Skip to content
2000
image of Oligostilbene’s Synthesis: Recent Advances in Metal-mediated and Enzymatic Conversion of Resveratrol Analogues

Abstract

Oligostilbenes are a class of plant polyphenols derived in nature by enzymatic oxidative oligomerization of resveratrol. This subject has attracted the interest of synthetic chemists due to their structural complexity and wide range of biological activity. The formation of dimeric stilbene oligomers by metallic oxidants and enzymatically catalyzed conversion of resveratrol is covered in this study. A major part of this review is centered on the use of single-electron oxidants to dimerize the stilbenoid monomers. Formation of the coupling products resulting from different coupling modes, regioisomeric outcome with plausible formation mechanism are scrutinized. Great attention is paid to recent (2015-2022) approaches, employing modern synthetic methods.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298367676250417064048
2025-05-09
2025-09-14
Loading full text...

Full text loading...

References

  1. Sotheeswaran S. Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993 32 5 1083 1092 10.1016/S0031‑9422(00)95070‑2
    [Google Scholar]
  2. Lin M. Yao C.S. Natural oligostilbenes. Stud. Nat. Prod. Chem. 2006 33 Pt M 601 644 10.1016/S1572‑5995(06)80035‑9
    [Google Scholar]
  3. Shen T. Wang X.N. Lou H.X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009 26 7 916 935 10.1039/b905960a 19554241
    [Google Scholar]
  4. Latruffe N. Delmas D. Jannin B. Malki M. Passilly-Degrace P. Berlot J.P. Molecular analysis on the chemopreventive properties of resveratrol, a plant polyphenol microcomponent. Int. J. Mol. Med. 2002 10 6 755 760 10.3892/ijmm.10.6.755 12430003
    [Google Scholar]
  5. Ponzoni C. Beneventi E. Cramarossa M.R. Raimondi S. Trevisi G. Pagnoni U.M. Riva S. Forti L. Laccase‐catalyzed dimerization of hydroxystilbenes. Adv. Synth. Catal. 2007 349 8-9 1497 1506 10.1002/adsc.200700043
    [Google Scholar]
  6. Coggon P. Janes N.F. King F.E. King T.J. Molyneux R.J. Morgan J.W.W. Sellars K. 61. Hopeaphenol, an extractive of the heartwood of Hopea odorata and Balanocarpus heimii. J. Chem. Soc. 1965 406 409 10.1039/jr9650000406
    [Google Scholar]
  7. Coggon P. McPhail A.T. Wallwork S.C. Structure of hopeaphenol: X-ray analysis of the benzene solvate of dibromodeca-O-methylhopeaphenol. J. Chem. Soc. B 1970 1 884 897 10.1039/j29700000884
    [Google Scholar]
  8. Langcake P. Pryce R.J. A new class of phytoalexins from grapevines. Experientia 1977 33 2 151 152 10.1007/BF02124034 844529
    [Google Scholar]
  9. Pezet R. Pont V. Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea Pers. J. Phytopathol. 1990 129 1 19 30 10.1111/j.1439‑0434.1990.tb04286.x
    [Google Scholar]
  10. Alonso-Villaverde V. Voinesco F. Viret O. Spring J.L. Gindro K. The effectiveness of stilbenes in resistant Vitaceae: Ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol. Biochem. 2011 49 3 265 274 10.1016/j.plaphy.2010.12.010 21256040
    [Google Scholar]
  11. Godard S. Slacanin I. Viret O. Gindro K. Induction of defence mechanisms in grapevine leaves by emodin- and anthraquinone-rich plant extracts and their conferred resistance to downy mildew. Plant Physiol. Biochem. 2009 47 9 827 837 10.1016/j.plaphy.2009.04.003 19447634
    [Google Scholar]
  12. Coggon P. King T.J. Wallwork S.C. The structure of hopeaphenol. Chem. Commun. 1966 1 13 439 440 10.1039/c19660000439
    [Google Scholar]
  13. Keylor M.H. Matsuura B.S. Stephenson C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev. 2015 115 17 8976 9027 10.1021/cr500689b 25835567
    [Google Scholar]
  14. Sako M. Hosokawa H. Ito T. Iinuma M. Regioselective oxidative coupling of 4-hydroxystilbenes: Synthesis of resveratrol and ε-viniferin (E)-dehydrodimers. J. Org. Chem. 2004 69 7 2598 2600 10.1021/jo035791c 15049668
    [Google Scholar]
  15. Velu S.S. Buniyamin I. Ching L.K. Feroz F. Noorbatcha I. Gee L.C. Awang K. Wahab I.A. Weber J.F.F. Regio- and stereoselective biomimetic synthesis of oligostilbenoid dimers from resveratrol analogues: Influence of the solvent, oxidant, and substitution. Chemistry 2008 14 36 11376 11384 10.1002/chem.200801575 19003831
    [Google Scholar]
  16. Jeffrey J.L. Sarpong R. An approach to the synthesis of dimeric resveratrol natural products via a palladium-catalyzed domino reaction. Tetrahed Lett. 2009 50 17 1969 1972 10.1016/j.tetlet.2009.02.067 20161322
    [Google Scholar]
  17. Nicolaou K.C. Kang Q. Wu T.R. Lim C.S. Chen D.Y.K. Total synthesis and biological evaluation of the resveratrol-derived polyphenol natural products hopeanol and hopeahainol A. J. Am. Chem. Soc. 2010 132 21 7540 7548 10.1021/ja102623j 20462209
    [Google Scholar]
  18. Snyder S.A. Breazzano S.P. Ross A.G. Lin Y. Zografos A.L. Total synthesis of diverse carbogenic complexity within the resveratrol class from a common building block. J. Am. Chem. Soc. 2009 131 5 1753 1765 10.1021/ja806183r 19143488
    [Google Scholar]
  19. Snyder S.A. Zografos A.L. Lin Y. Total synthesis of resveratrol-based natural products: A chemoselective solution. Angew. Chem. Int. Ed. 2007 46 43 8186 8191 10.1002/anie.200703333 17890663
    [Google Scholar]
  20. Lins A.P. Felicio J.D. Braggio M.M. Roque L.C. A resveratrol dimer from Parthenocissus tricuspidata. Phytochemistry 1991 30 9 3144 3146 10.1016/S0031‑9422(00)98274‑8
    [Google Scholar]
  21. Takaya Y. Terashima K. Ito J. He Y.H. Tateoka M. Yamaguchi N. Niwa M. Biomimic transformation of resveratrol. Tetrahed. 2005 61 43 10285 10290 10.1016/j.tet.2005.08.023
    [Google Scholar]
  22. Li W. Li H. Luo Y. Yang Y. Wang N. Biosynthesis of resveratrol dimers by regioselective oxidative coupling reaction. Synlett 2010 2010 8 1247 1250 10.1055/s‑0029‑1219787
    [Google Scholar]
  23. Li W. Li H. Li Y. Hou Z. Total synthesis of (+/-)-quadrangularin A. Angew. Chem. Int. Ed. 2006 45 45 7609 7611 10.1002/anie.200603097 17051632
    [Google Scholar]
  24. Li W. Luo Y. Li H. Zang P. Han X. Regioselective FeCl3-promoted biomimetic synthesis of dimeric isorhapontigenin. Synthesis 2010 2010 22 3822 3826 10.1055/s‑0030‑1258242
    [Google Scholar]
  25. Yang Y. Liu Q. Chen P. Li W. FeCl3·6H2O oxidation of protected resveratrol for the synthesis of tetraarylfuran-type oligostilbenes. Tetrahed Lett. 2014 55 32 4455 4457 10.1016/j.tetlet.2014.06.046
    [Google Scholar]
  26. Li W. Chen P. Yang Y. Liu X. Dong T. Synthesis of diverse oligostilbenes from FeCl 3 -mediated oxidation of protected resveratrol. Tetrahed. 2016 72 1 210 215 10.1016/j.tet.2015.11.028
    [Google Scholar]
  27. Matsuura B.S. Keylor M.H. Li B. Lin Y. Allison S. Pratt D.A. Stephenson C.R.J. A scalable biomimetic synthesis of resveratrol dimers and systematic evaluation of their antioxidant activities. Angew. Chem. Int. Ed. 2015 54 12 3754 3757 10.1002/anie.201409773 25650836
    [Google Scholar]
  28. Fulcrand H. Cheminat A. Brouillard R. Cheynier V. Characterization of compounds obtained by chemical oxidation of caffeic acid in acidic conditions. Phytochemistry 1994 35 2 499 505 10.1016/S0031‑9422(00)94790‑3
    [Google Scholar]
  29. Hong F.J. Low Y.Y. Chong K.W. Thomas N.F. Kam T.S. Biomimetic oxidative dimerization of anodically generated stilbene radical cations: Effect of aromatic substitution on product distribution and reaction pathways. J. Org. Chem. 2014 79 10 4528 4543 10.1021/jo500559r 24754525
    [Google Scholar]
  30. Li X.M. Huang K.S. Lin M. Zhou L.X. Studies on formic acid-catalyzed dimerization of isorhapontigenin and of resveratrol to tetralins. Tetrahed. 2003 59 24 4405 4413 10.1016/S0040‑4020(03)00623‑9
    [Google Scholar]
  31. Weber F. Engelke G.H. Schieber A. Structure elucidation and tentative formation pathway of a red colored enzymatic oxidation product of caffeic acid. Food Chem. 2019 297 124932 10.1016/j.foodchem.2019.05.206 31253253
    [Google Scholar]
  32. Wang X.F. Zhang Y. Lin M.B. Hou Q. Yao C.S. Shi J.G. Biomimetic synthesis of active isorhapontigenin dimers. J. Asian Nat. Prod. Res. 2014 16 5 511 521 10.1080/10286020.2014.913030 24786449
    [Google Scholar]
  33. Xie J.S. Wen J. Wang X.F. Zhang J.Q. Zhang J.F. Kang Y.L. Hui Y.W. Zheng W.S. Yao C.S. Potassium hexacyanoferrate (III)-catalyzed dimerization of hydroxystilbene: Biomimetic synthesis of indane stilbene dimers. Molecules 2015 20 12 22662 22673 10.3390/molecules201219872 26694345
    [Google Scholar]
  34. Park S.H. Jeong Y.J. Park S.C. Kim S. Kim Y.G. Shin G. Jeong H.J. Ryu Y.B. Lee J. Lee O.R. Jeong J.C. Kim C.Y. Highly efficient bioconversion of trans-resveratrol to δ-viniferin using conditioned medium of Grapevine Callus suspension cultures. Int. J. Mol. Sci. 2022 23 8 4403 10.3390/ijms23084403 35457219
    [Google Scholar]
  35. El Khawand T. Valls Fonayet J. Da Costa G. Hornedo-Ortega R. Jourdes M. Franc C. de Revel G. Decendit A. Krisa S. Richard T. Resveratrol transformation in red wine after heat treatment. Food Res. Int. 2020 132 109068 10.1016/j.foodres.2020.109068 32331691
    [Google Scholar]
  36. Zhang J.Q. Li G.P. Kang Y.L. Teng B.H. Yao C.S. Biomimetic synthesis of resveratrol trimers catalyzed by horseradish peroxidase. Molecules 2017 22 5 819 10.3390/molecules22050819 28513542
    [Google Scholar]
  37. Guan X. Liu M. Shao Z. Li H. Ran L. Li W. Efficient synthesis of several natural oligostilbenes from the biomimetic oxidation of brominated Isorhapontigenin. Synthesis 2019 51 8 1825 1831 10.1055/s‑0037‑1611713
    [Google Scholar]
  38. Ferreira D.M.L.M. Oliveira A.M.M. de Leves D.V. de Bem É.B. Fatureto G.G. Navarro N.F. Afonso N.G. Santiago F.M. Mineo J.R. Sopelete M.C. Martinez F.E. Bernardino Neto M. Abdallah V.O.S. Randomized controlled trial of oropharyngeal colostrum administration in very-low-birth-weight preterm infants. J. Pediatr. Gastroenterol. Nutr. 2019 69 1 126 130 10.1097/MPG.0000000000002356 30964820
    [Google Scholar]
  39. Zhou L.X. Lin M. A new stilbene dimer-shegansu B from Belamcanda chinensis. J. Asian Nat. Prod. Res. 2000 2 3 169 175 10.1080/10286020008039908 11256690
    [Google Scholar]
  40. Hill R.A. Connolly J.D. Triterpenoids. Nat. Prod. Rep. 2013 30 7 1028 1065 10.1039/C3NP70032A 23736383
    [Google Scholar]
  41. Yao C.S. Lin M. Wang L. Isolation and biomimetic synthesis of anti-inflammatory stilbenolignans from Gnetum cleistostachyum. Chem. Pharm. Bull. (Tokyo) 2006 54 7 1053 1057 10.1248/cpb.54.1053 16819232
    [Google Scholar]
  42. El Khawand T. Gabaston J. Taillis D. Iglesias M.L. Pedrot E. Palos Pinto A. Valls Fonayet J. Merillon J.M. Decendit A. Cluzet S. Richard T. A dimeric stilbene extract produced by oxidative coupling of resveratrol active against Plasmopara viticola and Botrytis cinerea for vine treatments. OENO One 2020 54 1 157 164 10.20870/oeno‑one.2020.54.1.2529
    [Google Scholar]
  43. Zhang Y. Wang X. Hou Q. Lin M. Yao C. Shi J. Preparation of active resveratrol dimeric derivatives by oxidative coupling reaction using AgOAc as oxidant. Youji Huaxue 2014 34 5 886 892 10.6023/cjoc201402006
    [Google Scholar]
  44. Nagumo M. Ninomiya M. Oshima N. Itoh T. Tanaka K. Nishina A. Koketsu M. Comparative analysis of stilbene and benzofuran neolignan derivatives as acetylcholinesterase inhibitors with neuroprotective and anti-inflammatory activities. Bioorg. Med. Chem. Lett. 2019 29 17 2475 2479 10.1016/j.bmcl.2019.07.026 31350127
    [Google Scholar]
  45. Tang Y.W. Shi C.J. Yang H.L. Cai P. Liu Q.H. Yang X.L. Kong L.Y. Wang X.B. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease. Eur. J. Med. Chem. 2019 163 307 319 10.1016/j.ejmech.2018.11.040 30529634
    [Google Scholar]
  46. Zaitseva S.V. Tyulyaeva E.Y. Tyurin D.V. Zdanovich S.A. Koifman O.I. Easy access to powerful ruthenium phthalocyanine high-oxidized species. Polyhedron 2022 217 115739 10.1016/j.poly.2022.115739
    [Google Scholar]
  47. Yadav M.K. Mailar K. Nagarajappa Masagalli J. Chae S.W. Song J.J. Choi W.J. Ruthenium chloride-induced oxidative cyclization of trans-resveratrol to (±)-ε-viniferin and antimicrobial and antibiofilm activity against Streptococcus pneumoniae. Front. Pharmacol. 2019 10 890 10.3389/fphar.2019.00890 31474855
    [Google Scholar]
  48. Hadi S.M. Ullah M.F. Azmi A.S. Ahmad A. Shamim U. Zubair H. Khan H.Y. Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for chemoprevention of cancer. Pharm. Res. 2010 27 6 979 988 10.1007/s11095‑010‑0055‑4 20119749
    [Google Scholar]
  49. Tamboli V.F. Re N. Coletti C. Defant A. Mancini I. Tosi P. A joint experimental and theoretical investigation on the oxidative coupling of resveratrol induced by copper and iron ions. Int. J. Mass Spectrom. 2012 319-320 55 63 10.1016/j.ijms.2012.05.010
    [Google Scholar]
  50. Morsi R. Bilal M. Iqbal H.M.N. Ashraf S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci. Total Environ. 2020 714 136572 10.1016/j.scitotenv.2020.136572 31986384
    [Google Scholar]
  51. Khanmohammadi M. Dastjerdi M.B. Ai A. Ahmadi A. Godarzi A. Rahimi A. Ai J. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater. Sci. 2018 6 6 1286 1298 10.1039/C8BM00056E 29714366
    [Google Scholar]
  52. Dwivedi U.N. Singh P. Pandey V.P. Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. J. Mol. Catal., B Enzym. 2011 68 2 117 128 10.1016/j.molcatb.2010.11.002
    [Google Scholar]
  53. Liu S. Huang B. Zheng G. Zhang P. Li J. Yang B. Chen Y. Liang L. Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds. Int. J. Biol. Macromol. 2020 150 814 822 10.1016/j.ijbiomac.2020.02.043 32035963
    [Google Scholar]
  54. Wu Y.C. Jiang S.S. Luo S.Z. Song R.J. Li J.H. Transition-metal- and oxidant-free directed anodic C–H sulfonylation of N, N -disubstituted anilines with sulfinates. Chem. Commun. (Camb.) 2019 55 61 8995 8998 10.1039/C9CC03789F 31290859
    [Google Scholar]
  55. Galzigna L. Rizzoli V. Schiappelli M.P. Rigobello M.P. Scarpa M. Rigo A. Horseradish peroxidase-catalyzed sulfoxidation of promethazine and properties of promethazine sulfoxide. Free Radic. Biol. Med. 1996 20 6 807 811 10.1016/0891‑5849(95)02213‑9 8728028
    [Google Scholar]
  56. Dordick J.S. Klibanov A.M. Marletta M.A. Horseradish peroxidase-catalyzed hydroxylations: Mechanistic studies. Biochemistry 1986 25 10 2946 2951 10.1021/bi00358a032 3718931
    [Google Scholar]
  57. Li C. Lu J. Xu X. Hu R. Pan Y. pH-switched HRP-catalyzed dimerization of resveratrol: A selective biomimetic synthesis. Green Chem. 2012 14 12 3281 3284 10.1039/c2gc36288k
    [Google Scholar]
  58. Shao Z. Kang X. Li H. Ran L. Li W. Enzyme-mediated oxidative dimerization reactions of cyano-resveratrol analogues. Tetrahedron Lett. 2019 60 47 151275 10.1016/j.tetlet.2019.151275
    [Google Scholar]
  59. Tang H. Kuang Y. Zeng J. Li X. Zhou W. Lu Y. Combinatorial synthesis and biological evaluations of (E)-β-trifluoromethyl vinylsulfones as antitumor agents. RSC Advances 2019 9 54 31474 31482 10.1039/C9RA06368D 35527921
    [Google Scholar]
  60. Zhai Y.M. Jiang K. Qu S.J. Luo H.F. Tan J.J. Tan C.H. Structurally diverse stilbene dimers from Gnetum montanum Markgr.: Studies on the 1 H chemical shift differences between dimeric stilbene epimers correlating to the relative configurations. RSC Advances 2016 6 55 50083 50090 10.1039/C6RA08238F
    [Google Scholar]
  61. Li W. Dong T. Chen P. Liu X. Liu M. Han X. Concise synthesis of several oligostilbenes from the enzyme-promoted oxidation of brominated resveratrol. Tetrahed. 2017 73 21 3056 3065 10.1016/j.tet.2017.04.021
    [Google Scholar]
  62. Li W. Yang S. Lv T. Yang Y. Enzyme-promoted regioselective coupling oligomerization of isorhapontigenin towards the first synthesis of (±)-gnetulin. Org. Biomol. Chem. 2014 12 14 2273 2279 10.1039/c3ob42456a 24569530
    [Google Scholar]
  63. Chen X.B. Hu Q.P. Yuan Q.J. Ding W. Ren J. Zeng B.B. Simultaneous dehalogenation and hydrogenation reduction of halogen-heteroaromatic aldehydes. Tetrahedron Lett. 2012 53 29 3798 3801 10.1016/j.tetlet.2012.05.054
    [Google Scholar]
  64. Wang Y. Han L. Tang Z. Liu H. Li W. Enzyme-promoted oxidative cross-coupling for the synthesis of oxyresveratrol-related heterodimers. J. Chem. Res. 2022 46 1 17475198211068803 10.1177/17475198211068803
    [Google Scholar]
  65. Jepsen T.H. Thomas S.B. Lin Y. Stathakis C.I. de Miguel I. Snyder S.A. Harnessing quinone methides: Total synthesis of (±)-vaticanol A. Angew. Chem. Int. Ed. 2014 53 26 6747 6751 10.1002/anie.201402858 24841889
    [Google Scholar]
  66. Keylor M.H. Matsuura B.S. Griesser M. Chauvin J.P.R. Harding R.A. Kirillova M.S. Zhu X. Fischer O.J. Pratt D.A. Stephenson C.R.J. Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium. Science 2016 354 6317 1260 1265 10.1126/science.aaj1597 27940867
    [Google Scholar]
  67. Li W. Ran L. Li H. Chao G. Kang X. Lei T. Regioselective biomimetic synthesis of dimeric oxyresveratrol derivatives. Synlett 2020 31 18 1809 1812 10.1055/s‑0040‑1707257
    [Google Scholar]
  68. Sahoo A. Prabagar B. Ghosh N. Cyclization and cycloisomerization of π-tethered ynamides: An expedient synthetic method to construct carbo- and heterocycles. Synlett 2017 28 19 2539 2555 10.1055/s‑0036‑1590877
    [Google Scholar]
  69. Lei T. Guan X. Kang X. Wang Y. Han L. Li W. Preliminary exploration on enzyme-promoted asymmetric biomimetic synthesis of resveratrol dimers. Synth. Commun. 2021 51 22 3449 3459 10.1080/00397911.2021.1980050
    [Google Scholar]
  70. Liu M. Dong T. Guan X. Shao Z. Li W. Regioselective biomimetic oxidation of halogenated resveratrol for the synthesis of (±)-ε-viniferin and its analogues. Tetrahed. 2018 74 29 4013 4019 10.1016/j.tet.2018.06.005
    [Google Scholar]
  71. Zhong C. Zhu J. Chang J. Sun X. Concise total syntheses of (±)isopaucifloral F, (±)quadrangularin A, and (±)pallidol. Tetrahedron Lett. 2011 52 22 2815 2817 10.1016/j.tetlet.2011.03.002
    [Google Scholar]
  72. Paymode D.J. Ramana C.V. Studies toward the total synthesis of parvifolals A/B: An intramolecular o-quinone methide [4+ 2]-cycloaddition to construct the central tetracyclic core. ACS Omega 2019 4 1 810 818 10.1021/acsomega.8b02777 31459360
    [Google Scholar]
  73. Klotter F. Studer A. Total synthesis of resveratrol-based natural products using a palladium-catalyzed decarboxylative arylation and an oxidative Heck reaction. Angew. Chem. Int. Ed. 2014 53 9 2473 2476 10.1002/anie.201310676 24500870
    [Google Scholar]
  74. Wang Y.F. Xu H. Feng L. Shen X.F. Wang C. Huo X.K. Tian X.G. Ning J. Zhang B.J. Sun C.P. Deng S. Oxidative coupling of coumarins catalyzed by laccase. Int. J. Biol. Macromol. 2019 135 135 1028 1033 10.1016/j.ijbiomac.2019.05.215 31163244
    [Google Scholar]
  75. Reiss R. Ihssen J. Richter M. Eichhorn E. Schilling B. Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: A comparative study of similar enzymes with diverse substrate spectra. PLoS One 2013 8 6 e65633 10.1371/journal.pone.0065633 23755261
    [Google Scholar]
  76. Constantin M.A. Conrad J. Beifuss U. Laccase-catalyzed oxidative phenolic coupling of vanillidene derivatives. Green Chem. 2012 14 9 2375 2379 10.1039/c2gc35848d
    [Google Scholar]
  77. Beneventi E. Conte S. Cramarossa M.R. Riva S. Forti L. Chemo-enzymatic synthesis of new resveratrol-related dimers containing the benzo[b]furan framework and evaluation of their radical scavenger activities. Tetrahed. 2015 71 20 3052 3058 10.1016/j.tet.2014.11.012
    [Google Scholar]
  78. Bhusainahalli V.M. Spatafora C. Chalal M. Vervandier-Fasseur D. Meunier P. Latruffe N. Tringali C. Resveratrol‐related dehydrodimers: Laccase‐mediated biomimetic synthesis and antiproliferative activity. Eur. J. Org. Chem. 2012 2012 27 5217 5224 10.1002/ejoc.201200664
    [Google Scholar]
  79. Zhang H. Xun E. Wang J. Chen G. Cheng T. Wang Z. Ji T. Wang L. Immobilization of laccase for oxidative coupling of trans-resveratrol and its derivatives. Int. J. Mol. Sci. 2012 13 5 5998 6008 10.3390/ijms13055998 22754345
    [Google Scholar]
  80. Santalla E. Serra E. Mayoral A. Losada J. Blanco R.M. Díaz I. In-situ immobilization of enzymes in mesoporous silicas. Solid State Sci. 2011 13 4 691 697 10.1016/j.solidstatesciences.2010.09.015
    [Google Scholar]
  81. Navarra C. Gavezzotti P. Monti D. Panzeri W. Riva S. Biocatalyzed synthesis of enantiomerically enriched β-5-like dimer of 4-vinylphenol. J. Mol. Catal., B Enzym. 2012 84 115 120 10.1016/j.molcatb.2012.03.020
    [Google Scholar]
  82. Gavezzotti P. Bertacchi F. Fronza G. Křen V. Monti D. Riva S. Laccase‐catalyzed dimerization of piceid, a resveratrol glucoside, and its further enzymatic elaboration. Adv. Synth. Catal. 2015 357 8 1831 1839 10.1002/adsc.201500185
    [Google Scholar]
  83. Wu Z. Li H. Zhu X. Li S. Wang Z. Wang L. Li Z. Chen G. Using laccases in the nanoflower to synthesize viniferin. Catalysts 2017 7 6 188 10.3390/catal7060188
    [Google Scholar]
  84. Liu W. Li R. Liu D. Feng W. Enhancing the enzymatic activity of a heme-dependent peroxidase through genetic modification. Catalysts 2016 6 11 166 10.3390/catal6110166
    [Google Scholar]
  85. Wilkens A. Paulsen J. Wray V. Winterhalter P. Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of trans-resveratrol and (-)-ε-viniferin. J. Agric. Food Chem. 2010 58 11 6754 6761 10.1021/jf100606p 20455561
    [Google Scholar]
  86. Batule B.S. Park K.S. Kim M.I. Park H.G. Ultrafast sonochemical synthesis of protein-inorganic nanoflowers. Int. J. Nanomedicine 2015 10 Spec Iss 137 142 26346235
    [Google Scholar]
  87. Nicotra S. Cramarossa M.R. Mucci A. Pagnoni U.M. Riva S. Forti L. Biotransformation of resveratrol: Synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahed. 2004 60 3 595 600 10.1016/j.tet.2003.10.117
    [Google Scholar]
  88. Jeong Y.J. Park S.H. Park S.C. Kim S. Kim T.H. Lee J. Kim S.W. Ryu Y.B. Jeong J.C. Kim C.Y. Induced extracellular production of stilbenes in grapevine cell culture medium by elicitation with methyl jasmonate and stevioside. Bioresour. Bioprocess. 2020 7 1 38 10.1186/s40643‑020‑00329‑3
    [Google Scholar]
  89. Donnez D. Kim K.H. Antoine S. Conreux A. De Luca V. Jeandet P. Clément C. Courot E. Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor. Process Biochem. 2011 46 5 1056 1062 10.1016/j.procbio.2011.01.019
    [Google Scholar]
  90. Mattio L.M. Dallavalle S. Musso L. Filardi R. Franzetti L. Pellegrino L. D’Incecco P. Mora D. Pinto A. Arioli S. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Sci. Rep. 2019 9 1 19525 10.1038/s41598‑019‑55975‑1 31862939
    [Google Scholar]
  91. Park S.C. Pyun J.W. Jeong Y.J. Park S.H. Kim S. Kim Y.H. Lee J.R. Kim C.Y. Jeong J.C. Overexpression of VlPRX21 and VlPRX35 genes in Arabidopsis plants leads to bioconversion of trans-resveratrol to δ-viniferin. Plant Physiol. Biochem. 2021 162 556 563 10.1016/j.plaphy.2021.03.015 33773231
    [Google Scholar]
  92. Labois C. Stempien E. Schneider J. Schaeffer-Reiss C. Bertsch C. Goddard M.L. Chong J. Comparative study of secreted proteins, enzymatic activities of wood degradation and stilbene metabolization in grapevine Botryosphaeria dieback fungi. J. Fungi (Basel) 2021 7 7 568 10.3390/jof7070568 34356948
    [Google Scholar]
  93. Pezet R. Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers. Fr. FEMS Microbiol. Lett. 1998 167 2 203 208 10.1111/j.1574‑6968.1998.tb13229.x
    [Google Scholar]
  94. Cichewicz R.H. Kouzi S.A. Hamann M.T. Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J. Nat. Prod. 2000 63 1 29 33 10.1021/np990266n 10650073
    [Google Scholar]
  95. Khattab I.M. Sahi V.P. Baltenweck R. Maia-Grondard A. Hugueney P. Bieler E. Dürrenberger M. Riemann M. Nick P. Ancestral chemotypes of cultivated grapevine with resistance to Botryosphaeriaceae‐related dieback allocate metabolism towards bioactive stilbenes. New Phytol. 2021 229 2 1133 1146 10.1111/nph.16919 32896925
    [Google Scholar]
  96. Gindro K. Schnee S. Righi D. Marcourt L. Nejad Ebrahimi S. Codina J.M. Voinesco F. Michellod E. Wolfender J.L. Queiroz E.F. Generation of antifungal stilbenes using the enzymatic secretome of Botrytis cinerea. J. Nat. Prod. 2017 80 4 887 898 10.1021/acs.jnatprod.6b00760 28332842
    [Google Scholar]
  97. Ohyama M. Tanaka T. Ito T. Iinuma M. Bastow K.F. Lee K.H. Antitumor agents 200.1 cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivatives. Bioorg. Med. Chem. Lett. 1999 9 20 3057 3060 10.1016/S0960‑894X(99)00520‑X 10571175
    [Google Scholar]
  98. Cichewicz R.H. Kouzi S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004 24 1 90 114 10.1002/med.10053 14595673
    [Google Scholar]
  99. Douillet-Breuil A.C. Jeandet P. Adrian M. Bessis R. Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J. Agric. Food Chem. 1999 47 10 4456 4461 10.1021/jf9900478 10552833
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298367676250417064048
Loading
/content/journals/mroc/10.2174/0118756298367676250417064048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test