Skip to content
2000
image of Exploring Lichen-Fungi Biosynthetic Pathways: Evaluating the Pharmacological Activity of Olivetoric Acid and Biosynthetically Similar Metabolites

Abstract

Lichens, symbiotic organisms, produce a diverse array of bioactive compounds, including depsides and depsidones. These compounds exhibit potent biological activities, such as antioxidant, antimicrobial, anti-inflammatory, and anticancer properties. This review explores the biosynthesis of specific compounds, focusing on the role of polyketide synthases and cytochrome P450 enzymes. The majority of the review will focus on the pharmacological potential of olive-toric acid and biosynthetically similar compounds, highlighting their potential as future drug leads. Further research is needed to exploit the therapeutic potential of these natural products fully.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298348831241219045135
2025-02-26
2025-09-03
Loading full text...

Full text loading...

References

  1. Ingelfinger R. Henke M. Roser L. Ulshöfer T. Calchera A. Singh G. Parnham M.J. Geisslinger G. Fürst R. Schmitt I. Schiffmann S. Unraveling the pharmacological potential of lichen extracts in the context of cancer and inflammation with a broad screening approach. Front. Pharmacol. 2020 11 1322 10.3389/fphar.2020.01322 33013369
    [Google Scholar]
  2. Nash T.H. Lichen Biology. Cambridge, New York Cambridge University Press 2010
    [Google Scholar]
  3. Rikkinen J. Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 2013 6 3 32 10.3897/mycokeys.6.3869
    [Google Scholar]
  4. Henriksson E. Simu B. Nitrogen Fixation by Lichens. Oikos 1971 22 1 119 121 10.2307/3543371
    [Google Scholar]
  5. Muggia L. Nelsen M.P. Kirika P.M. Barreno E. Beck A. Lindgren H. Lumbsch H.T. Leavitt S.D. Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): An impetus for developing an integrated taxonomy. Mol. Phylogenet. Evol. 2020 149 106821 10.1016/j.ympev.2020.106821 32294545
    [Google Scholar]
  6. Seneviratne G. Indrasena I.K. Nitrogen fixation in lichens is important for improved rock weathering. J. Biosci. 2006 31 5 639 643 10.1007/BF02708416 17301502
    [Google Scholar]
  7. Crawford S.D. Lichens Used in Traditional Medicine.Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. Ranković B. Springer International Publishing 2019 31 97 10.1007/978‑3‑030‑16814‑8_2
    [Google Scholar]
  8. Sánchez M. Vacas U.I. Burgos G.E. Divakar P.K. Serranillos G.M.P. The genus Cetraria s. str: a review of its botany, phytochemistry, traditional uses and pharmacology. Molecules 2022 27 15 4990 10.3390/molecules27154990 35956939
    [Google Scholar]
  9. Wa E. De E-G. Gm D. Lichens uses surprising uses of lichens that improve human life. J. Biomed. Res. Environ. Sci. 2022 3 2 189 194 10.37871/jbres1420
    [Google Scholar]
  10. Singh G. Armaleo D. Grande D.F. Schmitt I. Depside and depsidone synthesis in lichenized fungi comes into focus through a genome-wide comparison of the olivetoric acid and physodic acid chemotypes of Pseudevernia furfuracea. Biomolecules 2021 11 10 1445 10.3390/biom11101445 34680078
    [Google Scholar]
  11. Zellner J. Zur Chemie der Flechten. Monatsh. Chem. 1935 66 1 81 86 10.1007/BF01518086
    [Google Scholar]
  12. Koller G. Pöpl K. Über einen chlorhaltigen flechtenstoff I. Monatsh. Chem. 1934 64 106 113 10.1007/BF01518655
    [Google Scholar]
  13. Vartia K.O. Antibiotics in Lichen I. Ann. Med. Exp. Biol. Fenn. 1949 27 46 54
    [Google Scholar]
  14. Culberson C.F. Culberson W.L. Johnson A. Second Supplement to Chemical and Botanical Guide to Lichen Products. St. Louis American Bryological and Lichenological Society, Missouri Botanical Garden 1977 10.2307/2418579
    [Google Scholar]
  15. Türk H. Yılmaz M. Tay T. Türk A.Ö. Kıvanç M. Antimicrobial activity of extracts of chemical races of the lichen pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Z. Für Nat. C 2006 61 499 507 10.1515/znc‑2006‑7‑806
    [Google Scholar]
  16. Nuno M. Chemism of Parmelia subgenus Hypogymnia Nyl. Nyl. J. Jpn. Bot., 1964 39 97 103 10.51033/jjapbot.39_4_5083
    [Google Scholar]
  17. Sipman H.J.M. Elix J.A. Nash T.H. III Hypotrachyna (Parmeliaceae, Lichenized Fungi). Flora Neotropica 2009 104 1 176
    [Google Scholar]
  18. Klosa J. Über die isolierung der flechtensäuren von parmelia physodes. Pharm. Ind. 1953 15 46 47
    [Google Scholar]
  19. St. Pfau A. Zur Kenntnis der Flechtenbestandteile IV. Über Chlor‐atranorin. Helv. Chim. Acta 1934 17 1319 1328 10.1002/hlca.193401701160
    [Google Scholar]
  20. Shibamoto T. Bernhard R.A. Chemical constituents of Hypogymnia enteromorpha. Plant Foods Hum. Nutr. 1974 24 1-2 199 218 10.1007/BF01092736
    [Google Scholar]
  21. Edwards H.G.M. OLIVEIRA, d.L.F.C.; Seaward, M.R.D. FT-Raman spectroscopy of the christmas wreath lichen. Cryptothecia rubrocincta (Ehrenb.:Fr.). Thor. Lichenologist 2005 37 2 181 189 10.1017/S0024282905014611
    [Google Scholar]
  22. Chhikara B.S. Parang K. Global cancer statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023 10 451 451
    [Google Scholar]
  23. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  24. Potter A.L. Haridas C. Neumann K. Kiang M.V. Fong Z.V. Riddell C.A. Pope H.G. Jr Yang C.F.J. Incidence, timing, and factors associated with suicide among patients undergoing surgery for cancer in the US. JAMA Oncol. 2023 9 3 308 315 10.1001/jamaoncol.2022.6549 36633854
    [Google Scholar]
  25. Kupradze I. Batsatsashvili K. Zambrana N.P. Bussmann R.W. Ethnobiological study of svaneti fungi and lichens: History of research, diversity, local names and traditional use. Amer. J. Enviro. Prot. 2015 4 3 101 110 10.11648/j.ajep.s.2015040301.26
    [Google Scholar]
  26. Nguyen K.H. Krugler C.M. Gouault N. Tomasi S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013 30 12 1490 1508 10.1039/c3np70064j 24170172
    [Google Scholar]
  27. Nguyen T.T.H. Dinh M.H. Chi H.T. Wang S.L. Nguyen Q. Tran T.D. Nguyen A.D. Antioxidant and cytotoxic activity of lichens collected from Bidoup Nui Ba National Park, Vietnam. Res. Chem. Intermed. 2019 45 1 33 49 10.1007/s11164‑018‑3628‑1
    [Google Scholar]
  28. Zambare V.P. Christopher L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012 50 6 778 798 10.3109/13880209.2011.633089 22471936
    [Google Scholar]
  29. Mitrović T. Stamenković S. Cvetković V. Tošić S. Stanković M. Radojević I. Stefanović O. Čomić L. Đačić D. Ćurčić M. Marković S. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int. J. Mol. Sci. 2011 12 8 5428 5448 10.3390/ijms12085428 21954369
    [Google Scholar]
  30. Ristić S. Ranković B. Kosanić M. Stanojković T. Stamenković S. Vasiljević P. Manojlović I. Manojlović N. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J. Food Sci. Technol. 2016 53 6 2804 2816 10.1007/s13197‑016‑2255‑3 27478237
    [Google Scholar]
  31. Studzińska-Sroka E. Dubino A. Lichens as a source of chemical compounds with anti-inflammatory activity. Herba Pol. 2018 64 1 56 64 10.2478/hepo‑2018‑0005
    [Google Scholar]
  32. Bugni T.S. Andjelic C.D. Pole A.R. Rai P. Ireland C.M. Barrows L.R. Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia 2009 80 5 270 273 10.1016/j.fitote.2009.03.003 19289158
    [Google Scholar]
  33. Gandhi A.D. Umamahesh K. Sathiyaraj S. Suriyakala G. Velmurugan R. Farraj A.D.A. Gawwad M.R.A. Murugan K. Babujanarthanam R. Saranya R. Isolation of bioactive compounds from lichen parmelia sulcata and evaluation of antimicrobial property. J. Infect. Public Health 2021 15 4 491 497 10.1016/j.jiph.2021.10.014 34688575
    [Google Scholar]
  34. Kekuda P.T.R. Lavanya D. Pooja R. Lichens as promising resources of enzyme inhibitors: A review. J. Drug Deliv. Ther. 2019 9 2-s 665 676 10.22270/jddt.v9i2‑s.2546
    [Google Scholar]
  35. Furmanek Ł. Czarnota P. Seaward M.R.D. The effect of lichen secondary metabolites on Aspergillus fungi. Arch. Microbiol. 2022 204 1 100 10.1007/s00203‑021‑02649‑0 34964912
    [Google Scholar]
  36. Furmanek Ł. Czarnota P. Seaward M.R.D. A review of the potential of lichen substances as antifungal agents: The effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch. Microbiol. 2022 204 8 523 10.1007/s00203‑022‑03104‑4 35881248
    [Google Scholar]
  37. Furmanek Ł. Czarnota P. Seaward M.R.D. Antifungal activity of lichen compounds against dermatophytes: A review. J. Appl. Microbiol. 2019 127 2 308 325 10.1111/jam.14209 30664814
    [Google Scholar]
  38. Solárová Z. Liskova A. Samec M. Kubatka P. Büsselberg D. Solár P. Anticancer potential of lichens’ secondary metabolites. Biomolecules 2020 10 1 87 10.3390/biom10010087 31948092
    [Google Scholar]
  39. Singh N. Nambiar D. Kale R.K. Singh R.P. Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutr. Cancer 65 (sup1) (Suppl. 1) 36 43 2013
    [Google Scholar]
  40. Studzińska-Sroka E. Piotrowska H. Kucińska M. Murias M. Bylka W. Cytotoxic activity of physodic acid and acetone extract from Hypogymnia physodes against breast cancer cell lines. Pharm. Biol. 2016 54 11 2480 2485 10.3109/13880209.2016.1160936 27049956
    [Google Scholar]
  41. Di̇nçsoy A.B. Duman C.D. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk. J. Biol. 2017 41 484 493 10.3906/biy‑1609‑40
    [Google Scholar]
  42. Reddy S.D. Siva B. Kumar K. Babu V.S.P. Sravanthi V. Boustie J. Nayak V.L. Tiwari A.K. Rao C. Sridhar B. Shashikala P. Babu K.S. Comprehensive analysis of secondary metabolites in Usnea longissima (lichenized ascomycetes, parmeliaceae) using uplc-esi-qtof-ms/ms and pro-apoptotic activity of barbatic acid. Molecules 2019 24 12 2270 10.3390/molecules24122270 31216770
    [Google Scholar]
  43. Sepulveda B. Chamy M.C. Piovano M. Areche C. Lichens: Might be considered as a source of gastroprotective molecules? J. Chil. Chem. Soc. 2013 58 2 1750 1752 10.4067/S0717‑97072013000200024
    [Google Scholar]
  44. Demir L. Toğar B. Türkez H. Sozio P. Aslan A. Stefano A.D. The investigation of cytogenetic and oxidative effects of diffractaic acid on human lymphocyte cultures. Braz. Arch. Biol. Technol. 2015 58 1 75 81 10.1590/S1516‑8913201502752
    [Google Scholar]
  45. Sroka S.E. Galanty A. Bylka W. Atranorin - An interesting lichen secondary metabolite. Mini Rev. Med. Chem. 2017 17 17 1633 1645 10.2174/1389557517666170425105727 28443519
    [Google Scholar]
  46. Solár P. Hrčková G. Koptašíková L. Velebný S. Solárová Z. Bačkor M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem. Biol. Interact. 2016 250 27 37 10.1016/j.cbi.2016.03.012 26969521
    [Google Scholar]
  47. Ranković B. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. Cham, Switzerland Springer International Publishing 2019 99 127 10.1007/978‑3‑030‑16814‑8
    [Google Scholar]
  48. Oettl S.K. Gerstmeier J. Khan S.Y. Wiechmann K. Bauer J. Atanasov A.G. Malainer C. Awad E.M. Uhrin P. Heiss E.H. Waltenberger B. Remias D. Breuss J.M. Boustie J. Dirsch V.M. Stuppner H. Werz O. Rollinger J.M. Imbricaric acid and perlatolic acid: Multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS One 2013 8 10 e76929 10.1371/journal.pone.0076929 24130812
    [Google Scholar]
  49. Wu W. Hou B. Tang C. Liu F. Yang J. Pan T. Si K. Lu D. Wang X. Wang J. Xiong X. Liu J. Xie C. (+)‐Usnic acid inhibits migration of c‐kit positive cells in human colorectal cancer. Evid. Based Complement. Alternat. Med. 2018 2018 1 5149436 10.1155/2018/5149436 30298093
    [Google Scholar]
  50. Geng X. Zhang X. Zhou B. Zhang C. Tu J. Chen X. Wang J. Gao H. Qin G. Pan W. Usnic acid induces cycle arrest, apoptosis, and autophagy in gastric cancer Cells. In vitro and In vivo. Med. Sci. Monit. 2018 24 556 566 10.12659/MSM.908568 29374767
    [Google Scholar]
  51. Kiliç N. Islakoğlu Y.Ö. Büyük İ. Gür-Dedeoğlu B. Duman C.D. Determination of usnic acid responsive miRNAs in breast cancer cell lines. Anticancer. Agents Med. Chem. 2019 19 12 1463 1472 10.2174/1871520618666181112120142 30417797
    [Google Scholar]
  52. Yurdacan B. Egeli U. Eskiler G.G. Eryilmaz I.E. Cecener G. Tunca B. The role of usnic acid-induced apoptosis and autophagy in hepatocellular carcinoma. Hum. Exp. Toxicol. 2019 38 2 201 215 10.1177/0960327118792052 30084279
    [Google Scholar]
  53. Bessadottir M. Egilsson M. Einarsdottir E. Magnusdottir I.H. Ogmundsdottir M.H. Omarsdottir S. Ogmundsdottir H.M. Proton-shuttling lichen compound usnic acid affects mitochondrial and lysosomal function in cancer cells. PLoS One 2012 7 12 e51296 10.1371/journal.pone.0051296 23227259
    [Google Scholar]
  54. Yang Y. Nguyen T.T. Jeong M.H. Crişan F. Yu Y.H. Ha H.H. Choi K.H. Jeong H.G. Jeong T.C. Lee K.Y. Kim K.K. Hur J.S. Kim H. Inhibitory activity of (+)-Usnic Acid against non-small cell lung cancer cell motility. PLoS One 2016 11 1 e0146575 10.1371/journal.pone.0146575 26751081
    [Google Scholar]
  55. Emsen B. Aslan A. Turkez H. Taghizadehghalehjoughi A. Kaya A. The anti-cancer efficacies of diffractaic, lobaric, and usnic acid. J. Cancer Res. Ther. 2018 14 5 941 951 10.4103/0973‑1482.177218 30197329
    [Google Scholar]
  56. Galanty A. Koczurkiewicz P. Wnuk D. Paw M. Karnas E. Podolak I. Węgrzyn M. Borusiewicz M. Madeja Z. Czyż J. Michalik M. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. In Vitro 2017 40 161 169 10.1016/j.tiv.2017.01.008 28095330
    [Google Scholar]
  57. Koparal A.T. Anti-angiogenic and antiproliferative properties of the lichen substances (-)-usnic acid and vulpinic acid. Z. Naturforsch. C J. Biosci. 2015 70 5-6 159 164 10.1515/znc‑2014‑4178 26136299
    [Google Scholar]
  58. Brandão L.F.G. Alcantara G.B. Matos M.F.C. Bogo D. Freitas D.S. Oyama N.M. Honda N.K. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells. Chem. Pharm. Bull. 2013 61 2 176 183 10.1248/cpb.c12‑00739 23207680
    [Google Scholar]
  59. Jeon Y.J. Kim S. Kim J.H. Youn U.J. Suh S.S. The comprehensive roles of atranorin, a secondary metabolite from the antarctic lichen stereocaulon caespitosum, in hcc tumorigenesis. Molecules 2019 24 7 1414 10.3390/molecules24071414 30974882
    [Google Scholar]
  60. Cardile V. Graziano A.C.E. Avola R. Piovano M. Russo A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem. Biol. Interact. 2017 263 36 45 10.1016/j.cbi.2016.12.007 28012710
    [Google Scholar]
  61. Tatipamula V.B. Vedula G.S. Sastry A.V.S. Antarvedisides a-b from manglicolous lichen Dirinaria consimilis (Stirton) and their pharmacological profile. Asian J. Chem. 2019 31 4 805 812 10.14233/ajchem.2019.21734
    [Google Scholar]
  62. Saklani A. Upreti D.K. Folk uses of some lichens in Sikkim. J. Ethnopharmacol. 1992 37 3 229 233 10.1016/0378‑8741(92)90038‑S 1453712
    [Google Scholar]
  63. Tejero G.M.R. Lirola M.M.J. Porcel C.M. Mesa M.J. Three lichens used in popular medicine in eastern andalucia (Spain). Econ. Bot. 1995 49 1 96 98 10.1007/BF02862281
    [Google Scholar]
  64. Hawrył A. Hawrył M. Stolarz H.A. Abramek J. Kocka B.A. Komsta Ł. HPLC fingerprint analysis with the antioxidant and cytotoxic activities of selected lichens combined with the chemometric calculations. Molecules 2020 25 18 4301 10.3390/molecules25184301 32961727
    [Google Scholar]
  65. Kello M. Kuruc T. Petrova K. Goga M. Michalova Z. Coma M. Rucova D. Mojzis J. Pro-apoptotic potential of pseudevernia furfuracea (l.) zopf extract and isolated physodic acid in acute lymphoblastic leukemia model In Vitro. Pharmaceutics 2021 13 12 2173 10.3390/pharmaceutics13122173 34959454
    [Google Scholar]
  66. Aoussar N. Laasri F.E. Bourhia M. Manoljovic N. Mhand R.A. Rhallabi N. Ullah R. Shahat A.A. Noman O.M. Nasr F.A. Almarfadi O.M. Mzibri E.M. Vasiljević P. Benbacer L. Mellouki F. Phytochemical analysis, cytotoxic, antioxidant, and antibacterial activities of lichens. Evid. Based Complement. Alternat. Med. 2020 2020 1 8104538 10.1155/2020/8104538 33343680
    [Google Scholar]
  67. Šeklić D.S. Obradović A.D. Stanković M.S. Živanović M.N. Mitrović T.L. Stamenković S.M. Marković S.D. Proapoptotic and antimigratory effects of pseudoevernia furfuraceae and platismatia glauca on colon cancer cell lines. Food Technol. Biotechnol. 2018 56 3 421 430 10.17113/ftb.56.03.18.5727 30510485
    [Google Scholar]
  68. Kello M. Goga M. Kotorova K. Sebova D. Frenak R. Tkacikova L. Mojzis J. Screening evaluation of antiproliferative, antimicrobial and antioxidant activity of lichen extracts and secondary metabolites In Vitro. Plants 2023 12 3 611 10.3390/plants12030611 36771693
    [Google Scholar]
  69. Kosanić M. Manojlović N. Janković S. Stanojković T. Ranković B. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem. Toxicol. 2013 53 112 118 10.1016/j.fct.2012.11.034 23220145
    [Google Scholar]
  70. Emsen B. Sadi G. Bostanci A. Gursoy N. Emsen A. Aslan A. Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells. Rend. Lincei Sci. Fis. Nat. 2021 32 1 135 148 10.1007/s12210‑021‑00976‑4
    [Google Scholar]
  71. Kosanić M. Ranković B. Lichens as possible sources of antioxidants. Pak. J. Pharm. Sci. 2011 24 2 165 170 21454165
    [Google Scholar]
  72. Güvenç A. Akkol K.E. Süntar İ. Keleş H. Yıldız S. Çalış İ. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. J. Ethnopharmacol. 2012 144 3 726 734 10.1016/j.jep.2012.10.021 23107822
    [Google Scholar]
  73. Şahi̇n N. Emsen B. Aslan A. Sadi̇ G. Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: Regulation of antioxidant enzymes. Anatolian Journal of Botany 2021 5 2 127 133 10.30616/ajb.993406
    [Google Scholar]
  74. Kalra R. Conlan X.A. Areche C. Dilawari R. Goel M. Metabolite profiling of the indian food spice lichen, Pseudevernia furfuracea combined with optimised extraction methodology to obtain bioactive phenolic compounds. Front. Pharmacol. 2021 12 629695 10.3389/fphar.2021.629695 34040518
    [Google Scholar]
  75. Mitrovic T. Stamenkovic S. Cvetkovic V. Radulovic N. Mladenovic M. Stankovic M. Topuzovic M. Radojevic I. Stefanovic O. Vasic S. Comic L. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents. EXCLI J. 2014 13 938 953 26417313
    [Google Scholar]
  76. Odabasoglu F. Aslan A. Cakir A. Suleyman H. Karagoz Y. Bayir Y. Halici M. Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia 2005 76 2 216 219 10.1016/j.fitote.2004.05.012 15752633
    [Google Scholar]
  77. Sargsyan R. Gasparyan A. Tadevosyan G. Panosyan H. Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express 2021 11 1 110 10.1186/s13568‑021‑01271‑z 34324070
    [Google Scholar]
  78. Petrova K. Kello M. Kuruc T. Backorova M. Petrovova E. Vilkova M. Goga M. Rucova D. Backor M. Mojzis J. Potential effect of Pseudevernia furfuracea (L.) Zopf extract and metabolite physodic acid on tumour microenvironment modulation in mcf-10a cells. Biomolecules 2021 11 3 420 10.3390/biom11030420 33809098
    [Google Scholar]
  79. Bakır T.Ö. Geyikoglu F. Çolak S. Türkez H. Aslan A. Bakır M. The effects of Cetraria islandica and Pseudevernia furfuracea extracts in normal and diabetic rats. Toxicol. Ind. Health 2015 31 12 1304 1317 10.1177/0748233713475521 23833245
    [Google Scholar]
  80. Geyikoglu F. Turkez H. Aslan A. The protective roles of some lichen species on colloidal bismuth subcitrate genotoxicity. Toxicol. Ind. Health 2007 23 8 487 492 10.1177/0748233708089044 18669170
    [Google Scholar]
  81. Blanch M. Blanco Y. Fontaniella B. Legaz M.E. Vicente C. Production of phenolics by immobilized cells of the lichen Pseudevernia furfuracea: The role of epiphytic bacteria. Int. Microbiol. 2001 4 2 89 92 10.1007/s101230100019 11770830
    [Google Scholar]
  82. Ari F. Celikler S. Oran S. Balikci N. Ozturk S. Ozel M.Z. Ozyurt D. Ulukaya E. Genotoxic, cytotoxic, and apoptotic effects of Hypogymnia physodes (L.) Nyl. on breast cancer cells. Environ. Toxicol. 2014 29 7 804 813 10.1002/tox.21809 22907900
    [Google Scholar]
  83. Stojanović I.Ž. Najman S. Jovanović O. Petrović G. Najdanović J. Vasiljević P. Šmelcerović A. Effects of depsidones from Hypogymnia physodes on HeLa cell viability and growth. Folia Biol. (Praha) 2014 60 2 89 94 10.14712/fb2014060020089 24785112
    [Google Scholar]
  84. Studzińska-Sroka E. Majchrzak-Celińska A. Zalewski P. Szwajgier D. Wójcik B.E. Żarowski M. Plech T. Piontek C.J. Permeability of Hypogymnia physodes extract component—physodic acid through the blood–brain barrier as an important argument for its anticancer and neuroprotective activity within the central nervous system. Cancers 2021 13 7 1717 10.3390/cancers13071717 33916370
    [Google Scholar]
  85. Mitrovic T.L. Stamenkovic S.M. Cvetkovic V.J. Radulovic N.S. Mladenovic M.Z. Stankovic M.S. Topuzovic M.D. Radojevic I.D. Stefanovic O.D. Vasic S.M. Comic L.R. Contribution to the knowledge of the chemical composition and biological activity of the lichens cladonia foliacea H u d s. (wild.) and Hypogymnia physodes (L.). Oxid. Commun. 2015 38 2016 2032
    [Google Scholar]
  86. Türkez H. Aydın E. Aslan A. Effects of lichenic extracts (Hypogymnia physodes, ramalina polymorpha and usnea florida) on human blood cells: cytogenetic and biochemical study. Iran. J. Pharm. Res. 2012 11 3 889 896 10.22037/ijpr.2012.1126 24250516
    [Google Scholar]
  87. Kosanić M. Ranković B. Antioxidant and antimicrobial properties of some lichens and their constituents. J. Med. Food 2011 14 12 1624 1630 10.1089/jmf.2010.0316 21861720
    [Google Scholar]
  88. Stojanović G. Stojanović I. Stankov-Jovanović V. Mitić V. Kostić D. Reducing power and radical scavenging activity of four parmeliaceae species. Open Life Sci. 2010 5 6 808 813 10.2478/s11535‑010‑0090‑5
    [Google Scholar]
  89. Stojanović I. Đorđević A. Stankov-Jovanović V. Mitić V. Jovanović O. Petrović G. Smelcerović A. Antimicrobial and antioxidant activity of Hypogymnia physodes methanol extract and its constituents. 3-hydroxyphysodic acid, a potent natural antioxidant. Oxid. Commun. 2017 40 91 101
    [Google Scholar]
  90. Aslan A. Güllüce M. Sökmen M. Adιgüzel A. Sahin F. Özkan H. Antioxidant and antimicrobial properties of the lichens Cladonia foliacea., Dermatocarpon miniatum., Everinia divaricata., Evernia prunastri., and Neofuscella pulla. Pharm. Biol. 2006 44 4 247 252 10.1080/13880200600713808
    [Google Scholar]
  91. Triggiani D. Ceccarelli D. Tiezzi A. Pisani T. Munzi S. Gaggi C. Loppi S. Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 2009 64 1 59 62 10.2478/s11756‑009‑0005‑y
    [Google Scholar]
  92. Millot M. Girardot M. Dutreix L. Mambu L. Imbert C. Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules 2017 22 4 651 10.3390/molecules22040651 28422057
    [Google Scholar]
  93. Savale S.A. Pol C.S. Khare R. Verma N. Gaikwad S. Mandal B. Behera B.C. Radical scavenging, prolyl endopeptidase inhibitory, and antimicrobial potential of a cultured Himalayan lichen Cetrelia olivetorum. Pharm. Biol. 2016 54 4 692 700 10.3109/13880209.2015.1072567 26429132
    [Google Scholar]
  94. Ceker S. Orhan F. Sezen S. Gulluce M. Ozkan H. Aslan A. Agar G. Anti-mutagenic and anti-oxidant potencies of Cetraria Aculeata (Schreb.) Fr., Cladonia chlorophaea (flörke ex sommerf.) spreng. and Cetrelia olivetorum (Nyl.) W.L. Culb. & C.F. Culb.). Iran. J. Pharm. Res. 2018 17 1 326 335 10.22037/ijpr.2018.2157 29755563
    [Google Scholar]
  95. Karagöz A. Dogruöz N. Zeybek Z. Aslan A. Antibacterial activity of some lichen extracts. J. Med. Plants Res. 2009 3 1034 1039 10.5897/JMPR.9000124
    [Google Scholar]
  96. Gökalsin B. Berber D. Hur J.S. Sesal C. Quorum sensing inhibition properties of lichen forming fungi extracts from Cetrelia species against Pseudomonas aeruginosa. Front. Life Sci. Relat. Technol. 2020 1 22 27
    [Google Scholar]
  97. Perry N.B. Benn M.H. Brennan N.J. Burgess E.J. Ellis G. Galloway D.J. Lorimer S.D. Tangney R.S. Antimicrobial, antiviral and cytotoxic activity of new zealand lichens. Lichenologist 1999 31 6 627 636 10.1006/lich.1999.0241
    [Google Scholar]
  98. Goncu B. Sevgi E. Hancer K.C. Gokay G. Ozten N. Differential anti-proliferative and apoptotic effects of lichen species on human prostate carcinoma cells. PLoS One 2020 15 9 e0238303 10.1371/journal.pone.0238303 32997661
    [Google Scholar]
  99. Yılmaz M. Tay T. Kıvanç M. Türk H. Türk A.Ö. The antimicrobial activity of extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent. Z. Naturforsch. C J. Biosci. 2005 60 1-2 35 38 10.1515/znc‑2005‑1‑207 15787241
    [Google Scholar]
  100. Korte A.K. Lauerma A. Alanko K. Occupational allergic contact dermatitis from lichens in present‐day finland. Contact Dermat. 2005 52 1 36 38 10.1111/j.0105‑1873.2005.00495.x 15701128
    [Google Scholar]
  101. Cabanillas M. Redondo F.V. Toribio J. Allergic contact dermatitis to plants in a Spanish dermatology department: A 7‐year review. Contact Dermat. 2006 55 2 84 91 10.1111/j.0105‑1873.2006.00888.x 16930232
    [Google Scholar]
  102. Gonçalo S. Cabral F. Gonçalo M. Contact sensitivity to oak moss. Contact Dermat. 1988 19 5 355 357 10.1111/j.1600‑0536.1988.tb02951.x 3233955
    [Google Scholar]
  103. Mitchell J.C. Champion R.H. Human allergy to lichens. Bryologist 1965 68 1 116 118 10.1639/0007‑2745(1965)68[116:HATL]2.0.CO;2
    [Google Scholar]
  104. Stinchi C. Gulrrini V. Ghetti E. Tosti A. Contact dermatitis from lichens. Contact Dermat. 1997 36 6 309 310 10.1111/j.1600‑0536.1997.tb00011.x 9237015
    [Google Scholar]
  105. Thune P. Contact allergy due to lichens in patients with a history of photosensitivity. Contact Dermat. 1977 3 5 267 272 10.1111/j.1600‑0536.1977.tb03673.x 145345
    [Google Scholar]
  106. Thune P.O. Solberg Y.J. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances. Contact Dermat. 1980 6 2 81 87 10.1111/j.1600‑0536.1980.tb03911.x 7398280
    [Google Scholar]
  107. Emsen B. Turkez H. Togar B. Aslan A. Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts. Hum. Exp. Toxicol. 2017 36 4 376 385 10.1177/0960327116650012 27206701
    [Google Scholar]
  108. Emsen B. Aslan A. Togar B. Turkez H. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm. Biol. 2016 54 9 1748 1762 10.3109/13880209.2015.1126620 26704132
    [Google Scholar]
  109. Koparal A.T. Ulus G. Zeytinoğlu M. Tay T. Türk A.Ö. Angiogenesis inhibition by a lichen compound olivetoric acid. Phytother. Res. 2010 24 5 754 758 10.1002/ptr.3035 19943241
    [Google Scholar]
  110. Emsen B. Togar B. Turkez H. Aslan A. Effects of two lichen acids isolated from Pseudevernia furfuracea (L.) Zopf in cultured human lymphocytes. Z. Naturforsch. C J. Biosci. 2018 73 7-8 303 312 10.1515/znc‑2017‑0209 29573381
    [Google Scholar]
  111. Endo Y. Hayashi H. Sato T. Maruno M. Ohta T. Nozoe S. Confluentic acid and 2'-o-methylperlatolic acid, monoamine oxidase b inhibitors in a brazilian plant Himat sucuuba 1994 42 1198 1201 10.1248/cpb.42.1198
    [Google Scholar]
  112. Kokubun T. Shiu W. Gibbons S. Inhibitory activities of lichen-derived compounds against methicillin- and multidrug-resistant Staphylococcus aureus. Planta Med. 2007 73 2 176 179 10.1055/s‑2006‑957070 17415880
    [Google Scholar]
  113. Ranković B. Kosanić M. Manojlović N. Rančić A. Stanojković T. Chemical composition of hypogymnia physodes lichen and biological activities of some its major metabolites. Med. Chem. Res. 2014 23 1 408 416 10.1007/s00044‑013‑0644‑y
    [Google Scholar]
  114. Paluszczak J. Kleszcz R. Studzińska-Sroka E. Krajka-Kuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol. Cell. Biochem. 2018 441 1-2 109 124 10.1007/s11010‑017‑3178‑7 28887754
    [Google Scholar]
  115. Talapatra S.K. Rath O. Clayton E. Tomasi S. Kozielski F. Depsidones from lichens as natural product inhibitors of m-phase phosphoprotein 1, a human kinesin required for cytokinesis. J. Nat. Prod. 2016 79 6 1576 1585 10.1021/acs.jnatprod.5b00962 27300079
    [Google Scholar]
  116. Sahin E. Psav D.S. Avan I. Candan M. Sahinturk V. Koparal A.T. Lichen-derived physodic acid exerts cytotoxic and anti-invasive effects in human lung cancer. Rend. Lincei Sci. Fis. Nat. 2021 32 3 511 520 10.1007/s12210‑021‑00996‑0
    [Google Scholar]
  117. Papierska K. Krajka-Kuźniak V. Paluszczak J. Kleszcz R. Skalski M. Studzińska-Sroka E. Dubowska B.W. Lichen-derived depsides and depsidones modulate the nrf2, nf-κb and stat3 signaling pathways in colorectal cancer cells. Molecules 2021 26 16 4787 10.3390/molecules26164787 34443375
    [Google Scholar]
  118. Majchrzak-Celińska A. Kleszcz R. Studzińska-Sroka E. Łukaszyk A. Szoszkiewicz A. Stelcer E. Jopek K. Rucinski M. Piontek C.J. Krajka-Kuźniak V. Lichen secondary metabolites inhibit the wnt/β-catenin pathway in glioblastoma cells and improve the anticancer effects of temozolomide. Cells 2022 11 7 1084 10.3390/cells11071084 35406647
    [Google Scholar]
  119. Emsen B. Sadi G. Bostanci A. Aslan A. In vitro evaluation of cytotoxic, oxidative, genotoxic, and apoptotic activities of physodic acid from Pseudevernia furfuracea in HepG2 and THLE2 cells. Plant Biosyst. 2021 155 6 1111 1120 10.1080/11263504.2020.1852329
    [Google Scholar]
  120. Stojanović I.Ž. Stanković M. Jovanović O. Petrović G. Šmelcerovic A. Stojanović G.S. Effect of Hypogymnia physodes extracts and their depsidones on micronucleus distribution in human lymphocytes. Nat. Prod. Commun., 2013 8 1 10.1177/1934578X1300800125 23472471
    [Google Scholar]
  121. Elečko J. Vilková M. Frenák R. Routray D. Ručová D. Bačkor M. Goga M. A comparative study of isolated secondary metabolites from lichens and their antioxidative properties. Plants 2022 11 8 1077 10.3390/plants11081077 35448805
    [Google Scholar]
  122. Neamati N. Hong H. Mazumder A. Wang S. Sunder S. Nicklaus M.C. Milne G.W.A. Proksa B. Pommier Y. Depsides and depsidones as inhibitors of HIV-1 integrase: Discovery of novel inhibitors through 3D database searching. J. Med. Chem. 1997 40 6 942 951 10.1021/jm960759e 9083483
    [Google Scholar]
  123. Ichinose T. Miller M. Shibamoto T. Inhibition of malondialdehyde formation from liver microsomes by a lichen constituent. Food Chem. Toxicol. 1994 32 12 1167 1168 10.1016/0278‑6915(94)90133‑3 7813989
    [Google Scholar]
  124. Osawa T. Kumon H. Reece C.A. Shibamoto T. Snyder R.D. Inhibitory effect of lichen constituents on mutagenicity induced by heterocyclic amines. Environ. Mol. Mutagen. 1991 18 1 35 40 10.1002/em.2850180107 1864267
    [Google Scholar]
  125. Shibamoto T. Wei C.L. Mutagenicity of lichen constituents. Environ. Mutagen. 1984 6 5 757 762 10.1002/em.2860060512 6236972
    [Google Scholar]
  126. Bauer J. Waltenberger B. Noha S.M. Schuster D. Rollinger J.M. Boustie J. Chollet M. Stuppner H. Werz O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem 2012 7 12 2077 2081 10.1002/cmdc.201200345 23109349
    [Google Scholar]
  127. Pavlovic V. Stojanovic I. Jadranin M. Vajs V. Djordjević I. Smelcerovic A. Stojanovic G. Effect of four lichen acids isolated from Hypogymnia physodes on viability of rat thymocytes. Food Chem. Toxicol. 2013 51 160 164 10.1016/j.fct.2012.04.043 22579670
    [Google Scholar]
  128. Lea T. Caco-2 Cell Line.The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Verhoeckx K. Cham, Switzerland Springer 2015 103 111
    [Google Scholar]
  129. Rosa N. Sneyers F. Parys J.B. Bultynck G. Type 3 IP3 receptors: The chameleon in cancer. Int. Rev. Cell Mol. Biol. 2020 351 101 148 10.1016/bs.ircmb.2020.02.003 32247578
    [Google Scholar]
  130. Zou Q. Zhang H. Meng F. He L. Zhang J. Xiao D. Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLoS One 2020 15 9 e0238379 10.1371/journal.pone.0238379 32915799
    [Google Scholar]
  131. Froehlich K. Haeger J.D. Heger J. Pastuschek J. Photini S.M. Yan Y. Lupp A. Pfarrer C. Mrowka R. Schleußner E. Markert U.R. Schmidt A. Generation of multicellular breast cancer tumor spheroids: comparison of different protocols. J. Mammary Gland Biol. Neoplasia 2016 21 3-4 89 98 10.1007/s10911‑016‑9359‑2 27518775
    [Google Scholar]
  132. Donato M.T. Tolosa L. Lechón G.M.J. Culture and functional characterization of human hepatoma HepG2 cells. Meth. Mol. Biol. 2015 1250 77 93 10.1007/978‑1‑4939‑2074‑7_5 26272135
    [Google Scholar]
  133. Singal M. The effect of particle deposition on immunological response as measured by cytokine production.Comp. Bio. Nor. Lung. Academic Press 2015 601 627 10.1016/B978‑0‑12‑404577‑4.00031‑X
    [Google Scholar]
  134. Murphy L.C. Alkhalaf M. Dotzlaw H. Coutts A. Alkhalaf H.B. Regulation of gene expression in T-47D human breast cancer cells by progestins and antiprogestins. Hum. Reprod. 1994 9 Suppl. 1 174 180 10.1093/humrep/9.suppl_1.174 7962462
    [Google Scholar]
  135. Comşa Ş. Cîmpean A.M. Raica M. The story of mcf-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015 35 6 3147 3154 26026074
    [Google Scholar]
  136. Boüard S. Herlin P. Christensen J.G. Lemoisson E. Gauduchon P. Raymond E. Guillamo J.S. Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-oncol. 2007 9 4 412 423 10.1215/15228517‑2007‑024 17622648
    [Google Scholar]
  137. Simiczyjew A. Wądzyńska J. Gremplewicz P.K. Kot M. Ziętek M. Matkowski R. Nowak D. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell. Mol. Biol. Lett. 2023 28 1 58 10.1186/s11658‑023‑00476‑3 37481560
    [Google Scholar]
  138. Sustarsic E.G. Junnila R.K. Kopchick J.J. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment. Biochem. Biophys. Res. Commun. 2013 441 1 144 150 10.1016/j.bbrc.2013.10.023 24134847
    [Google Scholar]
  139. Pulaski B.A. Rosenberg O.S. Chapter 20 - Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 2001 35 39 10.1002/0471142735.im2002s39
    [Google Scholar]
  140. Zhou Y. Ling X. Establishment of a cisplatin-induced multidrug resistance cell line SK-Hep1/DDP. Chin. J. Cancer 2010 29 3 167 171 10.5732/cjc.009.10630 20109345
    [Google Scholar]
  141. Liu N. Du C.H. RLIP76 silencing inhibits cell proliferation and invasion in melanoma cell line A375. Eur. Rev. Med. Pharmacol. Sci. 2017 21 9 2054 2060 28537681
    [Google Scholar]
  142. Lansiaux A. Laine W. Baldeyrou B. Mahieu C. Wattez N. Vezin H. Martinez F.J. Piñeyro A. Bailly C. DNA topoisomerase II inhibition by peroxisomicine A(1) and its radical metabolite induces apoptotic cell death of HL-60 and HL-60/MX2 human leukemia cells. Chem. Res. Toxicol. 2001 14 1 16 24 10.1021/tx000145j 11170504
    [Google Scholar]
  143. Nailing T. Zhi G. Xueling Y. Cryoablation induced the change of TGF-β pathway in CWR-22RV prostate cancer cell line. Cryobiology 2015 71 1 130 134 10.1016/j.cryobiol.2015.04.009 25952505
    [Google Scholar]
  144. Sharker S.M. Rahman A. A review on the current methods of chinese hamster ovary (CHO) cells cultivation for the production of therapeutic protein. Curr. Drug Discov. Technol. 2021 18 3 354 364 10.2174/1570163817666200312102137 32164511
    [Google Scholar]
  145. Mitchell D.M. Ball J.M. Characterization of a spontaneously polarizing ht-29 cell linE, HT-29/cl.f8. In Vitro Cell. Dev. Biol. Anim. 2004 40 10 297 302 10.1290/04100061.1 15780006
    [Google Scholar]
  146. Lu J.J. Chen S.M. Ding J. Meng L.H. Characterization of dihydroartemisinin-resistant colon carcinoma HCT116/R cell line. Mol. Cell. Biochem. 2012 360 1-2 329 337 10.1007/s11010‑011‑1072‑2 21959972
    [Google Scholar]
  147. Lin J.C. Cheng J.Y. Tzeng C.C. Yeh M.Y. Meng C.L. An animal model for colon cancer metastatic cell line with enhanced metastasizing ability. Dis. Colon Rectum 1991 34 6 458 463 10.1007/BF02049929 2036925
    [Google Scholar]
  148. Herr R. Wöhrle F.U. Danke C. Berens C. Brummer T. A novel MCF-10A line allowing conditional oncogene expression in 3D culture. Cell Commun. Signal. 2011 9 1 17 10.1186/1478‑811X‑9‑17 21752278
    [Google Scholar]
  149. Landry J.J.M. Pyl P.T. Rausch T. Zichner T. Tekkedil M.M. Stütz A.M. Jauch A. Aiyar R.S. Pau G. Delhomme N. Gagneur J. Korbel J.O. Huber W. Steinmetz L.M. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 2013 3 8 1213 1224 10.1534/g3.113.005777 23550136
    [Google Scholar]
  150. Schachter J. Alvarez C.L. Bazzi Z. Faillace M.P. Corradi G. Hattab C. Rinaldi D.E. Lebrero G.R. Molineris M.P. Sévigny J. Ostuni M.A. Schwarzbaum P.J. Extracellular ATP hydrolysis in Caco-2 human intestinal cell line. Biochim. Biophys. Acta Biomembr. 2021 1863 10 183679 10.1016/j.bbamem.2021.183679 34216588
    [Google Scholar]
  151. Quax P.H. Muijen V.G.N. Verhoeff W.E.J. Lund L.R. Danø K. Ruiter D.J. Verheijen J.H. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J. Cell Biol. 1991 115 1 191 199 10.1083/jcb.115.1.191 1918136
    [Google Scholar]
  152. Viscarra T. Buchegger K. Jofre I. Riquelme I. Zanella L. Abanto M. Parker A.C. Piccolo S.R. Roa J.C. Ili C. Brebi P. Functional and transcriptomic characterization of carboplatin-resistant A2780 ovarian cancer cell line. Biol. Res. 2019 52 1 13 10.1186/s40659‑019‑0220‑0 30894224
    [Google Scholar]
  153. Ganapathy M.E. Prasad P.D. Huang W. Seth P. Leibach F.H. Ganapathy V. Molecular and ligand-binding characterization of the sigma-receptor in the Jurkat human T lymphocyte cell line. J. Pharmacol. Exp. Ther. 1999 289 1 251 260 10087012
    [Google Scholar]
  154. Becker K.P. Ullian M. Halushka P.V. Cloning and characterization of an endogenous COS-7 cell thromboxane A2 receptor. Biochim. Biophys. Acta Mol. Cell Res. 1998 1403 1 109 114 10.1016/S0167‑4889(98)00019‑6 9622606
    [Google Scholar]
  155. Avagliano A. Ruocco M.R. Nasso R. Aliotta F. Sanità G. Iaccarino A. Bellevicine C. Calì G. Fiume G. Masone S. Masullo M. Montagnani S. Arcucci A. Development of a stromal microenvironment experimental model containing proto-myofibroblast like cells and analysis of its crosstalk with melanoma cells: a new tool to potentiate and stabilize tumor suppressor phenotype of dermal myofibroblasts. Cells 2019 8 11 1435 10.3390/cells8111435 31739477
    [Google Scholar]
  156. Sefried S. Häring H.U. Weigert C. Eckstein S.S. Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol. 2018 8 10 180147 10.1098/rsob.180147 30355754
    [Google Scholar]
  157. Jia Z. Yang M. Zhao Y. Li X. Yang C. Qiao L. Li H. Du J. Lin J. Guan L. CRISPR-cas9-mediated npc1 gene deletion enhances hek 293 t cell adhesion by regulating E-Cadherin. Mol. Biotechnol. 2023 65 2 252 262 10.1007/s12033‑022‑00503‑2 35587334
    [Google Scholar]
  158. Ganime A.C. Costa C.F.A. Santos M. Filho C.R. Leite J.P.G. Miagostovich M.P. Viability of human adenovirus from hospital fomites. J. Med. Virol. 2014 86 12 2065 2069 10.1002/jmv.23907 25042068
    [Google Scholar]
  159. Faggi F. Codenotti S. Poliani P.L. Cominelli M. Chiarelli N. Colombi M. Vezzoli M. Monti E. Bono F. Tulipano G. Fiorentini C. Zanola A. Lo H.P. Parton R.G. Keller C. Fanzani A. MURC/cavin-4 is co-expressed with caveolin-3 in rhabdomyosarcoma tumors and its silencing prevents myogenic differentiation in the human embryonal rd cell line. PLoS One 2015 10 6 e0130287 10.1371/journal.pone.0130287 26086601
    [Google Scholar]
  160. Rappa G. Lorico A. Sartorelli A.C. Development and characterization of a WEHI-3B D+ monomyelocytic leukemia cell line resistant to novobiocin and cross-resistant to other topoisomerase II-targeted drugs. Cancer Res. 1992 52 10 2782 2790 1316227
    [Google Scholar]
  161. Parks S.K. Pouyssegur J. The Na + /HCO 3− CO-Transporter slc4a4 plays a role in growth and migration of colon and breast cancer cells. J. Cell. Physiol. 2015 230 8 1954 1963 10.1002/jcp.24930 25612232
    [Google Scholar]
  162. Wang X. Zou F. Deng H. Fu Z. Li Y. Wu L. Wang Z. Liu L. Characterization of sphere-forming cells with stem-like properties from the gastric cancer cell lines MKN45 and SGC7901. Mol. Med. Rep. 2014 10 6 2937 2941 10.3892/mmr.2014.2601 25270642
    [Google Scholar]
  163. Lasfargues E.Y. Coutinho W.G. Dion A.S. A human breast tumor cell line (BT-474) that supports mouse mammary tumor virus replication. In Vitro 1979 15 9 723 729 10.1007/BF02618252 94035
    [Google Scholar]
  164. Akbari S. Kunter I. Azbazdar Y. Ozhan G. Atabey N. Karagonlar F.Z. Erdal E. LGR5/R-Spo1/Wnt3a axis promotes stemness and aggressive phenotype in hepatoblast-like hepatocellular carcinoma cell lines. Cell. Signal. 2021 82 109972 10.1016/j.cellsig.2021.109972 33684507
    [Google Scholar]
  165. Zhang S.N. Huang F.T. Huang Y.J. Zhong W. Yu Z. Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells. Tumori 2010 96 6 985 992 10.1177/548.6520 21388063
    [Google Scholar]
  166. Lei Z.N. Teng Q.X. Zhang W. Fan Y.F. Wang J.Q. Cai C.Y. Lu K.W. Yang D.H. Wurpel J.N.D. Chen Z.S. Establishment and characterization of a topotecan resistant non-small cell lung cancer NCI-H460/TPT10 cell line. Front. Cell Dev. Biol. 2020 8 607275 10.3389/fcell.2020.607275 33425914
    [Google Scholar]
  167. Mandelbaum J. Rollins N. Shah P. Bowman D. Lee J.Y. Tayber O. Bernard H. LeRoy P. Li P. Koenig E. Brownell J.E. D’Amore N. Identification of a lung cancer cell line deficient in atg7-dependent autophagy. Autophagy 2015 0 00 10.1080/15548627.2015.1056966 26090719
    [Google Scholar]
  168. Tang Z.H. Jiang X.M. Guo X. Fong C.M.V. Chen X. Lu J.J. Characterization of osimertinib (AZD9291)-resistant non-small cell lung cancer NCI-H1975/OSIR cell line. Oncotarget 2016 7 49 81598 81610 10.18632/oncotarget.13150 27835594
    [Google Scholar]
  169. Yang Y. Ricketts C.J. Vocke C.D. Killian J.K. Nash P.H.M. Lang M. Wei D. Lee Y.H. Wangsa D. Sourbier C. Meltzer P.S. Ried T. Merino M.J. Metwalli A.R. Ball M.W. Srinivasan R. Linehan W.M. Characterization of genetically defined sporadic and hereditary type 1 papillary renal cell carcinoma cell lines. Gen. Chrom. Can. 2021 60 6 434 446 10.1002/gcc.22940 33527590
    [Google Scholar]
  170. Kaighn M.E. Narayan K.S. Ohnuki Y. Lechner J.F. Jones L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 1979 17 1 16 23 447482
    [Google Scholar]
  171. Shioda S. Kasai F. Ozawa M. Hirayama N. Satoh M. Kameoka Y. Watanabe K. Shimizu N. Tang H. Mori Y. Kohara A. The human vascular endothelial cell line HUV-EC-C harbors the integrated HHV-6B genome which remains stable in long term culture. Cytotechnology 2018 70 1 141 152 10.1007/s10616‑017‑0119‑y 28755030
    [Google Scholar]
  172. Wu X. Peng K. Huang H. Li Z. Xiang W. Deng W. Liu L. Li W. Zhang T. MiR-21b-3p protects NS2OY cells against oxygen-glucose deprivation/reperfusion-induced injury by down-regulating cyclooxygenase-2. Am. J. Transl. Res. 2019 11 5 3007 3017 31217870
    [Google Scholar]
  173. Dzhambazov B. Batsalova T. Merky P. Lange F. Holmdahl R. NIH/3T3 fibroblasts selectively activate t cells specific for posttranslationally modified collagen type II. Int. J. Mol. Sci. 2023 24 13 10811 10.3390/ijms241310811 37445989
    [Google Scholar]
  174. Wang Y. Sun Q. Mu N. Sun X. Wang Y. Fan S. Su L. Liu X. The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun. Signal. 2020 18 1 112 10.1186/s12964‑020‑00612‑y 32665011
    [Google Scholar]
  175. Bradbury J.M. Edwards P.A.W. Changes in in vitro growth behaviour of the mammary epithelial cell line NMuMG caused by the v ‐fos oncogene. Int. J. Cancer 1988 42 6 923 929 10.1002/ijc.2910420623 3192336
    [Google Scholar]
  176. Shirasago Y. Sekizuka T. Saito K. Suzuki T. Wakita T. Hanada K. Kuroda M. Abe R. Fukasawa M. Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn. J. Infect. Dis. 2015 68 2 81 88 10.7883/yoken.JJID.2014.231 25420655
    [Google Scholar]
  177. Fournier C. Hoffmann T.W. Morel V. Descamps V. Dubuisson J. Brochot E. Francois C. Duverlie G. Castelain S. Helle F. Claudin‐1, miR‐122 and apolipoprotein E transductions improve the permissivity of SNU ‐182, SNU ‐398 and SNU ‐449 hepatoma cells to hepatitis C virus. J. Viral Hepat. 2018 25 1 63 71 10.1111/jvh.12767 28772350
    [Google Scholar]
  178. Tatipamula V.B. Vedula G.S. Sastry A.V.S. Chemical and pharmacological evaluation of manglicolous lichen Roccella montagnei Bel em. D. D. Awasthi. Future J. Pharm. Sci. 2019 5 1 8 10.1186/s43094‑019‑0009‑6
    [Google Scholar]
  179. Oraiopoulou M.E. Tampakaki M. Tzamali E. Tamiolakis T. Makatounakis V. Vakis A.F. Zacharakis G. Sakkalis V. Papamatheakis J. A 3D tumor spheroid model for the T98G Glioblastoma cell line phenotypic characterization. Tissue Cell 2019 59 39 43 10.1016/j.tice.2019.05.007 31383287
    [Google Scholar]
  180. Roomi M.W. Kalinovsky T. Niedzwiecki A. Rath M. Modulation of uPA, MMPs and their inhibitors by a novel nutrient mixture in human glioblastoma cell lines. Int. J. Oncol. 2014 45 2 887 894 10.3892/ijo.2014.2465 24867464
    [Google Scholar]
  181. Prante O. Deichen J.T. Hocke C. Kuwert T. Characterization of uptake of 3-[131I]iodo-α-methyl-L-tyrosine in human monocyte-macrophages. Nucl. Med. Biol. 2004 31 3 365 372 10.1016/j.nucmedbio.2003.10.006 15028249
    [Google Scholar]
  182. Konishi K. Yamaji T. Sakuma C. Kasai F. Endo T. Kohara A. Hanada K. Osada N. Whole-genome sequencing of vero e6 (vero c1008) and comparative analysis of four vero cell sublines. Front. Genet. 2022 13 801382 10.3389/fgene.2022.801382 35391802
    [Google Scholar]
  183. Cao Y. Chen J. Zhang G. Fan S. Ge W. Hu W. Huang P. Hou D. Zheng S. Characterization and discrimination of human colorectal cancer cells using terahertz spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 256 119713 10.1016/j.saa.2021.119713 33823401
    [Google Scholar]
  184. Lin C.J. Grandis J.R. Carey T.E. Gollin S.M. Whiteside T.L. Koch W.M. Ferris R.L. Lai S.Y. Head and neck squamous cell carcinoma cell lines: Established models and rationale for selection. Head Neck 2007 29 2 163 188 10.1002/hed.20478 17312569
    [Google Scholar]
  185. Chen L. Zhu S. Wang H. Pang X. Wang X. MiR-601 promotes cell proliferation of human glioblastoma cells by suppressing TINP1 expression. Altern. Ther. Health Med. 2022 28 2 102 108 35139491
    [Google Scholar]
  186. Kiseleva L.N. Kartashev A.V. Vartanyan N.L. Pinevich A.A. Samoilovich M.P. Characteristics of A172 and T98G cell lines. Tsitologiia 2016 58 5 349 355 30188626
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298348831241219045135
Loading
/content/journals/mroc/10.2174/0118756298348831241219045135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test