Skip to content
2000
image of Recent Advances in the Chemistry of Tetrazole Derivatives-A Quinquennial Update (Mid-2019 to date)

Abstract

Due to their advantageous physicochemical properties, metabolic stability, and bioisosterism with carboxylic acid and amide groups, tetrazole derivatives represent a valuable class of heterocycles that play a crucial role in medicinal chemistry and drug development. Advances in chemistry have enabled the versatile synthesis of tetrazole-based compounds. Therefore, optimizing the potential of tetrazoles to produce lead compounds requires effective synthetic access to a wide range of derivatives. According to the published papers, there are several methods for preparing tetrazole and its mono- and disubstituted derivatives, including 5-substituted 1H-tetrazoles, 2-substituted 1H-tetrazoles, 2,5- and 1,5-disubstituted, fused heterocycles, tetrazole derived hybrid azaheterocycles, The use of tetrazoles as ligands, in bridging roles, in multiple tetrazole syntheses, and in other heterocyclic ring forms is also demonstrated. Alkylation, nucleophilic and electrophilic substitution in the side chain, electrophilic substitution at the ring carbon atom, and the effect of the reagents used are among the chemical characteristics of tetrazoles that are investigated. This mini-review also examines synthetic processes and discusses their benefits and drawbacks in this field of study.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298372268250522094110
2025-06-12
2025-09-01
Loading full text...

Full text loading...

References

  1. Cores Á. Clerigué J. Orocio-Rodríguez E. Menéndez J.C. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals (Basel) 2022 15 8 1009 10.3390/ph15081009 36015157
    [Google Scholar]
  2. Graziano G. Stefanachi A. Contino M. Prieto-Díaz R. Ligresti A. Kumar P. Scilimati A. Sotelo E. Leonetti F. Multicomponent reaction-assisted drug discovery: A time- and cost-effective green approach speeding up identification and optimization of anticancer drugs. Int. J. Mol. Sci. 2023 24 7 6581 10.3390/ijms24076581 37047554
    [Google Scholar]
  3. Bladin J.A. Ueber von Dicyanphenylhydrazin abgeleitete Verbindungen. Ber. Dtsch. Chem. Ges. 1885 18 1 1544 1551 10.1002/cber.188501801335
    [Google Scholar]
  4. Koldobskii G.I. Ostrovskii V.A. Popavskii V.S. Advances in the chemistry of tetrazoles (review). Chem. Heterocycl. Compd. 1981 17 10 965 988 10.1007/BF00503523
    [Google Scholar]
  5. Wittenberger S.J. Recent developments in tetrazole chemistry. A review. Org. Prep. Proced. Int. 1994 26 5 499 531 10.1080/00304949409458050
    [Google Scholar]
  6. a Myznikov L.V. Hrabalek A. Koldobskii G.I. Drugs in the tetrazole series (Review). Chem. Heterocycl. Compd. 2007 43 1 1 9 10.1007/s10593‑007‑0001‑5
    [Google Scholar]
  7. b Ostrovskii V.A. Popova E.A. Trifonov R.E. Other five-membered rings with three or more heteroatoms, and their fused carbocyclic derivatives. Comprehensive Heterocyclic Chemistry IV. Elsevier Science 2022 10.1016/B978‑0‑12‑818655‑8.00131‑1
    [Google Scholar]
  8. Frija L.M.T. Ismael A. Cristiano M.L.S. Photochemical transformations of tetrazole derivatives: applications in organic synthesis. Molecules 2010 15 5 3757 3774 10.3390/molecules15053757 20657512
    [Google Scholar]
  9. Popova E.A. Trifonov R.E. Ostrovskii V.A. Advances in synthesis of tetrazoles coordinated to metal ions. ARKIVOC 2011 2012 1 45 65 10.3998/ark.5550190.0013.102
    [Google Scholar]
  10. Ostrovskii V.A. Popova E.A. Trifonov R.E. Developments in tetrazole chemistry (2009-16). Adv. Heterocycl. Chem. 2017 123 1 62 10.1016/bs.aihch.2016.12.003
    [Google Scholar]
  11. Roh J. Vávrová K. Hrabálek A. Synthesis and functionalization of 5‐substituted tetrazoles. Eur. J. Org. Chem. 2012 2012 31 6101 6118 10.1002/ejoc.201200469
    [Google Scholar]
  12. a Dai L. Cui S. Damu G.L.V. Zhou C. Recent advances in the synthesis and application of tetrazoles. Youji Huaxue 2013 33 2 224 10.6023/cjoc201208036
    [Google Scholar]
  13. b Heming X. Zhaoxu C. Modern theory of tetrazole chemistry. Beijing Science Press 2000
    [Google Scholar]
  14. Sarvary A. Maleki A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers. 2015 19 1 189 212 10.1007/s11030‑014‑9553‑3 25273563
    [Google Scholar]
  15. Wei C.X. Bian M. Gong G.H. Tetrazolium compounds: synthesis and applications in medicine. Molecules 2015 20 4 5528 5553 10.3390/molecules20045528 25826789
    [Google Scholar]
  16. Varala R. Babu B.H. A Click chemistry approach to tetrazoles: Recent advances. Molecular Docking. InTech 2018 10.5772/intechopen.75720
    [Google Scholar]
  17. Mittal R. Awasthi S.K. Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013-2018). Synthesis 2019 51 20 3765 3783 10.1055/s‑0037‑1611863
    [Google Scholar]
  18. Neochoritis C.G. Zhao T. Dömling A. Tetrazoles via multicomponent reactions. Chem. Rev. 2019 119 3 1970 2042 10.1021/acs.chemrev.8b00564 30707567
    [Google Scholar]
  19. Dhiman N. Kaur K. Jaitak V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem. 2020 28 15 115599 10.1016/j.bmc.2020.115599 32631569
    [Google Scholar]
  20. Swami S. Sahu S.N. Shrivastava R. Nanomaterial catalyzed green synthesis of tetrazoles and its derivatives: A review on recent advancements. RSC Advances 2021 11 62 39058 39086 10.1039/D1RA05955F 35492456
    [Google Scholar]
  21. Leyva-Ramos S. Cardoso-Ortiz J. Recent developments in the synthesis of tetrazoles and their pharmacological relevance. Curr. Org. Chem. 2021 25 3 388 403 10.2174/18755348MTEyoMzEFz
    [Google Scholar]
  22. Vishwakarma R. Gadipelly C. Mannepalli L.K. Advances in tetrazole synthesis-An overview. ChemistrySelect 2022 7 29 e202200706 10.1002/slct.202200706
    [Google Scholar]
  23. Verma A. Kaur B. Venugopal S. Wadhwa P. Sahu S. Kaur P. Kumar D. Sharma A. Tetrazole: A privileged scaffold for the discovery of anticancer agents. Chem. Biol. Drug Des. 2022 100 3 419 442 10.1111/cbdd.14103 35713482
    [Google Scholar]
  24. Trifonov R.E. Ostrovskii V.A. Tetrazoles and related heterocycles as promising synthetic antidiabetic agents. Int. J. Mol. Sci. 2023 24 24 17190 10.3390/ijms242417190 38139019
    [Google Scholar]
  25. Li J. Chandgude A.L. Zheng Q. Dömling A. Innovative synthesis of drug-like molecules using tetrazole as core building blocks. Beilstein J. Org. Chem. 2024 20 950 958 10.3762/bjoc.20.85 38711589
    [Google Scholar]
  26. Jaiswal S. Dwivedi J. Kishore D. Sharma S. Green methodologies for tetrazole synthesis from different starting materials: A recent update. Curr. Org. Chem. 2024 28 2 134 160 10.2174/0113852728283721240109092312
    [Google Scholar]
  27. Dey S. Aggarwal M. Chakraborty D. Mukherjee P.S. Uncovering tetrazoles as building blocks for constructing discrete and polymeric assemblies. Chem. Commun. (Camb.) 2024 60 43 5573 5585 10.1039/D4CC01616E 38738480
    [Google Scholar]
  28. Mohite P. Nahar D. Lonkar A. Kadam A. Desle K. Tetrazoles Leitmotif: An intriguing insight into contemporary developments and biological activities. Antiinfect. Agents 2024 22 2 e230823220234 10.2174/2211352521666230823094517
    [Google Scholar]
  29. Sathishkumar S. Gayathri K. Synthesis of tetrazole derivatives. Russ. J. Org. Chem. 2021 57 3 402 416 10.1134/S107042802103012X
    [Google Scholar]
  30. Verma N. Bera S. Mondal D. Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem. Heterocycl. Compd. 2022 58 2-3 73 83 10.1007/s10593‑022‑03059‑w
    [Google Scholar]
  31. Uppadhayay R.K. Kumar A. Teotia J. Singh A. Multifaceted chemistry of tetrazole. Synthesis, uses, and pharmaceutical applications. Russ. J. Org. Chem. 2022 58 12 1801 1811 10.1134/S1070428022120090
    [Google Scholar]
  32. a Myznikov L.V. Vorona S.V. Zevatskii Y.E. Biologically active compounds and drugs in the tetrazole series. Chem. Heterocycl. Compd. 2021 57 3 224 233 10.1007/s10593‑021‑02897‑4
    [Google Scholar]
  33. b Yuan Y. Li M. Apostolopoulos V. Matsoukas J. Wolf W.M. Blaskovich M.A.T. Bojarska J. Ziora Z.M. Tetrazoles: A multi-potent motif in drug design. Eur. J. Med. Chem. 2024 279 116870 10.1016/j.ejmech.2024.116870 39316842
    [Google Scholar]
  34. Yahata K. Kaneko Y. Akai S. Cobalt-catalyzed hydroamination of alkenes with 5-substituted tetrazoles: Facile access to 2,5-disubstituted tetrazoles and asymmetric intermolecular hydroaminations. Chem. Pharm. Bull. (Tokyo) 2020 68 4 332 335 10.1248/cpb.c20‑00068 32023589
    [Google Scholar]
  35. Kaszás T. Szakács B. Juhász-Tóth É. Cservenyák I. Kovács T. Juhász L. Somsák L. Tóth M. Coupling of N‐tosylhydrazones with tetrazoles: A regioselective synthesis of 2,5‐disubstituted‐2H‐tetrazoles. Eur. J. Org. Chem. 2022 2022 42 e202201103 10.1002/ejoc.202201103
    [Google Scholar]
  36. Fournier-Le Ray N. Joly N. Fillaut J.L. Optimising the synthesis of 2,5-diaryltetrazoles: The decisive choice of the reaction solvent. Tetrahedron 2023 143 133560 10.1016/j.tet.2023.133560
    [Google Scholar]
  37. Ito S. Tanaka Y. Kakehi A. Kondo K. A facile synthesis of 2,5-disubstituted tetrazoles by the reaction of phenylsulfonylhydrazones with arenediazonium salts. Bull. Chem. Soc. Jpn. 1976 49 7 1920 1923 10.1246/bcsj.49.1920
    [Google Scholar]
  38. Yu Y. Zhu X.B. Yuan Y. Ye K.Y. An electrochemical multicomponent reaction toward C–H tetrazolation of alkyl arenes and vicinal azidotetrazolation of alkenes. Chem. Sci. (Camb.) 2022 13 46 13851 13856 10.1039/D2SC05423J 36544744
    [Google Scholar]
  39. Chuprun S. Dar’in D. Kantin G. Krasavin M. [3+2]-Cycloaddition of α-diazocarbonyl compounds with arenediazonium salts catalyzed by silver nitrate delivers 2,5-disubstituted tetrazoles. Synthesis 2019 51 21 3998 4005 10.1055/s‑0039‑1690159
    [Google Scholar]
  40. Sajjad A.A. Zainad S. Synthesis, characterization, and antimicrobial activity of some new tetrazole derivatives from hydrazones. Iran J. Chem. Chem. Eng. 2022 41 7 2247 2262 10.30492/IJCCE.2021.526860.4629
    [Google Scholar]
  41. Arshad M. Khan M.S. Nami S.A.A. Synthesis, biological activity, and molecular docking assessment of some new sulfonylated tetrazole derivatives. Russ. J. Gen. Chem. 2019 89 9 1851 1858 10.1134/S1070363219090202
    [Google Scholar]
  42. Zhang J. Wang X. Kuang Y. Wu J. Generation of sulfonylated tetrazoles through an iron-catalyzed multicomponent reaction involving sulfur dioxide. iScience 2020 23 12 101872 10.1016/j.isci.2020.101872 33336165
    [Google Scholar]
  43. Saikia R.A. Dutta A. Sarma B. Thakur A.J. Metal-free regioselective N2 -arylation of 1H-tetrazoles with diaryliodonium salts. J. Org. Chem. 2022 87 15 9782 9796 10.1021/acs.joc.2c00848 35849501
    [Google Scholar]
  44. Yang Y.L. Li S. Zhang F.G. Ma J.A. N-Iodosuccinimide-promoted [3+2] annulation reaction of aryldiazonium salts with guanidines to construct aminotetrazoles. Org. Lett. 2021 23 22 8894 8898 10.1021/acs.orglett.1c03395 34748357
    [Google Scholar]
  45. Abood Z.H. Hussain N.M.A. Suhail H.A. Khalaf S.D. Synthesis of some new 1,5-disubstituted tetrazoles from 2- aminobenzothiazole. AIP Conf Proc 2020 2290 030033 10.1063/5.0027663
    [Google Scholar]
  46. Gómez M.A. Alvarado C.R. Montaño R. Ultrasound assisted synthesis of 1,5-disubstituted tetrazoles containing propargyl or 2-azidophenyl moieties via ugi-azide reaction. Chem. Proc. 2021 8 1 42 10.3390/ecsoc‑25‑11758
    [Google Scholar]
  47. López S.C. Gómez À. Galindo L.E. Montaño R. Synthesis of tetrakis-tetrazole via a repetitive MCR. Chem. Proc. 2021 3 1 44 10.3390/ecsoc‑24‑08395
    [Google Scholar]
  48. Abdessalam M. Sidhoum M.A. Zradni F.Z. Ilikti H. Synthesis of 1,5-disubstituted tetrazoles in aqueous micelles at room temperature. Molbank 2021 2021 1 M1194 10.3390/M1194
    [Google Scholar]
  49. Rodriguez-Lopez F. Zárate-Hernández C. Rentería-Gómez M.A. Gámez-Montaño R. One-pot synthesis of tetrazole-triazole bis-heterocycles via Ugi–azide reaction. Chem. Proc 2023 14 1 108 10.3390/ecsoc‑27‑16060
    [Google Scholar]
  50. Ishihara K. Shioiri T. Matsugi M. An expeditious approach to tetrazoles from amides utilizing phosphorazidates. Org. Lett. 2020 22 16 6244 6247 10.1021/acs.orglett.0c01890 32634317
    [Google Scholar]
  51. Savych O. Kuchkovska Y.O. Bogolyubsky A.V. Konovets A.I. Gubina K.E. Pipko S.E. Zhemera A.V. Grishchenko A.V. Khomenko D.N. Brovarets V.S. Doroschuk R. Moroz Y.S. Grygorenko O.O. One-pot parallel synthesis of 5-(dialkylamino)tetrazoles. ACS Comb. Sci. 2019 21 9 635 642 10.1021/acscombsci.9b00120 31437394
    [Google Scholar]
  52. Darabi M. Nikoorazm M. Tahmasbi B. Ghorbani-Choghamarani A. Immobilization of Ni(ii) complex on the surface of mesoporous modified-KIT-6 as a new, reusable and highly efficient nanocatalyst for the synthesis of tetrazole and pyranopyrazole derivatives. RSC Advances 2023 13 18 12572 12588 10.1039/D2RA08269A 37101952
    [Google Scholar]
  53. Jabbari A. Moradi P. Tahmasbi B. Synthesis of tetrazoles catalyzed by a new and recoverable nanocatalyst of cobalt on modified boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)thiourea. RSC Advances 2023 13 13 8890 8900 10.1039/D2RA07510E 36936843
    [Google Scholar]
  54. Hajizadeh Z. Hassan Zadeh-Afruzi F. Jelodar D.F. Ahghari M.R. Maleki A. Cu(ii) immobilized on Fe 3 O 4 @HNTs–tetrazole (CFHT) nanocomposite: synthesis, characterization, investigation of its catalytic role for the 1,3 dipolar cycloaddition reaction, and antibacterial activity. RSC Advances 2020 10 44 26467 26478 10.1039/D0RA04772D 35519782
    [Google Scholar]
  55. Norouzi M. Noormoradi N. Mohammadi M. Nanomagnetic tetraaza (N 4 donor) macrocyclic Schiff base complex of copper (ii): synthesis, characterizations, and its catalytic application in Click reactions. Nanoscale Adv. 2023 5 23 6594 6605 10.1039/D3NA00580A 38024320
    [Google Scholar]
  56. Jani M.A. Bahrami K. Synthesis of 5‐substituted 1 H ‐tetrazoles and oxidation of sulfides by using boehmite nanoparticles/nickel‐curcumin as a robust and extremely efficient green nanocatalyst. Appl. Organomet. Chem. 2020 34 12 e6014 10.1002/aoc.6014
    [Google Scholar]
  57. Digambar K.B. Varala R. Patil S.G. Zn(OAc)2•2H2O-catalyzed efficient synthesis of 5-substituted 1H-tetrazoles. Curr. Chem. Lett. 2023 12 3 509 518 10.5267/j.ccl.2023.3.005
    [Google Scholar]
  58. Reynard G. Lebel H. Alkylation of 5-substituted 1H-tetrazoles via the diazotization of aliphatic amines. J. Org. Chem. 2021 86 17 12452 12459 10.1021/acs.joc.1c01585 34479404
    [Google Scholar]
  59. Safapoor S. Dekamin M.G. Akbari A. Naimi-Jamal M.R. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci. Rep. 2022 12 1 10723 10.1038/s41598‑022‑13011‑9 35750767
    [Google Scholar]
  60. Sarngadharan S.C. Aronson J. Gelbaum C. Griffith K. Faris J. Moihdeen A.B. Patel M. Malone M. Richman K. Eckert C.A. Liotta C.L. Pollet P. Synthesis of 5-substituted tetrazoles: Reaction of azide salts with organonitriles catalyzed by trialkylammonium salts in non-polar media. Org. Process Res. Dev. 2022 26 5 1432 1441 10.1021/acs.oprd.2c00032
    [Google Scholar]
  61. Babu A. Sinha A. Catalytic tetrazole synthesis via [3+2] cycloaddition of NaN3 to organonitriles promoted by Co(II)-complex: Isolation and characterization of a Co(II)-diazido intermediate. ACS Omega 2024 9 19 21626 21636 10.1021/acsomega.4c02567 38764698
    [Google Scholar]
  62. Carpentier F. Felpin F.X. Zammattio F. Le Grognec E. Synthesis of 5-substituted 1H-tetrazoles from nitriles by continuous flow: Application to the synthesis of Valsartan. Org. Process Res. Dev. 2020 24 5 752 761 10.1021/acs.oprd.9b00526
    [Google Scholar]
  63. Gullapelli K. Nukala R. Ganji S. Kola R. Maroju R. One-pot multicomponent approach towards the synthesis of 5-substituted 1H-tetrazoles using lanthanum (III) nitrate hexahydrate as a catalyst. Res. Chem. Intermed. 2024 50 9 4407 4423 10.1007/s11164‑024‑05365‑8
    [Google Scholar]
  64. Pharande S.G. Rentería-Gómez M.A. Gámez-Montaño R. Isocyanide based multicomponent click reactions: a green and improved synthesis of 1-substituted 1 H -1,2,3,4-tetrazoles. New J. Chem. 2018 42 14 11294 11298 10.1039/C8NJ02312C
    [Google Scholar]
  65. Khorramabadi V. Habibi D. Heydari S. Facile synthesis of tetrazoles catalyzed by the new copper nano-catalyst. Green Chem. Lett. Rev. 2020 13 1 50 59 10.1080/17518253.2020.1726505
    [Google Scholar]
  66. Jian J. Hammink R. Tinnemans P. Bickelhaupt F.M. Poater J. Mecinović J. Probing polar‐π interactions between tetrazoles and aromatic rings. Chem. Asian J. 2023 18 10 e202300192 10.1002/asia.202300192 37015878
    [Google Scholar]
  67. Ishihara K. Ishihara K. Tanaka Y. Shioiri T. Matsugi M. Practical synthesis of tetrazoles from amides and phosphorazidates in the presence of aromatic bases. Tetrahedron 2022 108 132642 10.1016/j.tet.2022.132642
    [Google Scholar]
  68. Ojeda G.M. Ranjan P. Fedoseev P. Amable L. Sharma U.K. Rivera D.G. Van der Eycken E.V. Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids. Beilstein J. Org. Chem. 2019 15 2447 2457 10.3762/bjoc.15.237 31666879
    [Google Scholar]
  69. Škorić D.Đ. Klisurić O.R. Jakimov D.S. Sakač M.N. Csanádi J.J. Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction. Beilstein J. Org. Chem. 2021 17 2611 2620 10.3762/bjoc.17.174 34760027
    [Google Scholar]
  70. Niu J. Wang Y. Yan S. Zhang Y. Ma X. Zhang Q. Zhang W. One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline. Beilstein J. Org. Chem. 2024 20 912 920 10.3762/bjoc.20.81 38711586
    [Google Scholar]
  71. Lechner J.T. Riedelsheimer C. Endraß S.M.J. Gerold N.M. Heidrich J. Krumm B. Stierstorfer J. Klapötke T.M. Synthesis of bridged tetrazoles with promising properties and potential applications by a one‐step Finkelstein reaction. Chemistry 2024 30 1 e202303021 10.1002/chem.202303021 37843881
    [Google Scholar]
  72. Atef Hatamleh A. Al Farraj D. Salah Al-Saif S. Chidambaram S. Radhakrishnan S. Akbar I. Synthesis, cytotoxic analysis, and molecular docking studies of tetrazole derivatives via N-Mannich base condensation as potential antimicrobials. Drug Des. Devel. Ther. 2020 14 4477 4492 10.2147/DDDT.S270896 33122891
    [Google Scholar]
  73. Bhagare A.M. Gaware M.R. Lokhande D.D. Ammonium chloride as an effective catalyst for the synthesis of biologically active dihydrotetrazolo[1,5-a]pyrimidine carboxylates. Ind. J. Het Chem. 2020 30 621 624
    [Google Scholar]
  74. Bouattour A. Fakhfakh M. El-Gharbi S.A. Abid M. Paquin L. Le Guevel R. Charlier T. Ammar H. Bazureau J.P. 3-(Tetrazol-5-Yl)-2-imino-coumarins derivatives: Synthesis, characterization, and evaluation on tumor cell lines. Int. J. Org. Chem. (Irvine) 2021 11 1 24 34 10.4236/ijoc.2021.111003
    [Google Scholar]
  75. Cardoso-Ortiz J. Leyva-Ramos S. Baines K.M. Gómez-Durán C.F.A. Hernández-López H. Palacios-Can F.J. Valcarcel-Gamiño J.A. Leyva-Peralta M.A. Razo-Hernández R.S. Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: Targeting S. aureus topoisomerase and SARS-CoV-2-MPro. J. Mol. Struct. 2023 1274 134507 10.1016/j.molstruc.2022.134507 36406777
    [Google Scholar]
  76. Neochoritis C.G. Zarganes-Tzitzikas T. Katsampoxaki-Hodgetts K. Dömling A. Multicomponent reactions: “Kinderleicht”. J. Chem. Educ. 2020 97 10 3739 3745 10.1021/acs.jchemed.0c00290 33071311
    [Google Scholar]
  77. Rees C. Pardo R. Parker J.P.R. P. J. Steps to opening scientific inquiry: Pre-service teachers’ practicum experiences with a new support framework. J. Sci. Teach. Educ. 2013 24 3 475 496 10.1007/s10972‑012‑9315‑y
    [Google Scholar]
  78. Dongamanti A. Nalaparaju N. Madderla S. Bommidi V.L. Microwave assisted one pot synthesis of tetrazole based 3-hydroxy-4H-chromen-4-ones by modified Algar-Flynn-Oyamada reaction and their antimicrobial activity. J. Mex. Chem. Soc. 2019 63 4 123 131 10.29356/jmcs.v63i4.448
    [Google Scholar]
  79. Rajamanickam S. Sah C. Mir B.A. Ghosh S. Sethi G. Yadav V. Venkataramani S. Patel B.K. Bu4NI-Catalyzed, radical-induced regioselective N-alkylations and arylations of tetrazoles using organic peroxides/peresters. J. Org. Chem. 2020 85 4 2118 2141 10.1021/acs.joc.9b02875 31910339
    [Google Scholar]
  80. Palchykov V.A. Kateryna V.D. Sergiy I.O. 5-Aryl-7,8,9,10-tetrahydro-5H-tetrazolo[1,5-a]thiopyrano[3,2-d]pyrimidine 6,6-dioxides-a new heterocyclic ensemble via MCR approach. J. Chem. Technol. 2023 31 2 411 418 10.15421/jchemtech.v31i2.126304
    [Google Scholar]
  81. Alasadi Y.K. Jumaa F.H. Dalaf A.H. Shawkat S.M. Mukhlif M.G. Synthesis, characterization, and molecular docking of new tetrazole derivatives as promising anticancer agents. J. Pharm. Negat. Results 2022 13 3 513 522 10.47750/pnr.2022.13.03.079
    [Google Scholar]
  82. Tamoradi T. Kal-Koshvandi A. Karmakar B. Maleki A. Immobilization of La on THH-CO 2 H@Fe 3 O 4 nanocomposite for the synthesis of one‐pot multicomponent reactions. Mater. Res. Express 2021 8 5 056101 10.1088/2053‑1591/abfa49
    [Google Scholar]
  83. Xiong Q. Dong S. Chen Y. Liu X. Feng X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat. Commun. 2019 10 1 2116 10.1038/s41467‑019‑09904‑5 31073191
    [Google Scholar]
  84. Abualnaja M.M. Alalawy A.I. Alatawi O.M. Alessa A.H. Fawzi Qarah A. Alqahtani A.M. Bamaga M.A. El-Metwaly N.M. Synthesis of tetrazole hybridized with thiazole, thiophene or thiadiazole derivatives, molecular modelling and antimicrobial activity. Saudi Pharm. J. 2024 32 3 101962 10.1016/j.jsps.2024.101962 38318318
    [Google Scholar]
  85. Sheibani R. Gharoubi H. Parandoust S. Marjan P. Nicolò A. Dimitris S. Lignin valorization: Facile synthesis and catalytic activity of a tetrazole complex supported on magnetic lignosulfonate for the N-arylation of 5-amino-1H-tetrazoles. SSRN 2023 10.2139/ssrn.4475145
    [Google Scholar]
  86. Knochel P. Tüllmann C.P. Steiner S. Preparation and reactions of (1H-tetrazol-5-yl)zinc pivalates. Synthesis 2020 52 16 2357 2363 10.1055/s‑0039‑1691734
    [Google Scholar]
  87. Holzschneider K. Tong M.L. Mohr F. Kirsch S.F. A synthetic route toward tetrazoles: The thermolysis of geminal diazides. Chemistry 2019 25 50 11725 11733 10.1002/chem.201902131 31407837
    [Google Scholar]
  88. Manzoor S. Younis M.A. Tariq Q. Yang J.Q. Ahmad N. Qiu C. Tian B. Zhang J.G. Synthesis and study of steering of azido-tetrazole behavior in tetrazolo[1,5-c]pyrimidin-5-amine-based energetic materials. J. Org. Chem. 2024 89 10 6783 6792 10.1021/acs.joc.4c00107 38661714
    [Google Scholar]
  89. Nasrollahzadeh M. Shafiei N. Orooji Y. Magnetic chitosan stabilized Cu(II)-tetrazole complex: an effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci. Rep. 2022 12 1 6724 10.1038/s41598‑022‑10591‑4 35468913
    [Google Scholar]
  90. Baumann M. Burke A. Spiccio S. Di Filippo M. Photochemical synthesis of pyrazolines from tetrazoles in flow. SynOpen 2023 7 1 69 75 10.1055/a‑1995‑1859
    [Google Scholar]
  91. Loganathan V. Akbar I. Ahamed A. Alodaini H.A. Hatamleh A.A. Abuthkir M.H.S. Gurusamy R. Synthesis, antimicrobial and cytotoxic activities of tetrazole N-Mannich base derivatives: Investigation of DFT calculation, molecular docking, and Swiss ADME studies. J. Mol. Struct. 2024 1300 137239 10.1016/j.molstruc.2023.137239
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298372268250522094110
Loading
/content/journals/mroc/10.2174/0118756298372268250522094110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test