Skip to content
2000
image of The Synthesis of Amide and its Bioisosteres

Abstract

Amide bonds represent crucial functional groups in numerous biomolecules and pharmaceuticals, characterized by distinct structures and properties, and are essential for drug synthesis. By employing a bioisosteric replacement strategy, innovative drug architectures can be devised that circumvent existing patent protections, thereby offering an effective avenue for the discovery of new drug candidates. This review primarily introduces the current synthetic methodologies for amides and their bioisosteres. Additionally, it discusses the advantages and disadvantages associated with various functional groups. A comparative analysis of the differing properties of amides and their bioisosteres within compounds is also presented.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298368344250305063921
2025-06-26
2025-09-14
Loading full text...

Full text loading...

References

  1. Lanigan R.M. Sheppard T.D. Recent developments in amide synthesis: Direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem. 2013 2013 33 7453 7465 10.1002/ejoc.201300573
    [Google Scholar]
  2. Mahesh S. Tang K.C. Raj M. Amide bond activation of biological molecules. Molecules 2018 23 10 2615 10.3390/molecules23102615 30322008
    [Google Scholar]
  3. Kumari S. Carmona A.V. Tiwari A.K. Trippier P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem. 2020 63 21 12290 12358 10.1021/acs.jmedchem.0c00530 32686940
    [Google Scholar]
  4. Alfano A.I. Lange H. Brindisi M. Amide bonds meet flow chemistry: A journey into methodologies and sustainable evolution. ChemSusChem 2022 15 6 e202102708 10.1002/cssc.202102708 35015338
    [Google Scholar]
  5. Wang M. Zhang J. Dou Y. Liang M. Xie Y. Xue P. Liu L. Li C. Wang Y. Tao F. Zhang X. Hu H. Feng K. Zhang L. Wu Z. Chen Y. Zhan P. Jia H. Design, synthesis, and biological evaluation of novel thioureidobenzamide (tba) derivatives as hbv capsid assembly modulators. J. Med. Chem. 2023 66 20 13968 13990 10.1021/acs.jmedchem.3c01022 37839070
    [Google Scholar]
  6. Ayoub S.S. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature 2021 8 4 351 371 10.1080/23328940.2021.1886392 34901318
    [Google Scholar]
  7. Wang Q. Zhang Y. Liu J. Zhang W. Quaternary lidocaine derivatives: Past, present, and future. Drug Des. Devel. Ther. 2021 15 195 207 10.2147/DDDT.S291229 33469271
    [Google Scholar]
  8. Tulbah A.S. The potential of Atorvastatin for chronic lung diseases therapy. Saudi Pharm. J. 2020 28 11 1353 1363 10.1016/j.jsps.2020.08.025 33250642
    [Google Scholar]
  9. Green E.A. Fogarty K. Ishmael F.T. Penicillin Allergy. Prim. Care 2023 50 2 221 235 10.1016/j.pop.2022.11.002 37105603
    [Google Scholar]
  10. Valachova K. Svik K. Biro C. Soltes L. Skin wound healing with composite biomembranes loaded by tiopronin or captopril. J. Biotechnol. 2020 310 49 53 10.1016/j.jbiotec.2020.02.001 32027945
    [Google Scholar]
  11. Tsikas D. Acetazolamide and human carbonic anhydrases: Retrospect, review and discussion of an intimate relationship. J. Enzyme Inhib. Med. Chem. 2024 39 1 2291336 10.1080/14756366.2023.2291336 38078375
    [Google Scholar]
  12. Lin J. Zhang K. Jiang L. Hou J. Yu X. Feng M. Ye C. Removal of chloramphenicol antibiotics in natural and engineered water systems: Review of reaction mechanisms and product toxicity. Sci. Total Environ. 2022 850 158059 10.1016/j.scitotenv.2022.158059 35985581
    [Google Scholar]
  13. Markovič M. Lopatka P. Koóš P. Soták T. Ház A. Gracza T. Ley S.V. Králik M. Carbonylative transformations with Pd catalysts supported on bio-degradable urea-based polymer – Part A. Catal. Today 2024 441 114903 10.1016/j.cattod.2024.114903
    [Google Scholar]
  14. Smarzewska S. Ignaczak A. Koszelska K. Electrochemical and theoretical studies of the interaction between anticancer drug ponatinib and dsDNA. Sci. Rep. 2024 14 1 2278 10.1038/s41598‑024‑52609‑z 38280929
    [Google Scholar]
  15. Wang J. Shahed-AI-Mahmud M. Chen A. Li K. Tan H. Joyce R. An overview of antivirals against monkeypox virus and other orthopoxviruses. J. Med. Chem. 2023 66 7 4468 4490 10.1021/acs.jmedchem.3c00069 36961984
    [Google Scholar]
  16. Tang Q. Petchey M. Rowlinson B. Burden T.J. Fairlamb I.J.S. Grogan G. Broad spectrum enantioselective amide bond synthetase from streptoalloteichus hindustanus. ACS Catal. 2024 14 2 1021 1029 10.1021/acscatal.3c05656 38269041
    [Google Scholar]
  17. Valverde I.E. Mindt T.L. 1,2,3-Triazoles as amide-bond surrogates in peptidomimetics. Chimia 2013 67 4 262 266 10.2533/chimia.2013.262 23967702
    [Google Scholar]
  18. Osman A.M.A. Arabi A.A. Average electron density: A quantitative tool for evaluating non-classical bioisosteres of amides. ACS Omega 2024 9 11 acsomega.3c09732 10.1021/acsomega.3c09732 38524460
    [Google Scholar]
  19. Cao X. Yang H. Liu C. Zhang R. Maienfisch P. Xu X. Bioisosterism and scaffold hopping in modern nematicide research. J. Agric. Food Chem. 2022 70 36 11042 11055 10.1021/acs.jafc.2c00785 35549340
    [Google Scholar]
  20. Jackson J.J. Siegmund A.C. Bai W.J. Reed A.B. Birkholz A.B. Campuzano I.D.G. Créquer-Grandhomme A. Hu R. Modak R.V. Sudom A. Javier N. Sanders C. Lo M.C. Xie F. Cee V.J. Manzanillo P. Allen J.G. Imidazolone as an amide bioisostere in the development of β-1,3-n-acetylglucosaminyltransferase 2 (b3gnt2) inhibitors. J. Med. Chem. 2023 66 23 16120 16140 10.1021/acs.jmedchem.3c01517 37988652
    [Google Scholar]
  21. Meanwell N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 2011 54 8 2529 2591 10.1021/jm1013693 21413808
    [Google Scholar]
  22. Dick A. Cocklin S. Bioisosteric replacement as a tool in anti-HIV drug design. Pharmaceuticals 2020 13 3 36
    [Google Scholar]
  23. Lima L. Barreiro E. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005 12 1 23 49 10.2174/0929867053363540 15638729
    [Google Scholar]
  24. Xu Y. Xu Y. Biby S. Kaur B. Liu Y. Bagdasarian F.A. Wey H.Y. Tanzi R. Zhang C. Wang C. Zhang S. Design and discovery of novel nlrp3 inhibitors and pet imaging radiotracers based on a 1,2,3-triazole-bearing scaffold. J. Med. Chem. 2024 67 1 555 571 10.1021/acs.jmedchem.3c01782 38150705
    [Google Scholar]
  25. El-Masry R.M. Kadry H.H. Taher A.T. Abou-Seri S.M. Comparative study of the synthetic approaches and biological activities of the bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles over the past decade. Molecules 2022 27 9 2709 10.3390/molecules27092709 35566059
    [Google Scholar]
  26. Satish S. Chitral R. Kori A. Sharma B. Puttur J. Khan A.A. Desle D. Raikuvar K. Korkegian A. Martis E.A.F. Iyer K.R. Coutinho E.C. Parish T. Nandan S. Design, synthesis and SAR of antitubercular benzylpiperazine ureas. Mol. Divers. 2022 26 1 73 96 10.1007/s11030‑020‑10158‑3 33385288
    [Google Scholar]
  27. Ronchetti R. Moroni G. Carotti A. Gioiello A. Camaioni E. Recent advances in urea- and thiourea-containing compounds: Focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med Chem 2021 12 7 1046 1064 10.1039/D1MD00058F 34355177
    [Google Scholar]
  28. Zhang Z. Huang B. Qiao G. Zhu L. Xiao F. Chen F. Fu B. Zhang Z. Tandem coupling of azide with isonitrile and boronic acid: Facile access to functionalized amidines. Angew. Chem. Int. Ed. 2017 56 15 4320 4323 10.1002/anie.201700539 28319297
    [Google Scholar]
  29. Wang X. Xu S. Tang Y. Lear M.J. He W. Li J. Nitroalkanes as thioacyl equivalents to access thioamides and thiopeptides. Nat. Commun. 2023 14 1 4626 10.1038/s41467‑023‑40334‑6 37532721
    [Google Scholar]
  30. Xu N. Qiao Q. Chen J. Tao Y. Bao P. Zhang Y. Li J. Xu Z. Trifluoroethylamine-substituted solvatochromic fluorophores exhibit polarity-insensitive high brightness. Chem. Commun. 2024 60 11 1424 1427 10.1039/D3CC05853K 38205525
    [Google Scholar]
  31. Pedersen P.S. Blakemore D.C. Chinigo G.M. Knauber T. MacMillan D.W.C. One-pot synthesis of sulfonamides from unactivated acids and amines via aromatic decarboxylative halosulfonylation. J. Am. Chem. Soc. 2023 145 39 21189 21196 10.1021/jacs.3c08218 37729614
    [Google Scholar]
  32. Engelsma S.B. Meeuwenoord N.J. Overkleeft H.S. van der Marel G.A. Filippov D.V. Combined phosphoramidite-phosphodiester reagents for the synthesis of methylene bisphosphonates. Angew. Chem. Int. Ed. 2017 56 11 2955 2959 10.1002/anie.201611878 28170152
    [Google Scholar]
  33. Vennelakanti V. Qi H.W. Mehmood R. Kulik H.J. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem. Sci. 2021 12 3 1147 1162 10.1039/D0SC05084A 35382134
    [Google Scholar]
  34. Rahman M.T. Decker A.M. Laudermilk L. Maitra R. Ma W. Ben Hamida S. Darcq E. Kieffer B.L. Jin C. Evaluation of amide bioisosteres leading to 1,2,3-triazole containing compounds as gpr88 agonists: Design, synthesis, and structure-activity relationship studies. J. Med. Chem. 2021 64 16 12397 12413 10.1021/acs.jmedchem.1c01075 34387471
    [Google Scholar]
  35. Ahsan M.J. 1,3,4-oxadiazole containing compounds as therapeutic targets for cancer therapy. Mini Rev. Med. Chem. 2022 22 1 164 197 10.2174/1389557521666210226145837 33634756
    [Google Scholar]
  36. Kushwaha P. Srivastava K. Kumari N. Kumar R. Mitra D. Sharon A. Synthesis and anti-HIV activity of a new isoxazole containing disubstituted 1,2,4-oxadiazoles analogs. Bioorg. Med. Chem. 2022 56 116612 10.1016/j.bmc.2022.116612 35026631
    [Google Scholar]
  37. Li Z. Zhan P. Liu X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem. 2011 11 13 1130 1142 10.2174/138955711797655407 22353222
    [Google Scholar]
  38. Ghosh A.K. Brindisi M. Urea derivatives in modern drug discovery and medicinal chemistry. J. Med. Chem. 2020 63 6 2751 2788 10.1021/acs.jmedchem.9b01541 31789518
    [Google Scholar]
  39. Zhang Q. Soulère L. Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. Eur. J. Med. Chem. 2024 273 116525 10.1016/j.ejmech.2024.116525 38801798
    [Google Scholar]
  40. Keche A.P. Hatnapure G.D. Tale R.H. Rodge A.H. Kamble V.M. Synthesis, anti-inflammatory and antimicrobial evaluation of novel 1-acetyl-3,5-diaryl-4,5-dihydro (1H) pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. Bioorg. Med. Chem. Lett. 2012 22 21 6611 6615 10.1016/j.bmcl.2012.08.118 23026000
    [Google Scholar]
  41. Arafa W.A.A. Ghoneim A.A. Mourad A.K. N-naphthoyl thiourea derivatives: An efficient ultrasonic-assisted synthesis, reaction, and in vitro anticancer evaluations. ACS Omega 2022 7 7 6210 6222 10.1021/acsomega.1c06718 35224384
    [Google Scholar]
  42. Abidin A. Norrrahim M.N.F. Shakrin N.N.S. Ibrahim B. Abdullah N. Rashid J.I. Mohd Kasim N.A. Ahmad Shah N.A. Amidine containing compounds: Antimicrobial activity and its potential in combating antimicrobial resistance. Heliyon 2024 10 15 e32010 10.1016/j.heliyon.2024.e32010 39170404
    [Google Scholar]
  43. Huang G. Cierpicki T. Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur. J. Med. Chem. 2024 277 116732 10.1016/j.ejmech.2024.116732 39106658
    [Google Scholar]
  44. Richardson P. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery. Expert Opin. Drug Discov. 2021 16 11 1261 1286 10.1080/17460441.2021.1933427 34074189
    [Google Scholar]
  45. Wan Y. Fang G. Chen H. Deng X. Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 2021 226 113837 10.1016/j.ejmech.2021.113837 34530384
    [Google Scholar]
  46. Voráčová M. Zore M. Yli-Kauhaluoma J. Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg. Med. Chem. 2023 96 117512 10.1016/j.bmc.2023.117512 37939493
    [Google Scholar]
  47. Agnew-Francis K.A. Williams C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev. 2020 120 20 11616 11650 10.1021/acs.chemrev.0c00416 32930577
    [Google Scholar]
  48. Pedrood K. Bahadorikhalili S. Lotfi V. Larijani B. Mahdavi M. Catalytic and non-catalytic amidation of carboxylic acid substrates. Mol. Divers. 2022 26 2 1311 1344 10.1007/s11030‑021‑10252‑0 34120303
    [Google Scholar]
  49. Montalbetti C.A.G.N. Falque V. Amide bond formation and peptide coupling. Tetrahedron 2005 61 46 10827 10852 10.1016/j.tet.2005.08.031
    [Google Scholar]
  50. Maqbool T. Younas H. Bilal M. Rasool N. Bajaber M.A. Mubarik A. Parveen B. Ahmad G. Ali Shah S.A. Synthesis of 1-(4-bromobenzoyl)-1,3-dicyclohexylurea and its arylation via readily available palladium catalyst-their electronic, spectroscopic, and nonlinear optical studies via a computational approach. ACS Omega 2023 8 33 30306 30314 10.1021/acsomega.3c03183 37636953
    [Google Scholar]
  51. Savjani J.K. Mulamkattil S. Variya B. Patel S. Molecular docking, synthesis and biological screening of mefenamic acid derivatives as anti-inflammatory agents. Eur. J. Pharmacol. 2017 801 28 34 10.1016/j.ejphar.2017.02.051 28259712
    [Google Scholar]
  52. Procopio D. Siciliano C. Di Gioia M.L. Reactive deep eutectic solvents for EDC-mediated amide synthesis. Org. Biomol. Chem. 2024 22 7 1400 1408 10.1039/D3OB01673K 38126479
    [Google Scholar]
  53. Perković I. Beus M. Schols D. Persoons L. Zorc B. Itaconic acid hybrids as potential anticancer agents. Mol. Divers. 2022 26 1 1 14 10.1007/s11030‑020‑10147‑6 33043404
    [Google Scholar]
  54. Wilson K.L. Murray J. Jamieson C. Watson A.J.B. Cyrene as a bio-based solvent for HATU mediated amide coupling. Org. Biomol. Chem. 2018 16 16 2851 2854 10.1039/C8OB00653A 29630081
    [Google Scholar]
  55. Luis N.R. Chung K.K. Hickey M.R. Lin Z. Beutner G.L. Vosburg D.A. Beyond amide bond formation: Tcfh as a reagent for esterification. Org. Lett. 2024 26 14 2745 2750 10.1021/acs.orglett.3c01611 37364890
    [Google Scholar]
  56. Ow M. Facile amide bond formation with tcfh-nmi in an organic laboratory course. J. Chem. Educ. 2022 99 11 3747 3751 10.1021/acs.jchemed.2c00760 36398314
    [Google Scholar]
  57. Sagandira C.R. Khasipo A.Z. Watts P. Total synthesis of glipizide and glibenclamide in continuous flow. Chemistry 2021 27 64 16028 16035 10.1002/chem.202103196 34633700
    [Google Scholar]
  58. Mao F. Jin C. Wang J. Yang H. Yan X. Li X. Xu X. A one-step base-free synthesis of N -arylamides via modified pivaloyl mixed anhydride mediated amide coupling. Org. Biomol. Chem. 2023 21 18 3825 3828 10.1039/D3OB00452J 37083033
    [Google Scholar]
  59. Toyao T. Siddiki S.M.A. Kon K. Shimizu K. The catalytic reduction of carboxylic acid derivatives and co(2) by metal nanoparticles on lewis-acidic supports. Chem. Rec. 2018 18 10 1374 1393 10.1002/tcr.201800061 30277646
    [Google Scholar]
  60. Benamara N. Merabet-Khelassi M. Aribi-Zouioueche L. Riant O. CAL-B-mediated efficient synthesis of a set of valuable amides by direct amidation of phenoxy- and aryl-propionic acids. Chem. Pap. 2021 75 8 4045 4053 10.1007/s11696‑021‑01636‑5
    [Google Scholar]
  61. Hanefeld U. Hollmann F. Paul C.E. Biocatalysis making waves in organic chemistry. Chem. Soc. Rev. 2022 51 2 594 627 10.1039/D1CS00100K 34929722
    [Google Scholar]
  62. Joullié Evolution of amide bond formation. Arkivoc 2010 2010 8 189 250
    [Google Scholar]
  63. Greenberg J.A. Sammakia T. The conversion of tert-butyl esters to acid chlorides using thionyl chloride. J. Org. Chem. 2017 82 6 3245 3251 10.1021/acs.joc.6b02931 28195740
    [Google Scholar]
  64. Barnych B. Singh N. Negrel S. Zhang Y. Magis D. Roux C. Hua X. Ding Z. Morisseau C. Tantillo D.J. Siegel J.B. Hammock B.D. Development of potent inhibitors of the human microsomal epoxide hydrolase. Eur. J. Med. Chem. 2020 193 112206 10.1016/j.ejmech.2020.112206 32203787
    [Google Scholar]
  65. Yang P. Myint K.Z. Tong Q. Feng R. Cao H. Almehizia A.A. Alqarni M.H. Wang L. Bartlow P. Gao Y. Gertsch J. Teramachi J. Kurihara N. Roodman G.D. Cheng T. Xie X.Q. Lead discovery, chemistry optimization, and biological evaluation studies of novel biamide derivatives as CB2 receptor inverse agonists and osteoclast inhibitors. J. Med. Chem. 2012 55 22 9973 9987 10.1021/jm301212u 23072339
    [Google Scholar]
  66. Agouram N. El Hadrami E.M. Bentama A. 1,2,3-triazoles as biomimetics in peptide science. Molecules 2021 26 10 2937 10.3390/molecules26102937 34069302
    [Google Scholar]
  67. Bozorov K. Zhao J. Aisa H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019 27 16 3511 3531 10.1016/j.bmc.2019.07.005 31300317
    [Google Scholar]
  68. Dai Z. An L. Chen X. Yang F. Zhao N. Li C. Ren R. Li B. Tao W. Li P. Jiang C. Yan F. Jiang Z. You Q. Di B. Xu L. Target fishing reveals a novel mechanism of 1,2,4-oxadiazole derivatives targeting rpn6, a subunit of 26s proteasome. J. Med. Chem. 2022 65 6 5029 5043 10.1021/acs.jmedchem.1c02210 35253427
    [Google Scholar]
  69. Valente S. Trisciuoglio D. De Luca T. Nebbioso A. Labella D. Lenoci A. Bigogno C. Dondio G. Miceli M. Brosch G. Del Bufalo D. Altucci L. Mai A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. J. Med. Chem. 2014 57 14 6259 6265 10.1021/jm500303u 24972008
    [Google Scholar]
  70. Yang F. Lin Q. Song X. Huang H. Chen X. Tan J. Li Y. Zhou Y. Tu Z. Du H. Zhang Z. Ortega R. Lin X. Patterson A.V. Smaill J.B. Chen Y. Lu X. Discovery of 6-formylpyridyl urea derivatives as potent reversible-covalent fibroblast growth factor receptor 4 inhibitors with improved anti-hepatocellular carcinoma activity. J. Med. Chem. 2024 67 4 2667 2689 10.1021/acs.jmedchem.3c01810 38348819
    [Google Scholar]
  71. Zhang Y. Lu R. Chen M. Zhou S. Zhang D. Han H. Zhang M. Qiu H. A highly efficient acyl-transfer approach to urea-functionalized silanes and their immobilization onto silica gel as stationary phases for liquid chromatography. J. Chromatogr. A 2020 1626 461366 10.1016/j.chroma.2020.461366 32797845
    [Google Scholar]
  72. Ziessel R. Bonardi L. Retailleau P. Ulrich G. Isocyanate-, isothiocyanate-, urea-, and thiourea-substituted boron dipyrromethene dyes as fluorescent probes. J. Org. Chem. 2006 71 8 3093 3102 10.1021/jo0600151 16599605
    [Google Scholar]
  73. Maity A.K. Fortier S. Griego L. Metta-Magaña A.J. Synthesis of a “super bulky” guanidinate possessing an expandable coordination pocket. Inorg. Chem. 2014 53 15 8155 8164 10.1021/ic501219q 25029088
    [Google Scholar]
  74. Wang Q. Tu J. Yang W. Liang T. Liu N. Sheng C. Discovery of pyrazolone carbothioamide derivatives as inhibitors of the pdr1-kix interaction for combinational treatment of azole-resistant candidiasis. J. Med. Chem. 2023 66 17 11893 11904 10.1021/acs.jmedchem.3c00488 37584282
    [Google Scholar]
  75. Manjula S.N. Malleshappa Noolvi N. Vipan Parihar K. Manohara Reddy S.A. Ramani V. Gadad A.K. Singh G. Gopalan Kutty N. Rao C. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. Eur. J. Med. Chem. 2009 44 7 2923 2929 10.1016/j.ejmech.2008.12.002 19128861
    [Google Scholar]
  76. Schade D. Kotthaus J. Riebling L. Kotthaus J. Müller-Fielitz H. Raasch W. Koch O. Seidel N. Schmidtke M. Clement B. Development of novel potent orally bioavailable oseltamivir derivatives active against resistant influenza A. J. Med. Chem. 2014 57 3 759 769 10.1021/jm401492x 24422530
    [Google Scholar]
  77. Brusa I. Sondo E. Pesce E. Tomati V. Gioia D. Falchi F. Balboni B. Ortega Martínez J.A. Veronesi M. Romeo E. Margaroli N. Recanatini M. Girotto S. Pedemonte N. Roberti M. Cavalli A. Innovative strategy toward mutant cftr rescue in cystic fibrosis: Design and synthesis of thiadiazole inhibitors of the e3 ligase rnf5. J. Med. Chem. 2023 66 14 9797 9822 10.1021/acs.jmedchem.3c00608 37440686
    [Google Scholar]
  78. Decara J.M. Vázquez-Villa H. Brea J. Alonso M. Srivastava R.K. Orio L. Alén F. Suárez J. Baixeras E. García-Cárceles J. Escobar-Peña A. Lutz B. Rodríguez R. Codesido E. Garcia-Ladona F.J. Bennett T.A. Ballesteros J.A. Cruces J. Loza M.I. Benhamú B. Rodríguez de Fonseca F. López-Rodríguez M.L. Discovery of v-0219: A small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor toward oral treatment for “diabesity”. J. Med. Chem. 2022 65 7 5449 5461 10.1021/acs.jmedchem.1c01842 35349261
    [Google Scholar]
  79. Liao Y. Jiang X. Construction of thioamide peptide via sulfur-involved amino acids/amino aldehydes coupling. Org. Lett. 2021 23 22 8862 8866 10.1021/acs.orglett.1c03370 34761950
    [Google Scholar]
  80. Cheng L. Liu J.R. Liu J.M. Guo D. Deng F. Bian Q. Zhang H. Han X. Ali A.S. Zhang W.H. Zhang M.Z. Gu Y.C. Design, synthesis, antifungal activity and molecular docking of ring‐opened pimprinine derivative containing (thio)amide structure. Pest Manag. Sci. 2023 79 6 2220 2229 10.1002/ps.7400 36750400
    [Google Scholar]
  81. Gomes J.C. Cianni L. Ribeiro J. dos Reis Rocho F. da Costa Martins Silva S. Batista P.H.J. Moraes C.B. Franco C.H. Freitas-Junior L.H.G. Kenny P.W. Leitão A. Burtoloso A.C.B. de Vita D. Montanari C.A. Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg. Med. Chem. 2019 27 22 115083 10.1016/j.bmc.2019.115083 31561938
    [Google Scholar]
  82. Truong V.L. Ménard M.S. Dion I. Asymmetric Syntheses of 1-Aryl-2,2,2-trifluoroethylamines via Diastereoselective 1,2-Addition of Arylmetals to 2-Methyl- N -(2,2,2-trifluoroethylidene)propane-2-sulfinamide. Org. Lett. 2007 9 4 683 685 10.1021/ol063001q 17256870
    [Google Scholar]
  83. Güngör T. Ozleyen A. Yılmaz Y.B. Siyah P. Ay M. Durdağı S. Tumer T.B. New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects. Eur. J. Med. Chem. 2021 221 113566 10.1016/j.ejmech.2021.113566 34077833
    [Google Scholar]
  84. Chen P. Yang J. Zhou Y. Li X. Zou Y. Zheng Z. Guo M. Chen Z. Cho W.J. Chattipakorn N. Wu W. Tang Q. Liang G. Design, synthesis, and bioactivity evaluation of novel amide/sulfonamide derivatives as potential anti-inflammatory agents against acute lung injury and ulcerative colitis. Eur. J. Med. Chem. 2023 259 115706 10.1016/j.ejmech.2023.115706 37572538
    [Google Scholar]
  85. Gatarz S.E. Griffiths O.M. Esteves H.A. Jiao W. Morse P. Fisher E.L. Blakemore D.C. Ley S.V. Nitro-sulfinate reductive coupling to access (hetero)aryl sulfonamides. J. Org. Chem. 2024 89 3 1898 1909 10.1021/acs.joc.3c02557 38239107
    [Google Scholar]
  86. Cheng F. Li D. Li J. Tang Y. Wu Y. Xu S. Synthesis of phosphinic amides from chlorophosphines and hydroxyl amines via p(iii) to p(v) rearrangement. Org. Lett. 2023 25 15 2555 2559 10.1021/acs.orglett.3c00229 36876752
    [Google Scholar]
  87. Spatz P. Chen X. Reichau K. Huber M.E. Mühlig S. Matsusaka Y. Schiedel M. Higuchi T. Decker M. Development and initial characterization of the first (18)f-cxcr2-targeting radiotracer for pet imaging of neutrophils. J. Med. Chem. 2024 67 8 6327 6343 10.1021/acs.jmedchem.3c02285 38570909
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298368344250305063921
Loading
/content/journals/mroc/10.2174/0118756298368344250305063921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test