Skip to content
2000
image of Domino Reactions through Metallaphotoredox Catalysis

Abstract

The exploitation of visible light as a cheap and natural source of energy has enabled a renaissance of classical radical chemistry with the development of photoredox catalysis. This resurgence is driven by the emergence of versatile photoredox catalysts, including organocatalysts and transition metal catalysts. Especially, the merger of transition metal catalysis with photoredox catalysis, called metallaphotoredox catalysis by MacMillan, has received considerable attention in both photochemistry and organometallic chemistry in the past decade, impressively expanding the synthetic utility of visible-light photocatalysis. Along with many simple reactions, such as cross-couplings or C-H activations, metallaphotoredox catalysis is particularly suitable to the development of more complex domino processes. Indeed, this green and powerful strategy, evolving through the generation of radical species under especially mild conditions, has led to the discovery of many novel green domino reactions not achievable by using single-catalyst systems. This review collects for the first time the recent developments in the field of dual photoredox and metal-catalyzed domino reactions since 2015, illustrating the diversity of green radical domino reactions that can be performed under mild conditions using this emerging methodology. It demonstrates that these visible-light-driven photoreactions are blooming to become a cheaper, safer, and greener alternative in organic synthesis. These findings pave the way for more sustainable and versatile synthetic methodologies in both academic and industrial settings. Along with precedent reports dealing with metallaphotoredox catalysis, this review is the first to focus specifically on domino reactions. It is divided into five sections, treating successively nickel metallaphotocatalysis, copper metallaphotocatalysis, gold metallaphotocatalysis, cobalt metallaphotocatalysis, and palladium metallaphotocatalysis.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298371578250503015424
2025-05-23
2025-09-05
Loading full text...

Full text loading...

References

  1. a Nicewicz D.A. MacMillan D.W.C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008 322 5898 77 80 10.1126/science.1161976 18772399
    [Google Scholar]
  2. b Ischay M.A. Anzovino M.E. Du J. Yoon T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 2008 130 39 12886 12887 10.1021/ja805387f 18767798
    [Google Scholar]
  3. c Narayanam J.M.R. Tucker J.W. Stephenson C.R.J. Electron-transfer photoredox catalysis: Development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 2009 131 25 8756 8757 10.1021/ja9033582 19552447
    [Google Scholar]
  4. Kärkäs M.D. Porco J.A. Jr Stephenson C.R.J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chem. Rev. 2016 116 17 9683 9747 10.1021/acs.chemrev.5b00760 27120289
    [Google Scholar]
  5. a Fagnoni M. Dondi D. Ravelli D. Albini A. Photocatalysis for the formation of the C-C bond. Chem. Rev. 2007 107 6 2725 2756 10.1021/cr068352x 17530909
    [Google Scholar]
  6. b Narayanam J.M.R. Stephenson C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev. 2011 40 1 102 113 10.1039/B913880N 20532341
    [Google Scholar]
  7. c Xuan J. Xiao W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2012 51 28 6828 6838 10.1002/anie.201200223 22711502
    [Google Scholar]
  8. d Xi Y. Yi H. Lei A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem. 2013 11 2387 2403
    [Google Scholar]
  9. e Prier C.K Rankic D. A. MacMillan D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013 113 5322 5363
    [Google Scholar]
  10. f Schultz D.M. Yoon T.P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014 343 6174 1239176 10.1126/science.1239176 24578578
    [Google Scholar]
  11. g Shaw M.H. Twilton J. MacMillan D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016 81 6898 6926
    [Google Scholar]
  12. h Ravelli D. Protti S. Fagnoni M. Carbon−carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 2016 116 9850 9913
    [Google Scholar]
  13. i Romero N. A. Nicewicz D. A. Fagnoni M. Organic photoredox catalysis. Chem. Rev. 2016 116 10075 10166
    [Google Scholar]
  14. j Parasram M. Gevorgyan V. Visible light-induced transition metal-catalyzed transformations: Beyond conventional photosensitizers. Chem. Soc. Rev. 2017 46 20 6227 6240 10.1039/C7CS00226B 28799591
    [Google Scholar]
  15. k Strieth-Kalthoff F. James M.J. Teders M. Pitzer L. Glorius F. Energy transfer catalysis mediated by visible light: Principles, applications, directions. Chem. Soc. Rev. 2018 47 19 7190 7202 10.1039/C8CS00054A 30088504
    [Google Scholar]
  16. l Wang C-S. Dixneuf P.H. Soulé J-F. Photoredox catalysis for building C−C bonds from C(sp2)−H bonds. Chem. Rev. 2018 118 7532 7585
    [Google Scholar]
  17. m Marzo L. Pagire S. K. Reiser O. Visible-light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018 57 10034 10072
    [Google Scholar]
  18. n Crisenza G.E.M. Melchiorre P. Chemistry glows green with photoredox catalysis. Nat. Commun. 2020 11 1 803 806 10.1038/s41467‑019‑13887‑8 32029742
    [Google Scholar]
  19. o Lee Y. Kwon M.S. Emerging organic photoredox catalysts for organic transformations. Eur. J. Org. Chem. 2020 2020 38 6028 6043 10.1002/ejoc.202000720
    [Google Scholar]
  20. p Markushyna Y. Savateev A. Light as a tool in organic photocatalysis: Multi‐photon excitation and chromoselective reactions. Eur. J. Org. Chem. 2022 2022 24 e202200026 10.1002/ejoc.202200026
    [Google Scholar]
  21. q Pitre S.P. Overman L.E. Strategic use of visible-light photoredox catalysis in natural product synthesis. Chem. Rev. 2022 122 2 1717 1751 10.1021/acs.chemrev.1c00247 34232019
    [Google Scholar]
  22. r Mondal S. Dumur F. Gigmes D. Sibi M.P. Bertrand M.P. Nechab M. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 2022 122 6 5842 5976 10.1021/acs.chemrev.1c00582 35073048
    [Google Scholar]
  23. s Tay N.E.S. Lehnherr D. Rovis T. Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chem. Rev. 2022 122 2 2487 2649 10.1021/acs.chemrev.1c00384 34751568
    [Google Scholar]
  24. t Genzink M.J. Kidd J.B. Swords W.B. Yoon T.P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 2022 122 2 1654 1716 10.1021/acs.chemrev.1c00467 34606251
    [Google Scholar]
  25. u Cheung K.P.S. Sarkar S. Gevorgyan V. Visible light-induced transition metal catalysis. Chem. Rev. 2022 122 2 1543 1625 10.1021/acs.chemrev.1c00403 34623151
    [Google Scholar]
  26. v Renzi P. Scarfiello J. Lanfranco A. Deagostino A. Light‐induced domino and multicomponent reactions: How to reach molecular complexity without a catalyst. Eur. J. Org. Chem. 2023 26 e202300713 10.1002/ejoc.202300713
    [Google Scholar]
  27. w de Groot L.H.M. Ilic A. Schwarz J. Wärnmark K. Iron photoredox catalysis–past, present, and future. J. Am. Chem. Soc. 2023 145 17 9369 9388 10.1021/jacs.3c01000
    [Google Scholar]
  28. Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh A.K. Lei A. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 2017 117 13 9016 9085 10.1021/acs.chemrev.6b00620 28639787
    [Google Scholar]
  29. a Noyori R. Asymmetric Catalysts in Organic Synthesis Wiley-VCH New-York 1994
    [Google Scholar]
  30. b Beller M. Bolm C. Transition Metals for Organic Synthesis. Weinheim Wiley-VCH 1998 Vol. I and II 10.1002/9783527619399
    [Google Scholar]
  31. c Jacobsen E.N. Pfaltz A. Yamamoto H. Comprehensive Asymmetric Catalysis. Berlin Springer 1999
    [Google Scholar]
  32. d Ojima I. Catalytic Asymmetric Synthesis Wiley-VCH New-York 2000 10.1002/0471721506
    [Google Scholar]
  33. e Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis. Hoboken, NJ John Wiley & Sons 2002
    [Google Scholar]
  34. f de Meijere A. von Zezschwitz P. Nüske H. Stulgies B. New cascade and multiple cross-coupling reactions for the efficient construction of complex molecules. J. Organomet. Chem. 2002 653 1-2 129 140 10.1016/S0022‑328X(02)01168‑3
    [Google Scholar]
  35. g Beller M. Bolm C. Metals for Organic Synthesis. 2nd ed Weinheim Wiley-VCH 2004
    [Google Scholar]
  36. h Tietze L.F. Ila H. Bell H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev. 2004 104 7 3453 3516 10.1021/cr030700x 15250747
    [Google Scholar]
  37. Twilton J. Zhang P. Shaw M. H. Evans R. W. MacMillan D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017 1 0052 10.1038/s41570‑017‑0052
    [Google Scholar]
  38. a Skubi K.L. Blum T.R. Yoon T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016 116 17 10035 10074 10.1021/acs.chemrev.6b00018 27109441
    [Google Scholar]
  39. b Zhou W.J. Yu D-G. Zhang Y-H. Gui Y-Y. Sun L. Merging transition-metal catalysis with photoredox catalysis: An environmentally friendly strategy for C–H functionalization. Synthesis 2018 50 17 3359 3378 10.1055/s‑0037‑1610222
    [Google Scholar]
  40. c Guillemard L. Wencel-Delord J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 2020 16 1754 1804 10.3762/bjoc.16.147 32765795
    [Google Scholar]
  41. d Zhang H.H. Chen H. Zhu C. Yu S. A review of enantioselective dual transition metal/photoredox catalysis. Sci. China Chem. 2020 63 5 637 647 10.1007/s11426‑019‑9701‑5
    [Google Scholar]
  42. e Mastandrea M.M. Pericàs M.A. Photoredox dual catalysis: A fertile playground for the discovery of new reactivities. Eur. J. Inorg. Chem. 2021 2021 34 3421 3431 10.1002/ejic.202100455
    [Google Scholar]
  43. f Zhang J. Huan X.D. Wang X. Li G.Q. Xiao W.J. Chen J.R. Recent advances in C(sp 3 )–N bond formation via metallaphoto-redox catalysis. Chem. Commun. 2024 60 50 6340 6361 10.1039/D4CC01969E 38832416
    [Google Scholar]
  44. Kalyani D. McMurtrey K.B. Neufeldt S.R. Sanford M.S. Room-temperature C-H arylation: Merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 2011 133 46 18566 18569 10.1021/ja208068w 22047138
    [Google Scholar]
  45. a Tietze L.F. Beifuss U. Sequential transformations in organic chemistry: A synthetic strategy with a future. Angew. Chem. Int. Ed. Engl. 1993 32 2 131 163 10.1002/anie.199301313
    [Google Scholar]
  46. b Tietze L.F. Domino reactions in organic synthesis. Chem. Rev. 1996 96 1 115 136 10.1021/cr950027e 11848746
    [Google Scholar]
  47. c Ramón D.J. Yus M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed. 2005 44 11 1602 1634 10.1002/anie.200460548 15719349
    [Google Scholar]
  48. d Zhu J. Bienaymé H. Multicomponent Reactions. Weinheim Wiley-VCH 2005 10.1002/3527605118
    [Google Scholar]
  49. e Pellissier H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron 2006 62 8 1619 1665 10.1016/j.tet.2005.10.040
    [Google Scholar]
  50. f Pellissier H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 2006 62 10 2143 2173 10.1016/j.tet.2005.10.041
    [Google Scholar]
  51. g Tietze L.F. Brasche G. Gericke K. Domino Reactions in Organic Synthesis. Weinheim Wiley-VCH 2006 10.1002/9783527609925
    [Google Scholar]
  52. h Enders D. Grondal C. Hüttl M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed. 2007 46 10 1570 1581 10.1002/anie.200603129 17225236
    [Google Scholar]
  53. i Guillena G. Ramón D.J. Yus M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry 2007 18 6 693 700 10.1016/j.tetasy.2007.03.002
    [Google Scholar]
  54. j Touré B.B. Hall D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 2009 109 9 4439 4486 10.1021/cr800296p 19480390
    [Google Scholar]
  55. k Grondal C. Jeanty M. Enders D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem. 2010 2 3 167 178 10.1038/nchem.539 21124474
    [Google Scholar]
  56. l Biggs-Houck J.E. Younai A. Shaw J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol. 2010 14 3 371 382 10.1016/j.cbpa.2010.03.003 20392661
    [Google Scholar]
  57. m Ruiz M. López-Alvarado P. Giorgi G. Menéndez J.C. Domino reactions for the synthesis of bridged bicyclic frameworks: Fast access to bicyclo[n.3.1]alkanes. Chem. Soc. Rev. 2011 40 7 3445 3454 10.1039/c1cs15018a 21483949
    [Google Scholar]
  58. n Pellissier H. Recent developments in asymmetric organocatalytic domino reactions. Adv. Synth. Catal. 2012 354 2-3 237 294 10.1002/adsc.201100714
    [Google Scholar]
  59. o de Graaff C. Ruijter E. Orru R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev. 2012 41 10 3969 4009 10.1039/c2cs15361k 22546840
    [Google Scholar]
  60. p Clavier H. Pellissier H. Recent developments in enantioselective metal‐catalyzed domino reactions. Adv. Synth. Catal. 2012 354 18 3347 3403 10.1002/adsc.201200254
    [Google Scholar]
  61. q Pellissier H. Stereocontrolled domino reactions. Chem. Rev. 2013 113 1 442 524 10.1021/cr300271k 23157479
    [Google Scholar]
  62. r Pellissier H. Asymmetric Domino Reactions. Cambridge Royal Society of Chemistry 2013 10.1039/9781849737104
    [Google Scholar]
  63. s Tietze L.F. Domino Reactions - Concepts for Efficient Organic Synthesis. Weinheim Wiley-VCH 2014 10.1002/9783527671304
    [Google Scholar]
  64. t Herrera R.P. Marques-Lopez E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Weinheim Wiley 2015 10.1002/9781118863992
    [Google Scholar]
  65. u Pellissier H. Recent developments in enantioselective metal‐catalyzed domino reactions. Adv. Synth. Catal. 2016 358 14 2194 2259 10.1002/adsc.201600462
    [Google Scholar]
  66. v Snyder S.A. Science of Synthesis. Applications of Domino Transformations in Organic Synthesis. Stuttgart Thieme Verlag 2016 Vol. 1-2
    [Google Scholar]
  67. w Pellissier H. Green copper catalysis in enantioselective domino reactions. Curr. Org. Chem. 2018 22 2670 2697
    [Google Scholar]
  68. x Pellissier H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal. 2019 361 8 1733 1755 10.1002/adsc.201801371
    [Google Scholar]
  69. y Pellissier H. The use of domino reactions for the synthesis of chiral rings. Synthesis 2020 52 24 3837 3854 10.1055/s‑0040‑1707905
    [Google Scholar]
  70. z Pellissier H. Asymmetric organocatalytic tandem/domino reactions to access bioactive products. Curr. Org. Chem. 2021 25 13 1457 1471 10.2174/1385272825666210208142427
    [Google Scholar]
  71. aa Pellissier H. Recent developments in enantioselective domino reactions. Part A: Noble metal catalysts. Adv. Synth. Catal. 2023 365 5 620 681 10.1002/adsc.202201284
    [Google Scholar]
  72. ab Pellissier H. Recent developments in enantioselective domino reactions. Part B: First row metal catalysts. Adv. Synth. Catal. 2023 365 6 768 819 10.1002/adsc.202300002
    [Google Scholar]
  73. ac Bai L. Jiang X. Catalytic domino reaction: A promising and economic tool in organic synthesis. Chem Catal. 2023 3 10 100752 10.1016/j.checat.2023.100752
    [Google Scholar]
  74. Sebren L.J. Devery J.J. III Stephenson C.R.J. Catalytic radical domino reactions in organic synthesis. ACS Catal. 2014 4 2 703 716 10.1021/cs400995r 24587964
    [Google Scholar]
  75. Chan A.Y. Perry I.B. Bissonnette N.B. Buksh B.F. Edwards G.A. Frye L.I. Garry O.L. Lavagnino M.N. Li B.X. Liang Y. Mao E. Millet A. Oakley J.V. Reed N.L. Sakai H.A. Seath C.P. MacMillan D.W.C. Metallaphotoredox: The merger of photoredox and transition metal catalysis. Chem. Rev. 2022 122 2 1485 1542 10.1021/acs.chemrev.1c00383 34793128
    [Google Scholar]
  76. Tellis J.C. Primer D.N. Molander G.A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 2014 345 6195 433 436 10.1126/science.1253647 24903560
    [Google Scholar]
  77. Zuo Z. Ahneman D.T. Chu L. Terrett J.A. Doyle A.G. MacMillan D.W.C. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp 3 -carbons with aryl halides. Science 2014 345 6195 437 440 10.1126/science.1255525 24903563
    [Google Scholar]
  78. a Vila C. Merging visible‐light‐photoredox and nickel catalysis. ChemCatChem 2015 7 12 1790 1793 10.1002/cctc.201500258
    [Google Scholar]
  79. b Cavalcanti L.N. Molander G.A. Photoredox catalysis in nickel-catalyzed cross-coupling. Top. Curr. Chem. 2016 374 4 39 61 10.1007/s41061‑016‑0037‑z 27573391
    [Google Scholar]
  80. c Gui Y.Y. Sun L. Lu Z.P. Yu D.G. Photoredox sheds new light on nickel catalysis: From carbon–carbon to carbon–heteroatom bond formation. Org. Chem. Front. 2016 3 4 522 526 10.1039/C5QO00437C
    [Google Scholar]
  81. d Milligan J.A. Phelan J.P. Badir S.O. Molander G.A. Alkyl carbon–carbon bond formation by nickel/photoredox cross‐coupling. Angew. Chem. Int. Ed. 2019 58 19 6152 6163 10.1002/anie.201809431 30291664
    [Google Scholar]
  82. e Wenger O.S. Photoactive nickel complexes in cross‐coupling catalysis. Chemistry 2021 27 7 2270 2278 10.1002/chem.202003974 33111994
    [Google Scholar]
  83. f Mantry L. Maayuri R. Kumar V. Gandeepan P. Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein J. Org. Chem. 2021 17 2209 2259 10.3762/bjoc.17.143 34621388
    [Google Scholar]
  84. g Zhu C. Yue H. Chu L. Rueping M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: Pushing the boundaries of complexity. Chem. Sci. 2020 11 16 4051 4064 10.1039/D0SC00712A 32864080
    [Google Scholar]
  85. a Yue H. Zhu C. Kancherla R. Liu F. Rueping M. Regioselective hydroalkylation and arylalkylation of alkynes by photoredox/nickel dual catalysis: Application and mechanism. Angew. Chem. Int. Ed. 2020 59 14 5738 5746 10.1002/anie.201914061 31901214
    [Google Scholar]
  86. b Mega R.S. Duong V.K. Noble A. Aggarwal V.K. Decarboxylative conjunctive cross‐coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. 2020 59 11 4375 4379 10.1002/anie.201916340 31909870
    [Google Scholar]
  87. c Sun S.Z. Duan Y. Mega R.S. Somerville R.J. Martin R. Site‐selective 1,2‐dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. 2020 59 11 4370 4374 10.1002/anie.201916279 31910307
    [Google Scholar]
  88. d Huang L. Zhu C. Yi L. Yue H. Kancherla R. Rueping M. Cascade cross‐coupling of dienes: Photoredox and nickel dual catalysis. Angew. Chem. Int. Ed. 2020 59 1 457 464 10.1002/anie.201911109 31778289
    [Google Scholar]
  89. Li H. Guo L. Feng X. Huo L. Zhu S. Chu L. Sequential C–O decarboxylative vinylation/C–H arylation of cyclic oxalates via a nickel-catalyzed multicomponent radical cascade. Chem. Sci. 2020 11 19 4904 4910 10.1039/D0SC01471K 34122946
    [Google Scholar]
  90. Fan P. Lan Y. Zhang C. Wang C. Nickel/photo-cocatalyzed asymmetric acyl-carbamoylation of alkenes. J. Am. Chem. Soc. 2020 142 5 2180 2186 10.1021/jacs.9b12554 31971787
    [Google Scholar]
  91. Xu S. Chen H. Zhou Z. Kong W. Three‐component alkene difunctionalization by direct and selective activation of aliphatic C−H bonds. Angew. Chem. Int. Ed. 2021 60 13 7405 7411 10.1002/anie.202014632 33300196
    [Google Scholar]
  92. Campbell M.W. Photochemical C−H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 2021 143 3901 3910 10.1021/jacs.0c13077 33660996
    [Google Scholar]
  93. Qian P. Guan H. Wang Y.E. Lu Q. Zhang F. Xiong D. Walsh P.J. Mao J. Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis. Nat. Commun. 2021 12 1 6613 6622 10.1038/s41467‑021‑26794‑8 34785647
    [Google Scholar]
  94. Zeng Q. Gao F. Benet-Buchholz J. Kleij A.W. Stereoselective three-component allylic alkylation enabled by dual photoredox/ni catalysis. ACS Catal. 2023 13 11 7514 7522 10.1021/acscatal.3c01686
    [Google Scholar]
  95. Li X. Hu Y. Huang Z. Zhu S. Qing F.L. Chu L. Metallaphotoredox-catalyzed three-component asymmetric cross-electrophile coupling for chiral boronate synthesis. ACS Catal. 2024 14 20 15790 15798 10.1021/acscatal.4c04316
    [Google Scholar]
  96. Bashiri M. Hosseini-Sarvari M. Fakhraee S. A new dual nickel/ferrocenyl-chalcone as photoredox catalyst along with DFT studies for the three-component domino performance. J. Photochem. Photobiol. Chem. 2024 451 115494 10.1016/j.jphotochem.2024.115494
    [Google Scholar]
  97. Koranteng E. Shu Z.C. Liu Y-Y. Yang Q. Shi B. Wu Q-X. Tan F. Lu L-Q. Xiao W-J. Metallaphotoredox‐catalyzed three component Chin. J. Chem. 2024 42 3 264 270 10.1002/cjoc.202300500
    [Google Scholar]
  98. Hossain A. Bhattacharyya A. Reiser O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 2019 364 6439 eaav9713 10.1126/science.aav9713 31048464
    [Google Scholar]
  99. Ye Y. Sanford M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 2012 134 22 9034 9037 10.1021/ja301553c 22624669
    [Google Scholar]
  100. Sha W. Deng L. Ni S. Mei H. Han J. Pan Y. Merging photoredox and copper catalysis: Enantioselective radical cyanoalkylation of styrenes. ACS Catal. 2018 8 8 7489 7494 10.1021/acscatal.8b01863
    [Google Scholar]
  101. Bao X. Wang Q. Zhu J. Dual photoredox/copper catalysis for the remote C(sp 3 )−H functionalization of alcohols and alkyl halides by N ‐alkoxypyridinium salts. Angew. Chem. Int. Ed. 2019 58 7 2139 2143 10.1002/anie.201813356 30589177
    [Google Scholar]
  102. Zhang X. Smith R.T. Le C. McCarver S.J. Shireman B.T. Carruthers N.I. MacMillan D.W.C. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 2020 580 7802 220 226 10.1038/s41586‑020‑2060‑z 32066140
    [Google Scholar]
  103. Mane M.V. Dutta S. Cavallo L. Maity B. Theoretical underpinning of synergetic Ir/Cu-metallaphotoredox catalysis in multicomponent C–N cross-coupling reactions. ACS Catal. 2023 13 9 6249 6260 10.1021/acscatal.3c00567
    [Google Scholar]
  104. Cao S. Li H. Teng X. Si H. Chen R. Zhu Y. Access to fully substituted dihydropyrimidines via dual copper/photoredox‐catalyzed domino annulation of oxime esters and imines. Adv. Synth. Catal. 2022 364 18 3173 3178 10.1002/adsc.202200736
    [Google Scholar]
  105. Cao S. Yuan W. Li Y. Teng X. Si H. Chen R. Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: Access to antifungal active tetrasubstituted pyrazines. Chem. Commun. 2022 58 51 7200 7203 10.1039/D2CC02480B 35671164
    [Google Scholar]
  106. Cao S. Ma C. Teng X. Chen R. Li Y. Yuan W. Zhu Y. Facile synthesis of fully substituted 1 H -imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org. Chem. Front. 2022 9 24 6817 6825 10.1039/D2QO01475K
    [Google Scholar]
  107. Wu Y.L. Jiang M. Rao L. Cheng Y. Xiao W.J. Chen J.R. Selective three-component 1,2-aminoalkoxylation of 1-aryl-1,3-dienes by dual photoredox and copper catalysis. Org. Lett. 2022 24 40 7470 7475 10.1021/acs.orglett.2c03124 36173401
    [Google Scholar]
  108. Forster D. Guo W. Wang Q. Zhu J. Dual photoredox and copper catalysis: Enantioselective 1,2-amidocyanation of 1,3-dienes. ACS Catal. 2023 13 11 7523 7528 10.1021/acscatal.3c01782
    [Google Scholar]
  109. Qian S. Lazarus T.M. Nicewicz D.A. Enantioselective amino- and oxycyanation of alkenes via organic photoredox and copper catalysis. J. Am. Chem. Soc. 2023 145 33 18247 18252 10.1021/jacs.3c06936 37579080
    [Google Scholar]
  110. Yang Y.F. Xiao F. Lin J.H. Xiao J.C. The shuttle of sulfur dioxide: Iridium/copper‐cocatalyzed trifluoromethylfluorosulfonylation of alkenes. Adv. Synth. Catal. 2023 365 3 301 306 10.1002/adsc.202201286
    [Google Scholar]
  111. Zhang B. Li T.T. Mao Z.C. Jiang M. Zhang Z. Zhao K. Qu W.Y. Xiao W.J. Chen J.R. Enantioselective cyanofunctionalization of aromatic alkenes via radical anions. J. Am. Chem. Soc. 2024 146 2 1410 1422 10.1021/jacs.3c10439 38179949
    [Google Scholar]
  112. Peng K. Cao Y.S. Wang Q. Xia Z. Chen Y. Lu Y. Deng G.J. Metallaphotoredox synthesis of axially chiral tetrasubstituted allenes through regio- and enantioselective 1,4-carbocyanation of 1,3-enynes. ACS Catal. 2024 14 18 14048 14057 10.1021/acscatal.4c04330
    [Google Scholar]
  113. Sahoo B. Hopkinson M.N. Glorius F. Combining gold and photoredox catalysis: Visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 2013 135 15 5505 5508 10.1021/ja400311h 23565980
    [Google Scholar]
  114. Zhanga M. Zhu C. Ye L-W. Recent advances in dual visible light photoredox and gold-catalyzed reactions. Synthesis 2017 49 1150 1157
    [Google Scholar]
  115. Um J. Yun H. Shin S. Cross-coupling of meyer–schuster intermediates under dual gold–photoredox catalysis. Org. Lett. 2016 18 3 484 487 10.1021/acs.orglett.5b03531 26761155
    [Google Scholar]
  116. Tlahuext-Aca A. Hopkinson M.N. Alkyne difunctionalization by dualgold/photoredox catalysis. Chemistry 2016 22 5909 5913 10.1002/chem.201600710 26888456
    [Google Scholar]
  117. Alcaide B. Almendros P. Busto E. Luna A. Domino meyer–schuster/arylation reaction of alkynols or alkynyl hydroperoxides with diazonium salts promoted by visible light under dual gold and ruthenium catalysis. Adv. Synth. Catal. 2016 358 9 1526 1533 10.1002/adsc.201600158
    [Google Scholar]
  118. Xia Z. Khaled O. Mouriès-Mansuy V. Ollivier C. Fensterbank L. Dual photoredox/gold catalysis arylative cyclization of o -alkynylphenols with aryldiazonium salts: A flexible synthesis of benzofurans. J. Org. Chem. 2016 81 16 7182 7190 10.1021/acs.joc.6b01060 27362460
    [Google Scholar]
  119. Alcaide B. Almendros P. Busto E. Lázaro-Milla C. Photoinduced gold-catalyzed domino C(sp) arylation/oxyarylation of TMS-terminated alkynols with arenediazonium salts. J. Org. Chem. 2017 82 4 2177 2186 10.1021/acs.joc.6b03006 28150493
    [Google Scholar]
  120. Pirovano V. Brambilla E. Fanciullacci G. Abbiati G. Cooperative photoredox/gold catalysed cyclization of 2-alkynylbenzoates with arenediazonium salts: synthesis of 3,4-disubstituted isocoumarins. Org. Biomol. Chem. 2022 20 41 8065 8070 10.1039/D2OB01371A 36200334
    [Google Scholar]
  121. Kojima M. Matsunaga S. The merger of photoredox and cobalt catalysis. Trends Chem. 2020 2 5 410 426 10.1016/j.trechm.2020.01.004
    [Google Scholar]
  122. Zhao Q.Q. Hu X.Q. Yang M.N. Chen J.R. Xiao W.J. A visible-light photocatalytic N-radical cascade of hydrazones for the synthesis of dihydropyrazole-fused benzosultams. Chem. Commun. 2016 52 86 12749 12752 10.1039/C6CC05897C 27722541
    [Google Scholar]
  123. Ye B. Su L. Zheng K. Gao S. Liu J. Synergistic photoredox/palladium catalysis enables enantioconvergent cross-electrophile esterification with CO2. ChemRxiv 2024 10.26434/chemrxiv‑2024‑s9wwt
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298371578250503015424
Loading
/content/journals/mroc/10.2174/0118756298371578250503015424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test