Skip to content
2000
image of An Expository Review on the Multifaceted Applications of Sodium Alginate as a Scaffold in Metal-Organic Frameworks

Abstract

Polysaccharides like sodium alginate manifest numerous applications due to the characteristics of biocompatibility, low toxicity, adsorption benefits, nature of regenerating tissues, response to pH stimuli, and exemplary binding property with metal ions. Metal-Organic Frameworks (MOFs) absorb and trap toxins/drugs/biosensors to speed mass transfer rates. Sodium alginate features accessible -COOH and -OH functional groups that allow for easy modification with various functional groups. Sodium alginate incorporated Metal-Organic Frameworks (MOFs) significantly enhance its potential, unlocking numerous opportunities for diverse applications across fields such as drug delivery, sensors, and environmental remediation. This modification not only improves the material's functional properties but also reduces systemic toxicity. The film-forming nature with great biodegradability and biocompatibility of the SA@MOF system proves it an appropriate food packaging material with exceptional mechanical and antimicrobial properties, lessening toxicity by avoiding direct contact with food material, amplified water barrier property, and preservation longevity. The SA@MOF outperforms drug delivery, toxic adsorption, antibiotic sensing, food freshness, The SA-MOF-based products like to depict itself as a research-based industry, as the source of innovative drugs, composite films, and toxin absorbents.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298373915250404093922
2025-07-07
2025-09-02
Loading full text...

Full text loading...

References

  1. Jain D. Bar-Shalom D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 2014 40 12 1576 1584 10.3109/03639045.2014.917657 25109399
    [Google Scholar]
  2. Ching S.H. Bansal N. Bhandari B. Alginate gel particles-A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017 57 6 1133 1152 10.1080/10408398.2014.965773 25976619
    [Google Scholar]
  3. Sosnik A. Alginate particles as platform for drug delivery by the oral route: State-of-the-art. ISRN Pharm. 2014 2014 1 17 10.1155/2014/926157 25101184
    [Google Scholar]
  4. Zhang A. Jung K. Li A. Liu J. Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci. 2019 99 101164 10.1016/j.progpolymsci.2019.101164
    [Google Scholar]
  5. Ma X.Q. Wang B. Wei W. Tan F.C. Su H. Zhang J.Z. Zhao C.Y. Zheng H.J. Feng Y.Q. Shen W. Yang J.B. Li F.L. Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl. Environ. Microbiol. 2024 90 5 e00046 e24 10.1128/aem.00046‑24 38563787
    [Google Scholar]
  6. Lai J. Azad A.K. Sulaiman W.M.A.W. Kumarasamy V. Subramaniyan V. Alshehade S.A. Alginate-based encapsulation fabrication technique for drug delivery: An updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics 2024 16 3 370 10.3390/pharmaceutics16030370 38543264
    [Google Scholar]
  7. Jana S. Sen K.K. Gandhi A. Alginate based nanocarriers for drug delivery applications. Curr. Pharm. Des. 2016 22 22 3399 3410 10.2174/1381612822666160510125718 27160752
    [Google Scholar]
  8. Szekalska M. Puciłowska A. Szymańska E. Ciosek P. Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016 2016 1 17 10.1155/2016/7697031
    [Google Scholar]
  9. Bisht A. Avinash D. Sahu K.K. Patel P. Gupta D.G. Kurmi B.D. A comprehensive review on doxorubicin: Mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv. Transl. Res. 2024 10.1007/s13346‑024‑01648‑0 38884850
    [Google Scholar]
  10. Cardoso M. Costa R. Mano J. Marine origin polysaccharides in drug delivery systems. Mar. Drugs 2016 14 2 34 10.3390/md14020034 26861358
    [Google Scholar]
  11. Aramwit P. Yamdech R. Ampawong S. Controlled release of chitosan and sericin from the microspheres-embedded wound dressing for the prolonged anti-microbial and wound healing efficacy. AAPS J. 2016 18 3 647 658 10.1208/s12248‑016‑9897‑y 26935427
    [Google Scholar]
  12. Guo X. Huang S. Sun J. Wang F. Comparison of the cytotoxicities and wound healing effects of hyaluronan, carbomer, and alginate on skin cells in vitro. Adv. Skin Wound Care 2015 28 9 410 414 10.1097/01.ASW.0000467303.39079.59 26280700
    [Google Scholar]
  13. Liakos I. Rizzello L. Bayer I.S. Pompa P.P. Cingolani R. Athanassiou A. Controlled antiseptic release by alginate polymer films and beads. Carbohydr. Polym. 2013 92 1 176 183 10.1016/j.carbpol.2012.09.034 23218280
    [Google Scholar]
  14. Wang T. Zheng Y. Shi Y. Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv. Transl. Res. 2019 9 1 227 239 10.1007/s13346‑018‑00609‑8 30519937
    [Google Scholar]
  15. Hariyadi D.M. Islam N. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci. 2020 2020 8886095 10.1155/2020/8886095
    [Google Scholar]
  16. Leuenberger H. Rohera B. Haas C. Percolation theory — a novel approach to solid dosage form design. Int. J. Pharm. 1987 38 1-3 109 115 10.1016/0378‑5173(87)90105‑0
    [Google Scholar]
  17. Sipos B. Benei M. Katona G. Csóka I. Optimization and characterization of sodium alginate beads providing extended release for antidiabetic drugs. Molecules 2023 28 19 6980 10.3390/molecules28196980 37836823
    [Google Scholar]
  18. Furukawa H. Cordova K.E. O’Keeffe M. Yaghi O.M. The chemistry and applications of metal-organic frameworks. Science 2013 341 6149 1230444 10.1126/science.1230444 23990564
    [Google Scholar]
  19. Zhou H.C.J. Kitagawa S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014 43 16 5415 5418 10.1039/C4CS90059F 25011480
    [Google Scholar]
  20. Zhou H.C. Long J.R. Yaghi O.M. Introduction to metal-organic frameworks. Chem. Rev. 2012 112 2 673 674 10.1021/cr300014x 22280456
    [Google Scholar]
  21. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. Available from: https://link.springer.com/article/10.1007/s10924-021-02154-x (Accessed January 21, 2025).
  22. Morris R.E. Brammer L. Coordination change, lability and hemilability in metal-organic frameworks. Chem. Soc. Rev. 2017 46 17 5444 5462 10.1039/C7CS00187H 28795752
    [Google Scholar]
  23. Zhang S. Ding J. Tian D. Su W. Liu F. Li Q. Lu M. Preparation of novel poly(sodium p-styrenesulfonate)/sodium alginate hydrogel incorporated with MOF-5 nanoparticles for the adsorption of Pb(II) and tetracycline. J. Mol. Struct. 2024 1300 137313 10.1016/j.molstruc.2023.137313
    [Google Scholar]
  24. Singh N. Qutub S. Khashab N.M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 30 5925 5934 10.1039/D1TB01044A 34259304
    [Google Scholar]
  25. Tripathi K. Feuerstein J.D. New developments in ulcerative colitis: Latest evidence on management, treatment, and maintenance. Drugs Context 2019 8 1 11 10.7573/dic.212572 31065290
    [Google Scholar]
  26. Ullah S. Bustam M.A. Al-Sehemi A.G. Assiri M.A. Kareem A.F.A. Mukhtar A. Ayoub M. Gonfa G. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Micropor. Mesop. Mater. 2020 296 110002 10.1016/j.micromeso.2020.110002
    [Google Scholar]
  27. Cho S. Kim J.H. Yang K.S. Chang M. Facile preparation of amino-functionalized polymeric microcapsules as efficient adsorbent for heavy metal ions removal. Chem. Eng. J. 2021 425 130645 10.1016/j.cej.2021.130645
    [Google Scholar]
  28. Vos D.P. Lazarjani H.A. Poncelet D. Faas M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014 67-68 15 34 10.1016/j.addr.2013.11.005 24270009
    [Google Scholar]
  29. Farboudi A. Mahboobnia K. Chogan F. Karimi M. Askari A. Banihashem S. Davaran S. Irani M. UiO-66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core-shell nanofibers for controlled release of doxorubicin and folic acid. Int. J. Biol. Macromol. 2020 150 178 188 10.1016/j.ijbiomac.2020.02.067 32045607
    [Google Scholar]
  30. Wang H.S. Wang Y.H. Ding Y. Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2020 2 9 3788 3797 10.1039/D0NA00557F 36132764
    [Google Scholar]
  31. Ahmad F. Zhu D. Sun J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021 33 1 64 10.1186/s12302‑021‑00505‑y
    [Google Scholar]
  32. Daghrir R. Drogui P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013 11 3 209 227 10.1007/s10311‑013‑0404‑8
    [Google Scholar]
  33. Ahmad S. Abbasi B. Bin K. Nazir M.S. Metal Organic Frameworks (MOFs) as Formidable Candidate for Pharmaceutical Wastewater Treatment. In: Inorg.-Org. Compos. Water Wastewater Treat. Lichtfouse E. Muthu S.S. Khadir A. Singapore Springer 2022 Vol. 2 37 63 10.1007/978‑981‑16‑5928‑7_2
    [Google Scholar]
  34. Chang X. Hu P. Liu H. Lv Z. Yang J. Wang J. Li Z. Qian L. Wu W. ZIF-8 modified graphene oxide/sodium alginate 3D elastic spheres for uranium trapping in seawater. Desalination 2023 549 116371 10.1016/j.desal.2023.116371
    [Google Scholar]
  35. Kayan G.Ö. Kayan A. Polycaprolactone composites/blends and their applications especially in water treatment. ChemEngineering 2023 7 6 104 10.3390/chemengineering7060104
    [Google Scholar]
  36. Rudziak P. Batung E. Luginaah I. The effects of gases from food waste on human health: A systematic review. PLoS One 2024 19 3 e0300801 10.1371/journal.pone.0300801 38536829
    [Google Scholar]
  37. Zhang M. Wang G. Wang D. Zheng Y. Li Y. Meng W. Zhang X. Du F. Lee S. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int. J. Biol. Macromol. 2021 175 481 494 10.1016/j.ijbiomac.2021.02.045 33571589
    [Google Scholar]
  38. Mokhtari S. Solati-Hashjin M. Khosrowpour Z. Gholipourmalekabadi M. Layered double hydroxide-galactose as an excellent nanocarrier for targeted delivery of curcumin to hepatocellular carcinoma cells. Appl. Clay Sci. 2021 200 105891 10.1016/j.clay.2020.105891
    [Google Scholar]
  39. Saha S. Bhattacharjee A. Rahaman S.H. Basu A. Chakraborty J. Synergistic anti-cancer activity of etoposide drug loaded calcium aluminium layered double hydroxide nanoconjugate for possible application in non small cell lung carcinoma. Appl. Clay Sci. 2020 188 105496 10.1016/j.clay.2020.105496
    [Google Scholar]
  40. Ahmed A. Karami A. Sabouni R. Husseini G.A. Paul V. pH and ultrasound dual-responsive drug delivery system based on PEG-folate-functionalized Iron-based metal-organic framework for targeted doxorubicin delivery. Colloids Surf. A Physicochem. Eng. Asp. 2021 626 127062 10.1016/j.colsurfa.2021.127062
    [Google Scholar]
  41. Liu Y. Gong C.S. Dai Y. Yang Z. Yu G. Liu Y. Zhang M. Lin L. Tang W. Zhou Z. Zhu G. Chen J. Jacobson O. Kiesewetter D.O. Wang Z. Chen X. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 2019 218 119365 10.1016/j.biomaterials.2019.119365 31344642
    [Google Scholar]
  42. Karimi S. Rasuli H. Mohammadi R. Facile preparation of pH-sensitive biocompatible alginate beads havening layered double hydroxide supported metal-organic framework for controlled release from doxorubicin to breast cancer cells. Int. J. Biol. Macromol. 2023 234 123538 10.1016/j.ijbiomac.2023.123538 36740129
    [Google Scholar]
  43. Nabipour H. Aliakbari F. Volkening K. Strong M.J. Rohani S. New metal-organic framework coated sodium alginate for the delivery of curcumin as a sustainable drug delivery and cancer therapy system. Int. J. Biol. Macromol. 2024 259 Pt 1 128875 10.1016/j.ijbiomac.2023.128875 38154719
    [Google Scholar]
  44. Polymeric beads for targeted drug delivery and healthcare applications. In: Polymeric Biomaterials for Healthcare Applications; Woodhead Publishing: Sawston, Cambridge 2022 41 70 10.1016/B978‑0‑323‑85233‑3.00002‑1
    [Google Scholar]
  45. Wong F.S.Y. Tsang K.K. Chu A.M.W. Chan B.P. Yao K.M. Lo A.C.Y. Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials 2019 201 53 67 10.1016/j.biomaterials.2019.01.032 30797114
    [Google Scholar]
  46. Chakraborty S. Sarkar I. Ashok A. Sengupta I. Pal S.K. Chakraborty S. Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate. Powder Technol. 2018 335 285 300 10.1016/j.powtec.2018.05.004
    [Google Scholar]
  47. Vahed A.T. Naimi-Jamal M.R. Panahi L. Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release. J. Drug Deliv. Sci. Technol. 2019 49 570 576 10.1016/j.jddst.2018.12.022
    [Google Scholar]
  48. Lima D.H.H.C. Silva D.C.T.P. Kupfer V.L. Rinaldi C.D.J. Kioshima E.S. Mandelli D. Guilherme M.R. Rinaldi A.W. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr. Polym. 2021 251 116977 10.1016/j.carbpol.2020.116977 33142554
    [Google Scholar]
  49. Du L. Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol. Clin. North Am. 2020 49 4 643 654 10.1016/j.gtc.2020.07.005 33121686
    [Google Scholar]
  50. Gao M. Yang C. Wu C. Chen Y. Zhuang H. Wang J. Cao Z. Hydrogel-metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis. J. Nanobiotechnology 2022 20 1 404 10.1186/s12951‑022‑01603‑6 36064365
    [Google Scholar]
  51. Zheng X.F. Zhao E.D. He J.Y. Zhang Y.H. Jiang S.D. Jiang L.S. Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. Prog. Biophys. Mol. Biol. 2016 122 2 112 121 10.1016/j.pbiomolbio.2016.05.011 27237582
    [Google Scholar]
  52. Zhu Y. Yao Z. Liu Y. Zhang W. Geng L. Ni T. Incorporation of ROS-responsive substance p-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications. Int. J. Nanomedicine 2020 15 333 346 10.2147/IJN.S225197 32021183
    [Google Scholar]
  53. Gaddam R.R. Chambers S. Murdoch D. Shaw G. Bhatia M. Circulating levels of hydrogen sulfide and substance P in patients with sepsis. J. Infect. 2017 75 4 293 300 10.1016/j.jinf.2017.07.005 28760413
    [Google Scholar]
  54. Bendre A. Hegde V. Ajeya K.V. Manjunatha T.S. Somasekhara D. Nadumane V.K. Kant K. Jung H.Y. Hung W.S. Kurkuri M.D. Microfluidic-assisted synthesis of metal—organic framework—alginate micro-particles for sustained drug delivery. Biosensors 2023 13 7 737 10.3390/bios13070737 37504135
    [Google Scholar]
  55. Lian X. Yan B. Diagnosis of penicillin allergy: A MOFs-based composite hydrogel for detecting β-lactamase in serum. Chem. Commun. 2019 55 2 241 244 10.1039/C8CC08245F 30534686
    [Google Scholar]
  56. Chai G. Wang N. Xu M. Ma L. Liu X. Ding Q. Zhang S. Li A. Xia G. Zhao Y. Liu W. Liang D. Ding C. Poly (vinyl alcohol)/sodium alginate/carboxymethyl chitosan multifunctional hydrogel loading HKUST-1 nanoenzymes for diabetic wound healing. Int. J. Biol. Macromol. 2024 268 Pt 2 131670 10.1016/j.ijbiomac.2024.131670 38643919
    [Google Scholar]
  57. Xu M. Liu S. Wen J. Wang B. Wang H. Lian X. Gao X. Niu B. Li W. Preparation of sodium alginate modified silver-metal organic framework and application in citric acid/PVA antimicrobial packaging. Food Chem. 2024 451 139464 10.1016/j.foodchem.2024.139464 38704990
    [Google Scholar]
  58. Feng S. Tang Q. Xu Z. Huang K. Li H. Zou Z. Development of novel Co-MOF loaded sodium alginate based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocoll. 2023 135 108193 10.1016/j.foodhyd.2022.108193
    [Google Scholar]
  59. Ning H. Lu L. Xu J. Lu L. Pan L. Lin Z. Development of sodium alginate-based antioxidant and antibacterial bioactive films added with IRMOF-3/Carvacrol. Carbohydr. Polym. 2022 292 119682 10.1016/j.carbpol.2022.119682 35725175
    [Google Scholar]
  60. Bradai M. Radi A.M. Zeggai F.Z. Karkachi N. Meghabar R. In‐situ synthesis of highly potent antibacterial copper‐based mofs/sodium alginate composite beads. ChemistrySelect 2024 9 13 e202304855 10.1002/slct.202304855
    [Google Scholar]
  61. Liu Y. Li L. Qi Z. Han S. Li X. Liu B. Advances and applications of metal-organic framework nanomaterials as oral delivery carriers: A review. Mini Rev. Med. Chem. 2022 22 20 2564 2580 10.2174/1389557522666220330152145 35362373
    [Google Scholar]
  62. Zhang S. Rong F. Guo C. Duan F. He L. Wang M. Zhang Z. Kang M. Du M. Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord. Chem. Rev. 2021 439 213948 10.1016/j.ccr.2021.213948
    [Google Scholar]
  63. Chi K.N. Guan Y. Zhang X. Yang T. Meng S. Hu R. Yang Y.H. Iodide/metal-organic frameworks (MOF) -mediated signal amplification strategy for the colorimetric detection of H2O2, Cr2O72− and H2S. Anal. Chim. Acta 2021 1159 338378 10.1016/j.aca.2021.338378 33867031
    [Google Scholar]
  64. Wei Y. Zhang Y. Chen J.S. Mao C. Jin B.K. An electrochemiluminescence biosensor for p53 antibody based on Zn-MOF/GO nanocomposite and Ag+-DNA amplification. Mikrochim. Acta 2020 187 8 455 10.1007/s00604‑020‑04425‑1 32683571
    [Google Scholar]
  65. A green-emission metal–organic framework-based nanoprobe for imaging dual tumor biomarkers in living cells. Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.0c10038 (Accessed January 20, 2025).
  66. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging - ScienceDirect. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1385894720314443 (Accessed January 20, 2025).
  67. Li W. Liu L. Li X. Ren H. Zhang L. Parvez M.K. Al-Dosari M.S. Fan L. Liu J.A. Ni(II)MOF-based hypersensitive dual-function luminescent sensor towards the 3-nitrotyrosine biomarker and 6-propyl-2-thiouracil antithyroid drug in urine. J. Mater. Chem. B Mater. Biol. Med. 2024 12 45 11800 11809 10.1039/D4TB01618A 39432095
    [Google Scholar]
  68. Liu X. Li X. Li W. Liu L. Ren H. Jing H. Zhang L. Yin J. Fan L. Eu(III) encapsulation strategy to construct intelligent ratiometric luminescent sensor for efficient detection of phenylglyoxylic acid biomarker in bodily fluids. Microchem. J. 2024 207 112127 10.1016/j.microc.2024.112127
    [Google Scholar]
  69. Li W. Liu X. Lei N. Liu L. Li X. Ren H. Yin J. Zhang L. Yu T. Fan L. Zinc(II) organic framework based bifunctional biomarker sensor for efficient detection of urinary 5-Hydroxyindoleacetic acid and serum 3-Nitrotyrosine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 329 125610 10.1016/j.saa.2024.125610 39706076
    [Google Scholar]
  70. Hao R. Li M. Li F. Sun-Waterhouse D. Li D. Protective effects of the phenolic compounds from mung bean hull against H2O2-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. Sci. Total Environ. 2022 841 156669 10.1016/j.scitotenv.2022.156669 35718184
    [Google Scholar]
  71. Zhang M. Wang T. Lin X. Fan M. Zho Y. Li N. Cui X. Boron-substituted rhodamine for ratiometric monitoring dynamic of H2O2 and HOCl in vivo. Sens. Actuators B Chem. 2021 331 129411 10.1016/j.snb.2020.129411
    [Google Scholar]
  72. Wang H. Chen W. Chen Q. Liu N. Cheng H. Li T. Metal-organic framework (MOF)-Au@Pt nanoflowers composite material for electrochemical sensing of H2O2 in living cells. J. Electroanal. Chem. 2021 897 115603 10.1016/j.jelechem.2021.115603
    [Google Scholar]
  73. Hou Y. Wang J. Liu S. Sun Y. Dai Y. Luo C. Wang X. A novel flower-shaped Ag@ZIF-67 chemiluminescence sensor for sensitive detection of CEA. Talanta 2023 253 123938 10.1016/j.talanta.2022.123938 36150338
    [Google Scholar]
  74. Ortega F.G. Gomez G.E. Boni C. García I.C. Navas C.G. D’vries R.F. Vallejos M.M.P. Serrano M.J. Messina G.A. Hernández J.E. Fernández-Baldo M.A. Microfluidic amperometric immunosensor based on porous nanomaterial towards claudin7 determination for colorectal cancer diagnosis. Talanta 2023 251 123766 10.1016/j.talanta.2022.123766 35940115
    [Google Scholar]
  75. Lin X. Li N. Xiao Q. Guo Y. Wei J. Jiao T. Chen Q. Chen Q. Chen X. Polyvinyl alcohol/starch-based film incorporated with grape skin anthocyanins and metal-organic framework crystals for colorimetric monitoring of pork freshness. Food Chem. 2022 395 133613 10.1016/j.foodchem.2022.133613 35802981
    [Google Scholar]
  76. Choi I. Lee J.Y. Lacroix M. Han, J. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 2017 218 122 128 10.1016/j.foodchem.2016.09.050 27719887
    [Google Scholar]
  77. Teo W.L. Liu J. Zhou W. Zhao Y. Facile preparation of antibacterial MOF‐fabric systems for functional protective wearables. SmartMat 2021 2 4 567 578 10.1002/smm2.1046
    [Google Scholar]
  78. Ning H. Zhang Y. Lu L. Pan L. Properties and release behavior of sodium alginate-based nanocomposite active films: Effects of particle size of IRMOF-3. Int. J. Biol. Macromol. 2024 271 Pt 2 132488 10.1016/j.ijbiomac.2024.132488 38763248
    [Google Scholar]
  79. Baig M.T. Kayan A. Advanced biopolymer-based Ti/Si-terephthalate hybrid materials for sustainable and efficient adsorption of the tetracycline antibiotic. Int. J. Biol. Macromol. 2024 280 Pt 1 135676 10.1016/j.ijbiomac.2024.135676 39288857
    [Google Scholar]
  80. Zhang X. Gao C. Wang R. Aryee A.A. Han R. Study on adsorption of salicylic acid and sulfosalicylic acid by MOF-sodium alginate gel beads obtained in a green way. Int. J. Biol. Macromol. 2023 253 Pt 7 127535 10.1016/j.ijbiomac.2023.127535 37863135
    [Google Scholar]
  81. Ghani A.A. Devarayapalli K.C. Kim B. Lim Y. Kim G. Jang J. Lee D.S. Sodium-alginate-laden MXene and MOF systems and their composite hydrogel beads for batch and fixed-bed adsorption of naproxen with electrochemical regeneration. Carbohydr. Polym. 2023 318 121098 10.1016/j.carbpol.2023.121098 37479431
    [Google Scholar]
  82. Cheng S. Li Y. Yu Z. Gu R. Wu W. Su Y. Waste PET-derived MOF-5 for high-efficiency removal of tetracycline. Separ. Purif. Tech. 2024 339 126490 10.1016/j.seppur.2024.126490
    [Google Scholar]
  83. Zhang H. Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu2+-doped MOF for enhanced synergistic and precise cancer therapy. Int. J. Biol. Macromol. 2024 262 Pt 2 129996 10.1016/j.ijbiomac.2024.129996 38342271
    [Google Scholar]
  84. Yu F. Pan J. Li Y. Yang Y. Zhang Z. Nie J. Ma J. Batch and continuous fixed-bed column adsorption of tetracycline by biochar/MOFs derivative covered with κ-carrageenan/calcium alginate hydrogels. J. Environ. Chem. Eng. 2022 10 3 107996 10.1016/j.jece.2022.107996
    [Google Scholar]
  85. Zhang P. Liu S. Tan X. Liu Y. Zeng G. Yin Z. Ye S. Zeng Z. Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Process Saf. Environ. Prot. 2019 128 329 341 10.1016/j.psep.2019.06.009
    [Google Scholar]
  86. Lin C. Huang Y. Luo L. Fang F. Zhang J. Xun Z. Fu Y. Shang H. Liu C. Ou Q. Adenosine triphosphate in serum as a promising biomarker for differential diagnosis of hepatitis b disease progression. Front. Immunol. 2022 13 927761 10.3389/fimmu.2022.927761 35844530
    [Google Scholar]
  87. MOF-derived N-doped porous carbon with active magnesium sites as an efficient oxidase mimic for biosensing. Available from: https://www.sciencedirect.com/science/article/pii/S0925400522010516 (Accessed January 20, 2025).
  88. A fluorescent probe for protein tyrosine kinase 7 detection in serum and cell imaging. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0039914022 009353(Accessed January 20, 2025).
  89. Gertel S. Polachek A. Elkayam O. Furer V. Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases. Autoimmun. Rev. 2022 21 6 103085 10.1016/j.autrev.2022.103085 35341974
    [Google Scholar]
  90. Clinical evaluation of urine laminin-γ2 monomer as a potent biomarker for non-muscle invasive bladder cancer. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cam4.5087(Accessed January 20, 2025).
  91. Ionic liquid functionalized trapezoidal Zn-MOF nanosheets integrated with gold nanoparticles for photoelectrochemical immunosensing alpha-fetoprotein. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0039914022 004805 (Accessed January 20, 2025).
  92. [92] Graphdiyne nanosheet as a novel sensing platform for selfenhanced electrochemiluminescence of MOF enriched ruthenium (II) in the presence of dual co-reactants for detection of tumor maker Available from:https://www.sciencedirect.com/science/article/pii/S0956566321006 941 (Accessed January 20, 2025).
  93. Biswas S. Lan Q. Xie Y. Sun X. Wang Y. Label-free electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 125 based on antibody-immobilized biocompatible MOF-808/CNT. ACS Appl. Mater. Interfaces 2021 13 2 3295 3302 10.1021/acsami.0c14946 33400479
    [Google Scholar]
  94. Mixed-ligand-regulated self-enhanced luminous Eu-MOF as an ECL signal probe for an oriented antibody-decorated biosensing platform. Available from:https://pubs.acs.org/doi/abs/10.1021/acs.analchem.2c02852(Accessed January 20, 2025)
  95. Guo B. Sun Y. Guan Q. Luo Z. Zhou L. Xu Z. Han J. Qu D. Fabrication and characterization of sodium alginate/blueberry anthocyanins/hinokitiol loaded ZIF-8 nanoparticles composite films with antibacterial activity for monitoring pork freshness. Food Chem. 2024 440 138200 10.1016/j.foodchem.2023.138200 38142553
    [Google Scholar]
  96. Dai K. Chen L. Aryee A.A. Yang P. Han R. Qu L. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH2-MIL-53(Al/Zr) sodium alginate gel spheres. Int. J. Biol. Macromol. 2024 271 Pt 1 132637 10.1016/j.ijbiomac.2024.132637 38795565
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298373915250404093922
Loading
/content/journals/mroc/10.2174/0118756298373915250404093922
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: food freshness ; metal-organic framework ; drug delivery ; toxicity ; Sodium alginate ; sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test