Tetrahedron Lett. 1995 36 16 2783 2784 10.1016/0040‑4039(95)00395‑S
    [Google Scholar]
  28. Kuzu B. Menges N. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 162 61 68 10.1016/j.saa.2016.02.046 26985875
    [Google Scholar]
  29. Thadathil A. Pradeep H. Joshy D. Ismail Y.A. Periyat P. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Mater. Adv. 2022 3 7 2990 3022 10.1039/D2MA00022A
    [Google Scholar]
  30. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Academic Press 2019 10.1016/j.bioorg.2019.103021
    [Google Scholar]
  31. Kornet M.J. Thio A.P. Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J. Med. Chem. 1976 19 7 892 898 10.1021/jm00229a007 940109
    [Google Scholar]
  32. Bhaskar G. Arun Y. Balachandran C. Saikumar C. Perumal P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem. 2012 51 79 91 10.1016/j.ejmech.2012.02.024 22405285
    [Google Scholar]
  33. Gomez-Monterrey I. Bertamino A. Porta A. Carotenuto A. Musella S. Aquino C. Granata I. Sala M. Brancaccio D. Picone D. Ercole C. Stiuso P. Campiglia P. Grieco P. Ianelli P. Maresca B. Novellino E. Identification of the spiro(oxindole-3,3′-thiazolidine)-based derivatives as potential p53 activity modulators. J. Med. Chem. 2010 53 23 8319 8329 10.1021/jm100838z 21058726
    [Google Scholar]
  34. Long J. Parkin B. Ouillette P. Bixby D. Shedden K. Erba H. Wang S. Malek S.N. Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 2010 116 1 71 80 10.1182/blood‑2010‑01‑261628 20404136
    [Google Scholar]
  35. Basavaiah D. Reddy K.R. Simple and one-pot protocol for synthesis of indene-spiro-oxindoles involving tandem Prins and Friedel-Crafts reactions. Org. Lett. 2007 9 1 57 60 10.1021/ol062561m 17192084
    [Google Scholar]
  36. Skiles J.W. McNeil D. Spiro indolinone beta-lactams, inhibitors of poliovirus and rhinovlrus 3C-proteinases. Tetrahedron Lett. 1990 31 50 7277 7280 10.1016/S0040‑4039(00)88543‑3
    [Google Scholar]
  37. Carter S.D. Cheeseman G.W.H. Quinoxalines and related compounds—X. Tetrahedron 1978 34 7 981 988 10.1016/0040‑4020(78)88151‑4
    [Google Scholar]
  38. Harmenberg J. Wahren B. Bergman J. Akerfeldt S. Lundblad L. Antiherpesvirus activity and mechanism of action of indolo-(2,3-b)quinoxaline and analogs. Antimicrob. Agents Chemother. 1988 32 11 1720 1724 10.1128/AAC.32.11.1720 2855298
    [Google Scholar]
  39. Hirata K. Araya J. Nakaike S. Kitamura K. Ishida T. Side chain-dependent binding of antitumor indoloquinoxaline derivatives to DNA: Comparative spectroscopic and viscometric measurements. Chem. Pharm. Bull. 2001 49 1 44 48 10.1248/cpb.49.44 11201223
    [Google Scholar]
  40. Avula S. Komsani J.R. Koppireddi S. Yadla R. Kanugula A.K. Kotamraju S. Synthesis and cytotoxicity of novel 6H-indolo[2,3-b]quinoxaline derivatives. Med. Chem. Res. 2013 22 8 3712 3718 10.1007/s00044‑012‑0373‑7
    [Google Scholar]
  41. Karki S. Hazare R. Kumar S. Bhadauria V. Balzarini J. De Clercq E. Synthesis, anticancer and cytostatic activity of some 6H-indolo[2,3-b]quinoxalines. Acta Pharm. 2009 59 4 431 440 10.2478/v10007‑009‑0040‑9 19919932
    [Google Scholar]
  42. Wilhelmsson L.M. Kingi N. Bergman J. Interactions of antiviral indolo[2,3-b]quinoxaline derivatives with DNA. J. Med. Chem. 2008 51 24 7744 7750 10.1021/jm800787b 19053744
    [Google Scholar]
  43. Sehlstedt U. Aich P. Bergman J. Vallberg H. Nordén B. Gräslund A. Interactions of the antiviral quinoxaline derivative 9-OH-B220 2,3-dimethyl-6-(dimethylaminoethyl)-9-hydroxy-6H-indolo-[2,3-b]quinoxaline with duplex and triplex forms of synthetic DNA and RNA. J. Mol. Biol. 1998 278 1 31 56 10.1006/jmbi.1998.1670 9571032
    [Google Scholar]
  44. Harmenberg J. Åkesson-Johansson A. Gräslund A. Malmfors T. Bergman J. Wahren B. Åkerfeldt S. Lundblad L. Cox S. The mechanism of action of the anti-herpes virus compound 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline. Antiviral Res. 1991 15 3 193 204 10.1016/0166‑3542(91)90066‑Z 1653556
    [Google Scholar]
  45. Qian X. Gao H.H. Zhu Y.Z. Lu L. Zheng J.Y. 6H-Indolo[2,3-b]quinoxaline-based organic dyes containing different electron-rich conjugated linkers for highly efficient dye-sensitized solar cells. J. Power Sources 2015 280 573 580 10.1016/j.jpowsour.2015.01.148
    [Google Scholar]
  46. Thomas K.R.J. Tyagi P. Synthesis, spectra, and theoretical investigations of the triarylamines based on 6H-indolo[2,3-b]quinoxaline. J. Org. Chem. 2010 75 23 8100 8111 10.1021/jo1016663 21053895
    [Google Scholar]
  47. Zhao J. Li H. Li H. Zhao Q. Ling H. Li J. Lin J. Xie L. Lin Z. Yi M. Huang W. Synthesis, characterization and charge storage properties of π-biindolo[2,3-b]quinoxaline for solution-processing organic transistor memory. Dyes Pigments 2019 167 255 261 10.1016/j.dyepig.2018.07.011
    [Google Scholar]
  48. Tyagi P. Venkateswararao A. Thomas K.R.J. Solution processable indoloquinoxaline derivatives containing bulky polyaromatic hydrocarbons: Synthesis, optical spectra, and electroluminescence. J. Org. Chem. 2011 76 11 4571 4581 10.1021/jo2004764 21539382
    [Google Scholar]
  49. Fan C.H. Sun P. Su T.H. Cheng C.H. Host and dopant materials for idealized deep-red organic electrophosphorescence devices. Adv. Mater. 2011 23 26 2981 2985 10.1002/adma.201100610 21567483
    [Google Scholar]
  50. Qian X. Wang X. Shao L. Li H. Yan R. Hou L. Molecular engineering of D-D-π-A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells. J. Power Sources 2016 326 129 136 10.1016/j.jpowsour.2016.06.127
    [Google Scholar]
  51. Payne A.J. Welch G.C. Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions. Org. Biomol. Chem. 2017 15 15 3310 3319 10.1039/C7OB00362E 28361153
    [Google Scholar]
  52. Sun W. Hu G. Shen W. Xu H. Deng Z. Zhao G. Li F. Hu Y. Yang W. A series of D-π-A and A-π-A’ fluorescent probes were used to explore the influence of terminal groups on the properties of the hemicyanine probes. J. Mol. Liq. 2021 340 116846 10.1016/j.molliq.2021.116846
    [Google Scholar]
  53. Khidre R.E. Radini I.M.A. Ameen T.A. Abdelgawad A.A.M. Triazoloquinolines I. Synthetic methods and pharmacological properties of [1, 2, 3] triazoloquinoline derivatives. Curr. Org. Chem. 2021 25 8 876 893 10.2174/1385272825666210202122645
    [Google Scholar]
  54. Khidre R.E. Salem M.A. Ameen T.A. Abdelgawad A.A.M. Triazoloquinolines I.I. Triazoloquinolines I.I. Synthesis, reactions, and pharmacological properties of [1,2,4]triazoloquinoline and 1,2,4-triazoloisoquinoline derivatives. Polycycl. Aromat. Compd. 2023 43 1 13 53 10.1080/10406638.2021.2008457
    [Google Scholar]
  55. Gouda M.A. Abu-Hashem A.A. Ameen T.A. Salem M.A. Synthesis of pyrimido[4, 5-b]quinolones from 6-aminopyrimidin-4- (thi)one derivatives (Part I). Mini Rev. Org. Chem. 2023 20 6 622 641 10.2174/1570193X20666221104110606
    [Google Scholar]
  56. Gouda M.A. Abu-Hashem A.A. Ameen T.A. Althagafi S.H. Hamama W.S. Khalil A.G.M. Pyrimido[5,4‐ c]quinolines: Synthesis from 3,4‐Di‐functionallized quinoline, reactivity and biological activities. Chem. Biodivers. 2024 21 3 e202301968 10.1002/cbdv.202301968 38194695
    [Google Scholar]
  57. Abu-Hashem A.A. Hakami O. Amri N. Ameen T.A. Bajaber M.A. Youssef M.M. Gouda M.A. Recent routes in synthesis and biological activity of pyrimido[4,5-b] quinoline derivatives: A review (Part II). Mini Rev. Org. Chem. 2024 21 10.2174/0118756298322382240902061348
    [Google Scholar]
  58. Abu-Hashem A. Ameen T. El-Telbani E. Hussein H.A.R. Gouda M. Synthesis, reactions and biological activity of pyrimido [5, 4-c] quinolines based on (Thio)barbituric acid and their analogous (Part IV). Mini Rev. Org. Chem. 2024 21 1 13 10.2174/0118756298276728231130042823
    [Google Scholar]
  59. Abu-Hashem A.A. Al-Hussain S.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones. Pharmaceuticals 2022 15 10 1232 10.3390/ph15101232 36297343
    [Google Scholar]
  60. Abu-Hashem A.A. Al-Hussain S.A. Zaki M.E.A. Design, synthesis and anticancer activity of new polycyclic: Imidazole, thiazine, oxathiine, pyrrolo-quinoxaline and thienotriazolopyrimidine derivatives. Molecules 2021 26 7 2031 10.3390/molecules26072031 33918322
    [Google Scholar]
  61. Abu-Hashem A.A. Synthesis and biological activity of pyrimidines, quinolines, thiazines and pyrazoles bearing a common thieno moiety. Acta Pol. Pharm. 2018 75 59 70
    [Google Scholar]
  62. Abu-Hashem A.A. Gouda M.A. Synthesis, anti-inflammatory and analgesic evaluation of certain new 3a,4,9,9a-tetrahydro-4,9-benzenobenz[f]isoindole-1,3-diones. Arch. Pharm. (Weinheim) 2011 344 8 543 551 10.1002/ardp.201100020 21681809
    [Google Scholar]
  63. Abu-Hashem A.A. Hakami O. Amri N. Ameen T.A. Bajaber M.A. Youssef M.M. Gouda M.A. Recent routes in synthesis and biological activity of pyrimido[4,5-b] quinoline derivatives: A review (Part II). Mini Rev. Org. Chem. 2025 22 3 340 358 10.2174/0118756298322382240902061348
    [Google Scholar]
  64. Gouda M.A. Abu-hashem A.A. Ameen T.A. Alharbi R.A.K. Althumayri K. Synthesis, reactions and biological activities of pyrimido[4,5-c] isoquinolines (Part III). Lett. Org. Chem. 2025 22 7 517 531 10.2174/0115701786359233241220074609
    [Google Scholar]
  65. Hajare R. Karki S. Kark S. Characterization of novel 2-indolinone derivatives as anticancer and cytotoxic activity. World J. Pharm. Pharm. Sci. 2015 5 995 1002
    [Google Scholar]
  66. Bogdanov A.V. Mironov V.F. Features of the reaction of isatin derivatives with ortho-phenylenediamine. Russ. J. Gen. Chem. 2015 85 10 2413 2415 10.1134/S107036321510031X
    [Google Scholar]
  67. Ampati S. Lagishetti S. Bairi A.G. Synthesis of 9-Bromo-N-substituted-6H-indolo[2,3-b]quinoxaline-3-sulfonamide derivatives containing quinoxaline moiety as prospective antimi-crobial agents. Int. J. Pharm. 2013 3 145 151
    [Google Scholar]
  68. Talari S. Govindarajan R. Karunakaram D. Jupudi S. Udhayavani S. Screening of antimicrobial and anti-oxidant activity of newly synthesized 1-(4-(9-bromo-6H-indolo [2, 3-b] quinoxalin-6-yl)-3-oxobutanoyl)-3-substituted-4, 5-dihydro-1H-pyrazole-4-carbaldehyde derivatives of Quinoxaline. J. Appl. Chem. 2013 2 236 245
    [Google Scholar]
  69. Jianliang S.U.N. Ge H.U. Qing S.H.E. Zhaohong Z.U.O. Lei G.U.O. Nanofibers doped with a novel red-emitting Europium complex: Synthesis, characterization, photophysical property and sensing activity toward molecular oxygen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 91 192 197 10.1016/j.saa.2012.01.074 22381790
    [Google Scholar]
  70. Khaksar S. Rostamnezhad F. A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols. Bull. Korean Chem. Soc. 2012 33 8 2581 2584 10.5012/bkcs.2012.33.8.2581
    [Google Scholar]
  71. Amin M.A. Youssef M.M. Use of modern technique for synthesis of quinoxaline derivatives as potential anti-virus compounds. Der Pharma. Chem. 2012 4 3 1323 1329
    [Google Scholar]
  72. Hossain M.M. Ferdous N.N. Muhib H. Alam S. Islam R. Hai A. Zoghaib W. The effect of deactivating groups in the formation of some biologically important lactams (isatins) and their further derivatization. J. Bangladesh Chem. Soc. 2012 25 1 46 52 10.3329/jbcs.v25i1.11771
    [Google Scholar]
  73. Chandra Shekhar A. Ravi Kumar A. Sathaiah G. Raju K. Srinivas P.V.S.S. Shanthan Rao P. Narsaiah B. Aqueous hydrofluoric acid catalyzed facile synthesis of 2,3,6-substituted quinoxalines. J. Heterocycl. Chem. 2014 51 5 1504 1508 10.1002/jhet.1753
    [Google Scholar]
  74. Hayashi H. Oda M. Koizumi T. Preparation, electrochemical behavior, and reactivity of Bis(N ‐boc type indroquinoxaline) derivatives. ChemistrySelect 2023 8 39 e202302569 10.1002/slct.202302569
    [Google Scholar]
  75. Kumbhar A. Kanase D. Mohite S. Salunkhe R. Lohar T. Brönsted acid hydrotrope combined catalysis in water: A green approach for the synthesis of indoloquinoxalines and bis-tetronic acids. Res. Chem. Intermed. 2021 47 6 2263 2278 10.1007/s11164‑021‑04430‑w
    [Google Scholar]
  76. Hegade P.G. Mane M.M. Patil J.D. Pore D.M. Sulfamic acid: A mild, efficient, and cost-effective catalyst for synthesis of indoloquinoxalines at ambient temperature. Synth. Commun. 2014 44 23 3384 3391 10.1080/00397911.2014.943345
    [Google Scholar]
  77. Abdel-Sayed N.I. Novel routes to triazino [5, 6-b] indole and indolo [2, 3-b] quinoxaline derivatives. Bulg. Chem. Commun 2009 41 362 367
    [Google Scholar]
  78. Zhang H. A green synthesis of indolo[2,3-b]quinoxaline derivatives. J. Chem. Res. 2014 38 12 705 709 10.3184/174751914X14146737095013
    [Google Scholar]
  79. Chavan H.V. Adsul L.K. Bandgar B.P. Polyethylene glycol in water: A simple, efficient and green protocol for the synthesis of quinoxalines. J. Chem. Sci. 2011 123 477 483 10.1007/s12039‑011‑0081‑8
    [Google Scholar]
  80. Saini K. Manju A.K. Raigar A.K. Guleria A. Thiourea dioxide catalyzed sustainable synthesis of diverse quinoxaline and pyrazine derivatives in aqueous medium at ambient temperature. ChemistrySelect 2024 9 21 e202401077 10.1002/slct.202401077
    [Google Scholar]
  81. Amalraj S.D. Harichandran G. Bhakiaraj D. Amalorpavadoss A. A facile catalytic one-pot synthesis of benzimidazole and benzothiazole compounds using amberlite IRA 400-Cl Resin as Green catalyst. Asian J. Chem. 2022 34 7 1644 1652 10.14233/ajchem.2022.23595
    [Google Scholar]
  82. Yadav J.S. Subba Reddy B.V. Premalatha K. Shankar K.S. Bismuth(III)-catalyzed rapid synthesis of 2,3-disubstituted quinoxalines in water. Synthesis 2008 23 3787 3792 10.1055/s‑0028‑1083230
    [Google Scholar]
  83. Kunjiappan S. Theivendren P. Pavadai P. Govindaraj S. Sankaranarayanan M. Somasundaram B. Arunachalam S. Ram Kumar Pandian S. Ammunje D.N. Design and in silico modeling of Indoloquinoxaline incorporated keratin nanoparticles for modulation of glucose metabolism in 3T3‐L1 adipocytes. Biotechnol. Prog. 2020 36 1 e2904 10.1002/btpr.2904 31496124
    [Google Scholar]
  84. Bajpai S. Singh S. Srivastava V. Rutile phase nanoTiO2 as an effective heterogeneous catalyst for condensation reaction of isatin derivatives with 1,2-diaminobenzene under solvent free conditions: A greener “NOSE” approach. Arab. J. Chem. 2019 12 7 1168 1175 10.1016/j.arabjc.2014.11.037
    [Google Scholar]
  85. Dandia A. Parewa V. Maheshwari S. Rathore K.S. Cu doped CdS nanoparticles: A versatile and recoverable catalyst for chemoselective synthesis of indolo[2,3- b]quinoxaline derivatives under microwave irradiation. J. Mol. Catal. Chem. 2014 394 244 252 10.1016/j.molcata.2014.07.022
    [Google Scholar]
  86. Bhargava S. Soni P. Rathore D. An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives. J. Mol. Struct. 2019 1198 126758 10.1016/j.molstruc.2019.07.005
    [Google Scholar]
  87. Khan M.U. Siddiqui S. Siddiqui Z.N. Novel ionic liquid-functionalized chitosan [DSIM][AlCl 3] x-@CS: Synthesis, characterization, and catalytic application for preparation of substituted pyrazine derivatives. ACS Omega 2019 4 4 7586 7595 10.1021/acsomega.9b00301 31459852
    [Google Scholar]
  88. Shivhare K.N. Siddiqui I.R. β-cyclodextrin mediated synthesis of indole derivatives: reactions of isatins with 2-amino(or 2-thiole)anilines by supramolecular catalysis in water. Supramol. Chem. 2019 31 1 52 61 10.1080/10610278.2018.1529315
    [Google Scholar]
  89. Jaiswal D. Tiwari J. Singh S. Sharma A.K. Singh J. Singh J. Rose bengal catalyzed coupling of 1, 2 ‐ dicarbonyls and phenylene 1, 2 ‐diamines: Visible‐light mediated synthesis of quinoxalines. ChemistrySelect 2019 4 29 8713 8718 10.1002/slct.201902080
    [Google Scholar]
  90. Kalhor, Mehdi Ni@Zeolite-Y Nano-Porous: Preparation and application as a high efficient catalyst for facile synthesis of quinoxaline, pyridopyrazine, and indoloquinoxaline derivatives. Iran J. Chem. Chem. Eng. 2019 38 1 1 2
    [Google Scholar]
  91. Mishra A. Singh S. Quraishi M.A. Srivastava V. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int. 2019 51 4 345 356 10.1080/00304948.2019.1596469
    [Google Scholar]
  92. Edayadulla N. Lee Y.R. Cerium oxide nanoparticle-catalyzed three-component protocol for the synthesis of highly substituted novel quinoxalin-2-amine derivatives and 3,4-dihydroquinoxalin-2-amines in water. RSC Advances 2014 4 22 11459 11468 10.1039/c4ra00717d
    [Google Scholar]
  93. Vadivel P. Lalitha A. Modified MCM-41 materials as efficient and reusable catalysts for the synthesis of quinoxaline derivatives. Elixir. Org. Chem. 2013 55 13013 13016
    [Google Scholar]
  94. Harsha K.B. Rangappa S. Preetham H.D. Swaroop T.R. Gilandoust M. Rakesh K.S. Rangappa K.S. An easy and efficient method for the synthesis of quinoxalines using recyclable and heterogeneous nanomagnetic‐supported acid catalyst under solvent‐free condition. ChemistrySelect 2018 3 18 5228 5232 10.1002/slct.201800053
    [Google Scholar]
  95. Rostami Z. Rouhanizadeh M. Nami N. Zareyee D. Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives. Nanochem. Res. 2018 3 142 148 10.22036/ncr.2018.02.003
    [Google Scholar]
  96. Tajbakhsh M. Mazhari F. Nirouei N. Preparation and characterization of sulfamic acid-functionalized Fe3O4 nanoparticles as an efficient magnetic nanocatalyst for the facile and eco-friendly synthesis of quinoxalines, benzothiazoles, and benzoxazoles. Res. Chem. Intermed. 2024 50 3 1287 1311 10.1007/s11164‑023‑05214‑0
    [Google Scholar]
  97. Kadam H.K. Khan S. Kunkalkar R.A. Tilve S.G. Graphite catalyzed green synthesis of quinoxalines. Tetrahedron Lett. 2013 54 8 1003 1007 10.1016/j.tetlet.2012.12.041
    [Google Scholar]
  98. Jain R. Sharma K. Kumar D. A greener, facile and scalable synthesis of indole derivatives in water: Reactions of indole-2,3-diones with 1,2-difunctionalized benzene. Tetrahedron Lett. 2012 53 46 6236 6240 10.1016/j.tetlet.2012.09.013
    [Google Scholar]
  99. Bakthadoss M. Selvakumar R. Srinivasan J. An efficient protocol for the synthesis of benzoheterocyclic compounds via solid-state melt reaction (SSMR). Tetrahedron Lett. 2014 55 42 5808 5812 10.1016/j.tetlet.2014.08.084
    [Google Scholar]
  100. Dwivedi A. Microwave assisted synthesis of some quinoxaline derivatives. Chem. Sci. Trans. 2014 3 465 469 10.7598/cst2014.671
    [Google Scholar]
  101. Deady L.W. Kaye A.J. Fused tetracyclic quinoxalines from reactions of o-phenylenediamines in polyphosphoric acid. Aust. J. Chem. 1997 50 5 473 478 10.1071/C96170
    [Google Scholar]
  102. Deady L.W. Kaye A.J. Finlay G.J. Baguley B.C. Denny W.A. Synthesis and antitumor properties of N-[2-(dimethylamino)ethyl]carboxamide derivatives of fused tetracyclic quinolines and quinoxalines: A new class of putative topoisomerase inhibitors. J. Med. Chem. 1997 40 13 2040 2046 10.1021/jm970044r
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298393291250824171558
Loading
/content/journals/mroc/10.2174/0118756298393291250824171558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test