Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Benzimidazole, discovered in 1872, is a heterocyclic compound noted for its pharmacological activities. It and its derivatives can be synthesized through methods such as condensation reactions and using nano-based nanoparticles as catalysts. Recent environmentally friendly methods include microwaves, ultrasound, and photochemical reactions. its derivatives are known for their diverse medicinal applications.

Benzimidazole and its derivatives are versatile compounds with a wide range of pharmacological activities. Their synthesis has evolved over time, incorporating various environmentally friendly methods such as microwave, ultrasound, and photochemical reactions. The continued exploration of these compounds and their synthesis methods holds great promise for the development of new and effective medicinal applications.

Here, we provide an overview of benzimidazole, highlighting its historical significance, various synthesis methods, and extensive range of pharmacological activities. It aims to emphasize the importance of benzimidazole and its derivatives in medicinal chemistry and their potential therapeutic applications. The review also notes the development of environmentally friendly synthesis techniques, reflecting advancements in the field.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298334834240828041219
2024-09-13
2025-09-14
Loading full text...

Full text loading...

References

  1. WashbournG. Synthesis, Computational and Biological Evaluation of Novel Compounds for the Treatment of Cryptococcus neoformans.United KingdomThe University of Liverpool2019
    [Google Scholar]
  2. MamedovV.A. Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es.RSC Advances2016648421324217210.1039/C6RA03907C
    [Google Scholar]
  3. JaberA.M. Al-MahadeenM.M. Al-QawasmehR.A. TahaM.O. Synthesis, anticancer evaluation and docking studies of novel adamantanyl-1,3,4-oxadiazol hybrid compounds as Aurora-A kinase inhibitors.Med. Chem. Res.202332112394240410.1007/s00044‑023‑03145‑4
    [Google Scholar]
  4. Al-MahadeenM.M. JaberA.M. Al-NajjarB.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors.Pharmacia2024711910.3897/pharmacia.71.e122127
    [Google Scholar]
  5. Al-MahadeenM.M. JaberA.M. ZahraJ.A. El-AbadelahM.M. AlshaerW. TahaM.O. Synthesis of novel benzothieno-[3,2′-f] [1,3] oxazepines and their isomeric 2-oxo-2H-spiro [benzothiophene-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction and their evaluation as cytotoxic anticancer leads.Med. Chem. Res.202433691892910.1007/s00044‑024‑03229‑9
    [Google Scholar]
  6. JaberA.M. ZahraJ.A. El-AbadelahM.M. SabriS.S. KhanfarM.A. VoelterW. Utilization of 1-phenylimidazo[1,5- a]quinoline as partner in 1,4-dipolar cycloaddition reactions.Z. Naturforsch. B. J. Chem. Sci.202075325926710.1515/znb‑2019‑0150
    [Google Scholar]
  7. Al-MahadeenM.M. ZahraJ.A. El-AbadelahM.M. JaberA.M. KhanfarM.A. One-pot synthesis of novel 2-oxo(2H)-spiro [benzofuran-3,3′-pyrrolines] via 1,4-dipolar cycloaddition reaction.Results in Chemistry2022410064310.1016/j.rechem.2022.100643
    [Google Scholar]
  8. VasavaM.S. BhoiM.N. RathwaS.K. JethavaD.J. AcharyaP.T. PatelD.B. PatelH.D. Benzimidazole: A milestone in the field of medicinal chemistry.Mini Rev. Med. Chem.202020753256510.2174/1389557519666191122125453 31755386
    [Google Scholar]
  9. JaberA.M. ZahraJ.A. El-AbadelahM.M. SabriS.S. SabbahD.S. Thermodynamic control synthesis of spiro [oxindole-3,3′-pyrrolines] via 1,4-dipolar cycloaddition utilizing imidazo[1,5- a]quinoline.Z. Naturforsch. C J. Biosci.2023783-414114810.1515/znc‑2022‑0085 36796786
    [Google Scholar]
  10. JaberA.M. ZahraJ.A. SabriS.S. KhanfarM.A. AwwadiF.F. El-AbadelahM.M. New trends in 1,4-dipolar cycloaddition reactions. Thermodynamic control synthesis of model 2′-(isoquinolin-1-yl)-spiro [oxindole-3,3′-pyrrolines].Curr. Org. Chem.202226554254910.2174/1385272826666220221141306
    [Google Scholar]
  11. Al-MahadeenM.M. JaberA.M. Al-QawasmehR.A. TahaM.O. Synthesis, evaluation, and docking study of adamantyl-1,3,4-oxadiazol hybrid compounds as CaMKIIδ kinase inhibitor.J. Chem. Res.20244831747519824126246710.1177/17475198241262467
    [Google Scholar]
  12. ShehadiI.A. DelmaniF.A. JaberA.M. HammadH. AlDamenM.A. Al-QawasmehR.A. KhanfarM.A. Synthesis, characterization and biological evaluation of metal adamantyl 2-pyridylhydrazone complexes.Molecules20202511253010.3390/molecules25112530 32485892
    [Google Scholar]
  13. HaiderK. YarM.S. Advances of benzimidazole derivatives as anticancer agents: Bench to bedside.LondonIntechOpen2022
    [Google Scholar]
  14. EmamiL. FaghihZ. AtaollahiE. SadeghianS. RezaeiZ. KhabnadidehS. Azole derivatives: Recent advances as potent antibacterial and antifungal agents.Curr. Med. Chem.202330222024910.2174/0929867329666220407094430 35392780
    [Google Scholar]
  15. BugdayN. KucukbayF.F.Z. ApohanE. KucukbayH. SerindagA. YesiladaO. Synthesis and evaluation of novel benzimidazole conjugates incorporating amino acids and dipeptide moieties.Lett. Org. Chem.201714319820610.2174/1570178614666170203093406
    [Google Scholar]
  16. TajaneP.S. SawantR.L. An updated review on benzimidazole derivatives as potential antihypertensive agents.Int. J. Health Sci.2022671697179
    [Google Scholar]
  17. KumarR. SinghG. Substituted benzimidazoles as antibacterial and antifungal agents: A review.Pharmacophore2022132415510.51847/ySnvqCudRM
    [Google Scholar]
  18. AlzhraniZ.M.M. AlamM.M. NazreenS. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry.Mini Rev. Med. Chem.202222236538610.2174/1389557521666210331163810 33797365
    [Google Scholar]
  19. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activity of benzimidazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications. SwainB.P. SingaporeSpringer202235137810.1007/978‑981‑16‑8399‑2_9
    [Google Scholar]
  20. CoulibalyS. EvrardA. KumarA. SissoumaD. Benzimidazoles and imidazo[1,2-a]pyridines: Biological activities, method of synthesis and perspectives on combination of diverse pharmacophores.ChemRxiv202310.26434/chemrxiv‑2023‑trm05‑v3
    [Google Scholar]
  21. GoyalA. KharkwalH. PiplaniM. SinghY. MurugesanS. AggarwalA. KumarP. ChanderS. Spotlight on 4‐substituted quinolines as potential anti‐infective agents: Journey beyond chloroquine.Arch. Pharm. (Weinheim)20233563220036110.1002/ardp.202200361 36494101
    [Google Scholar]
  22. KumarS. KhokraS.L. YadavA. Triazole analogues as potential pharmacological agents: A brief review.Future J. Pharm. Sci.20217110610.1186/s43094‑021‑00241‑3 34056014
    [Google Scholar]
  23. DanaoK.R. MahapatraD.K. Recent advances of benzimidazole derivatives as anti-hypertensive agents.Biochemistry, Biophysics, and Molecular Chemistry.CRC Press202017518110.1201/9780429284175‑10
    [Google Scholar]
  24. Hernández-LópezH. Tejada-RodríguezC.J. Leyva-RamosS. A panoramic review of benzimidazole derivatives and their potential biological activity.Mini Rev. Med. Chem.20222291268128010.2174/1389557522666220104150051 34983345
    [Google Scholar]
  25. PathareB. BansodeT. Review- biological active benzimidazole derivatives.Results in Chemistry2021310020010.1016/j.rechem.2021.100200
    [Google Scholar]
  26. SutarY. FultonS.R. PaulS. AltamiranoS. MhatreS. SaeedH. PatelP. MallickS. BhatR. PatravaleV.B. ChauhanH. NielsenK. DateA.A. Docusate-based ionic liquids of anthelmintic benzimidazoles show improved pharmaceutical processability, lipid solubility, and in vitro activity against Cryptococcus neoformans.ACS Infect. Dis.2021792637264910.1021/acsinfecdis.1c00063 34467755
    [Google Scholar]
  27. WongX.K. YeongK.Y. A patent review on the current developments of benzoxazoles in drug discovery.ChemMedChem202116213237326210.1002/cmdc.202100370 34289258
    [Google Scholar]
  28. GulcanH.O. MavidenizA. SahinM.F. OrhanI.E. Benzimidazole-derived compounds designed for different targets of Alzheimer’s disease.Curr. Med. Chem.201926183260327810.2174/0929867326666190124123208 30678614
    [Google Scholar]
  29. HashemH.E. El BakriY. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds.Arab. J. Chem.2021141110341810.1016/j.arabjc.2021.103418
    [Google Scholar]
  30. VenugopalS. KaurB. VermaA. WadhwaP. MaganM. HuddaS. KakotyV. Recent advances of benzimidazole as anticancer agents.Chem. Biol. Drug Des.2023102235737610.1111/cbdd.14236 37009821
    [Google Scholar]
  31. LawC.S.W. YeongK.Y. Benzimidazoles in drug discovery: A patent review.ChemMedChem202116121861187710.1002/cmdc.202100004 33646618
    [Google Scholar]
  32. AkhtarW. KhanM.F. VermaG. ShaquiquzzamanM. RizviM.A. MehdiS.H. AkhterM. AlamM.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period.Eur. J. Med. Chem.201712670575310.1016/j.ejmech.2016.12.010 27951484
    [Google Scholar]
  33. YadavS. NarasimhanB. kaur, H. Perspectives of benzimidazole derivatives as anticancer agents in the new era.Anticancer. Agents Med. Chem.201616111403142510.2174/1871520616666151103113412 26526461
    [Google Scholar]
  34. PrajapatP. KumawatM. TalesaraG.L. KalalP. AgarwalS. KapoorC.S. Benzimidazole scaffold as a versatile biophore in drug discovery: A review.J. Chem. Biol.201881132210.1007/s12154‑018‑0226‑2
    [Google Scholar]
  35. ChoudharyA. ViradiyaR.H. GhoghariR.N. ChikhaliaK.H. Recent scenario for the synthesis of benzimidazole moiety(2020-2022).ChemistrySelect2023810e20220491010.1002/slct.202204910
    [Google Scholar]
  36. EbenezerO. Oyetunde-JoshuaF. OmotosoO.D. ShapiM. Benzimidazole and its derivatives: Recent advances (2020-2022).Results in Chemistry2023510092510.1016/j.rechem.2023.100925
    [Google Scholar]
  37. KeriR.S. AdimuleV. KendrekarP. SasidharB.S. The nano-based catalyst for the synthesis of benzimidazoles.Top. Catal.202212110.1007/s11244‑022‑01562‑0
    [Google Scholar]
  38. YuX.L. FanY.H. ZhengX.N. GaoJ.F. ZhuangL.G. YuY.L. XiJ.H. ZhangD.W. Synthesis of imidazole-based molecules under ultrasonic irradiation approaches.Molecules20232812484510.3390/molecules28124845 37375399
    [Google Scholar]
  39. VaithiyalingamM. Mohan KumarR. KamarajC. SugumarV. ManivannanN. KadaikunnanS. GhodakeG. Facile synthesis of benzimidazoles via oxidative cyclization of acyclic monoterpene aldehyde with diamines: Studies on antimicrobial and in vivo evaluation of zebrafish.Chem. Biodivers.2023206e20230031510.1002/cbdv.202300315 37246487
    [Google Scholar]
  40. KhanfarM. JaberA. AlDamenM. Al-QawasmehR. Synthesis, characterization, crystal structure, and DFT study of a new square planar Cu (II) complex containing bulky adamantane ligand.Molecules201823370110.3390/molecules23030701 29558380
    [Google Scholar]
  41. KüçükbayH. PartI. Microwave-assisted synthesis of benzimidazoles: An overview (until 2013).JOTCSA201741122
    [Google Scholar]
  42. AlaqeelS.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review.J. Saudi Chem. Soc.201721222923710.1016/j.jscs.2016.08.001
    [Google Scholar]
  43. SinghH. KumarR. TiwariP. SinghA. Recent advances in synthetic strategies of benzimidazole and its analogs: A review.Curr. Org. Chem.202326191767177810.2174/1385272827666221216113723
    [Google Scholar]
  44. PardeshiV.A.S. ChundawatN.S. PathanS.I. SukhwalP. ChundawatT.P.S. SinghG.P. A review on synthetic approaches of benzimidazoles.Synth. Commun.202151448551310.1080/00397911.2020.1841239
    [Google Scholar]
  45. VenkateswarluY. KumarS.R. LeelavathiP. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride.Org. Med. Chem. Lett.20133710.1186/2191‑2858‑3‑7
    [Google Scholar]
  46. Jithendra KumaraK.S. KrishnamurthyG. Sunil KumarN. NaikN. PraveenT.M. Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 nanocomposite and its catalytic applications for the benzimidazole synthesis.J. Magn. Magn. Mater.201845180882110.1016/j.jmmm.2017.10.125
    [Google Scholar]
  47. MoreP.E. BankarN.B. GaikwadS.G. ShindeN.S. MoreB.P. A facile synthesis of benzimidazole and benzothiazole derivatives catalyzed by wet zinc ferrite under solvent-free conditions in air atmosphere.Russ. J. Org. Chem.202359352152710.1134/S107042802303020X
    [Google Scholar]
  48. PandaB. Use of gold nanoparticles in the synthesis of heterocyclic compounds.Lett. Org. Chem.2023201182710.2174/1570178619666220826115245
    [Google Scholar]
  49. DasS. One-pot telescopic approach to synthesize disubstituted benzimidazoles in deep eutectic solvent.Synthesis20235604693699
    [Google Scholar]
  50. KaduV.R. ChavanH.V. GholapS.S. Additive free greener synthesis of 1,2-disubstituted benzimidazoles using aqueous extract of Acacia concinna pods as an efficient surfactant type catalyst.Polycycl. Aromat. Compd.20214161263127310.1080/10406638.2019.1670219
    [Google Scholar]
  51. SharghiH. MashhadiE. AberiM. AboonajmiJ. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes, o ‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO 2 as a nanocatalyst.Appl. Organomet. Chem.2021359e633010.1002/aoc.6330
    [Google Scholar]
  52. VeerakumarP. VelusamyN. ThanasekaranP. LinK.C. RajagopalS. Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions.React. Chem. Eng.2022791891192010.1039/D2RE00095D
    [Google Scholar]
  53. PatelC.K. KantK. TeliY.A. BanerjeeS. NaikP. SharmaV. KeremaneK.S. Al-SadoonM.K. SinghV. MalakarC.C. Reductive C‐N bond formation of nitroarenes using Pd@rGO‐CuFe2O4 magnetic nanoparticles in water towards the synthesis of N‐aryl formamide and azole derivatives.Asian J. Org. Chem.2024e20240025510.1002/ajoc.202400255
    [Google Scholar]
  54. WagayS.A. RatherI.A. AliR. Unraveling the potential role of green chemistry in carrying out typical condensation reactions of organic chemistry.Nanoparticles in Green Organic Synthesis.Elsevier202331734910.1016/B978‑0‑323‑95921‑6.00011‑1
    [Google Scholar]
  55. SoniJ.P. ValapilD.G. JoshiS.V. ShankaraiahN. Reminiscing the microwave-assisted chemistry of 5- and 6-membered benzene-fused N-heterocycles.ARKIVOC20232023620231192810.24820/ark.5550190.p011.928
    [Google Scholar]
  56. AlizadehA. BagherinejadA. KayanianJ. 1,3‐dimethylbarbituric acid promoted metal‐free cascade annulation for straightforward access to benzimidazole‐fused heterocycles.ChemistrySelect2022723e20220076210.1002/slct.202200762
    [Google Scholar]
  57. GanH. Fe/S‐catalyzed redox condensation of o ‐nitrophenols/thiophenols/anilines with dibenzyl disulfide: Access to 2‐arylbenzazoles.ChemistrySelect20205271772110.1002/slct.201904569
    [Google Scholar]
  58. ElrayessR. GharebN. AzabM. SaidM. Synthesis and antimicrobial activities of some novel benzimidazole and benzotriazole derivatives containing β-lactam moiety.Life Sci.20201017841793
    [Google Scholar]
  59. HuynhT.K.C. NguyenT.H.A. TranN.H.S. NguyenT.D. HoangT.K.D. A facile and efficient synthesis of benzimidazole as potential anticancer agents.J. Chem. Sci.202013218410.1007/s12039‑020‑01783‑4
    [Google Scholar]
  60. BagariaS.K. JangirN. JangidD.K. Green and eco-compatible iron nanocatalysed synthesis of benzimidazole: A review.Sustain. Chem. Pharm.20233110093210.1016/j.scp.2022.100932
    [Google Scholar]
  61. ShaabaniA. HezarkhaniZ. Ferrite nanoparticles supported on natural wool in one‐pot tandem oxidative reactions: Strategy to synthesize benzimidazole, quinazolinone and quinoxaline derivatives.Appl. Organomet. Chem.2017311e354210.1002/aoc.3542
    [Google Scholar]
  62. SamantaS. MahatoS. ChatterjeeR. SantraS. ZyryanovG.V. MajeeA. Nano indium oxide-catalyzed domino reaction for the synthesis of N-alkoxylated benzimidazoles.Tetrahedron Lett.2020613215217710.1016/j.tetlet.2020.152177
    [Google Scholar]
  63. El-SayedA. Abu-BakrS. SwelamS. KhaireldinN. ShoueirK. KhalilA. Applying nanotechnology in the synthesis of benzimidazole derivatives: A pharmacological approach.Biointerface Res. Appl. Chem.2022129921005
    [Google Scholar]
  64. YadavP. KakatiP. SinghP. AwasthiS.K. Application of sulfonic acid fabricated cobalt ferrite nanoparticles as effective magnetic nanocatalyst for green and facile synthesis of benzimidazoles.Appl. Catal. A Gen.202161211800510.1016/j.apcata.2021.118005
    [Google Scholar]
  65. SapkalB.M. LabhaneP.K. SatamJ.R. In water-ultrasound-promoted synthesis of tetraketones and 2-substituted-1H-benzimidazoles catalyzed by BiOCl nanoparticles.Res. Chem. Intermed.20174384967497910.1007/s11164‑017‑2924‑5
    [Google Scholar]
  66. YuC. GuoX. ShenB. XiZ. LiQ. YinZ. LiuH. MuzzioM. ShenM. LiJ. SetoC.T. SunS. One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO 2.72 nanocatalyst.J. Mater. Chem. A Mater. Energy Sustain.2018646237662377210.1039/C8TA09342C
    [Google Scholar]
  67. AzarifarD. FarbodmehrM. BadalkhaniO. JaymandM. Sulfamic acid-functionalized silica-coated magnetite nanoparticles as a recyclable catalyst for the facial synthesis of benzimidazole derivatives.Bulg. Chem. Commun201951596603
    [Google Scholar]
  68. MohammadiR. Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives.J. Synth. Chem.2022112226
    [Google Scholar]
  69. AbdullahA.M. DadooshS.A. ThaniM.Z. FahadA.S. Using metal oxide nanoparticles as catalyst in benzimidazoles synthesis.Earthline J. Chem. Sci.2023916376
    [Google Scholar]
  70. SinghalS. KhannaP. PandaS.S. KhannaL. Recent trends in the synthesis of benzimidazoles from o ‐phenylenediamine via nanoparticles and green strategies using transition metal catalysts.J. Heterocycl. Chem.201956102702272910.1002/jhet.3649
    [Google Scholar]
  71. Fallah-MehrjardiM. AyaziM. BanitabaS.H. An efficient and one-pot green synthesis of 2-arylsubstituted benzimidazoles catalyzed by nano-Fe3O4@ silica sulfuric acid as a recyclable nanomagnetic solid acid catalyst.Iran. Chem. Commun.2020818091
    [Google Scholar]
  72. JandialT. KaruppasamyM. SridharanV. Synthesis of heterocycles involving nanomaterials as heterogeneous catalysts.Advanced Nanocatalysis for Organic Synthesis Electroanalysis.Bentham Science202219322110.2174/9789815040166122010012
    [Google Scholar]
  73. ZiaratiA. Sonication method synergism with rare earth based nanocatalyst: Preparation of NiFe2-x Eux O4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation.J. Rare Earths20173537410.1016/S1002‑0721(17)60922‑0
    [Google Scholar]
  74. DekaminM.G. ArefiE. YaghoubiA. Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): A highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles.RSC Advances2016690869828698810.1039/C6RA14550G
    [Google Scholar]
  75. NikoofarK. DizgaraniS.M. HNO3 immobilized on nano SiO2: A novel efficient heterogeneous catalytic system for the synthesis of 2-substituted oxazolines, imidazolines, thiazolines, and 2-aryl-1H-benzimidazoles under solvent-free conditions.Izv. Him.2018501100110
    [Google Scholar]
  76. KohliS. RatheeG. HoodaS. ChandraR. Al2O3/CuI/PANI nanocomposite catalyzed green synthesis of biologically active 2-substituted benzimidazole derivatives.Dalton Trans.202150227750775810.1039/D1DT00806D 33989371
    [Google Scholar]
  77. ShuklaF. DasM. ThakoreS. Copper nanoparticles loaded polymer vesicles as environmentally amicable nanoreactors: A sustainable approach for cascading synthesis of benzimidazole.J. Mol. Liq.202133611621710.1016/j.molliq.2021.116217
    [Google Scholar]
  78. HeZ. YuP. ZhaoY. ZhangH. ZhangY. KangX. ZhangH. SadeghzadehS.M. PrVO 4/SnD NPs as a nanocatalyst for carbon dioxide fixation to synthesis benzimidazoles and 2-oxazolidinones.Catal. Lett.202115161623163210.1007/s10562‑020‑03410‑w
    [Google Scholar]
  79. KantK. PatelC.K. BanerjeeS. NaikP. AttaA.K. KabiA.K. MalakarC.C. Recent advancements in strategies for the synthesis of imidazoles, thiazoles, oxazoles, and benzimidazoles.ChemistrySelect2023847e20230398810.1002/slct.202303988
    [Google Scholar]
  80. KaldhiD. VodnalaN. GujjarappaR. NayakS. RavichandiranV. GuptaS. HazraC.K. MalakarC.C. Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles.Tetrahedron Lett.201960322322910.1016/j.tetlet.2018.12.017
    [Google Scholar]
  81. KabiA.K. GujjarappaR. RoyA. SahooA. MusibD. VodnalaN. SinghV. MalakarC.C. Transition-metal-free transfer hydrogenative cascade reaction of nitroarenes with amines/alcohols.Redoxlzoles. J. Org. Chem.20218621145971460710.1021/acs.joc.1c01450 34662119
    [Google Scholar]
  82. RitchieM.W. Benzimidazole nucleoside analogues as potential antiherpetic agents; Ph.D. Thesis, University of St. Andrews, United Kingdom,1997
    [Google Scholar]
  83. NardiM. CanoN.C.H. SimeonovS. BenceR. KurutosA. ScarpelliR. WunderlinD. ProcopioA. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities.Catalysts202313239210.3390/catal13020392
    [Google Scholar]
  84. KopchakN.H. LisovskaT.O. PokotyloO.S. VichkoO.I. Biochemistry (Structural Biochemistry).Ternopil, UkraineTernopil Ivan Puluj National Technical University20211131Available at: https://elartu.tntu.edu.ua/handle/lib/35907
    [Google Scholar]
  85. Valdez-PadillaD. Rodríguez-MoralesS. Hernández-CamposA. Hernández-LuisF. Yépez-MuliaL. Tapia-ContrerasA. CastilloR. Synthesis and antiprotozoal activity of novel 1-methylbenzimidazole derivatives.Bioorg. Med. Chem.20091741724173010.1016/j.bmc.2008.12.059 19186059
    [Google Scholar]
  86. TyagiY.K. jali, G.; Singh, R. Synthesis and anti-cancer applications of benzimidazole derivatives - Recent studies.Anticancer. Agents Med. Chem.202222193280329010.2174/1871520622666220429134818 36221180
    [Google Scholar]
  87. KüçükbayH. Synthesis and evaluation of novel $ N, N′$-disubstituted benzimidazolium bromides salts as antitumor agents.Turk. J. Chem.2016403393401
    [Google Scholar]
  88. El-NassanH.B. Synthesis, antitumor activity and SAR study of novel [1,2,4]triazino[4,5-a]benzimidazole derivatives.Eur. J. Med. Chem.201253222710.1016/j.ejmech.2012.03.028 22542105
    [Google Scholar]
  89. HusainA. RashidM. MishraR. ParveenS. ShinD.S. KumarD. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents.Bioorg. Med. Chem. Lett.201222175438544410.1016/j.bmcl.2012.07.038 22840417
    [Google Scholar]
  90. ShakerY.M. OmarM.A. MahmoudK. ElhalloutyS.M. El-SenousyW.M. AliM.M. MahmoudA.E. Abdel-HalimA.H. SolimanS.M. El DiwaniH.I. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives.J. Enzyme Inhib. Med. Chem.201530582684510.3109/14756366.2014.979344 25567722
    [Google Scholar]
  91. OnnisV. DemurtasM. DeplanoA. BalboniG. BaldisserottoA. ManfrediniS. PacificoS. LiekensS. BalzariniJ.J. Balzarini, Design, synthesis and evaluation of antiproliferative activity of new benzimidazolehydrazones.Molecules201621557910.3390/molecules21050579 27144551
    [Google Scholar]
  92. MoraisG.R. PalmaE. MarquesF. GanoL. OliveiraM.C. AbrunhosaA. MirandaH.V. OuteiroT.F. SantosI. PauloA. Synthesis and biological evaluation of novel 2‐aryl benzimidazoles as chemotherapeutic agents.J. Heterocycl. Chem.201754125526710.1002/jhet.2575
    [Google Scholar]
  93. WangZ. DengX. XiongS. XiongR. LiuJ. ZouL. LeiX. CaoX. XieZ. ChenY. LiuY. ZhengX. TangG. Design, synthesis and biological evaluation of chrysin benzimidazole derivatives as potential anticancer agents.Nat. Prod. Res.201832242900290910.1080/14786419.2017.1389940 29063798
    [Google Scholar]
  94. Acar ÇevikU. SağlıkB.N. KorkutB. ÖzkayY. IlgınS. Antiproliferative, cytotoxic, and apoptotic effects of new benzimidazole derivatives bearing hydrazone moiety.J. Heterocycl. Chem.201855113814810.1002/jhet.3016
    [Google Scholar]
  95. KumarB.V.S. VaidyaS.D. KumarR.V. BhirudS.B. ManeR.B. Synthesis and anti-bacterial activity of some novel 2-(6-fluorochroman-2-yl)-1-alkyl/acyl/aroyl-1H-benzimidazoles.Eur. J. Med. Chem.200641559960410.1016/j.ejmech.2006.01.006 16527375
    [Google Scholar]
  96. AnsariK.F. LalC. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives.Eur. J. Med. Chem.200944104028403310.1016/j.ejmech.2009.04.037 19482384
    [Google Scholar]
  97. AjaniO.O. Tolu-BolajiO.O. ZhaoY. AderohunmuD.V. AuduO.Y. Facile synthesis of N-substituted-2-(3, 5-dinitrophenyl) benzimidazole derivatives for antimicrobial investigation.Conf. Adv. Appl. Sci. Environ. Eng.201611122126
    [Google Scholar]
  98. El-GoharyN.S. ShaabanM.I. Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents.Eur. J. Med. Chem.201713125526210.1016/j.ejmech.2017.03.018 28334654
    [Google Scholar]
  99. CetinkayaB. CetinkayaE. KüçükbayH. DurmazR. Antimicrobial activity of carbene complexes of rhodium(I) and ruthenium(II).Arzneimittelforschung1996468821823 9125286
    [Google Scholar]
  100. BarrowP. DujardinJ.C. FaselN. GreenwoodA.D. OsterriederK. LomonossoffG. FioriP.L. AtterburyR. RossiM. LalleM. Viruses of protozoan parasites and viral therapy: Is the time now right?Virol. J.202017114210.1186/s12985‑020‑01410‑1 32993724
    [Google Scholar]
  101. NavarretevázquezG. RojanovilchisM. YépezmuliaL. MeléndezV. GerenaL. HernándezcamposA. CastilloR. HernándezluisF. Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres.Eur. J. Med. Chem.200641113514110.1016/j.ejmech.2005.09.001 16260067
    [Google Scholar]
  102. Torres-GómezH. Hernández-NúñezE. León-RiveraI. Guerrero-AlvarezJ. Cedillo-RiveraR. Moo-PucR. Argotte-RamosR. Carmen Rodríguez-GutiérrezM. Chan-BacabM.J. Navarrete-VázquezG. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids.Bioorg. Med. Chem. Lett.200818113147315110.1016/j.bmcl.2008.05.009 18486471
    [Google Scholar]
  103. AlanaziA.H.G. AlamT. ImranM. Design, molecular docking studies, in silico drug likeliness prediction and synthesis of some benzimidazole derivatives as antihypertensive agents.Indo Am. J. Pharm. Sci.201744926936
    [Google Scholar]
  104. WuZ. BaoX.L. ZhuW.B. WangY.H. Phuong AnhN.T. WuX.F. YanY.J. ChenZ.L. Design, synthesis, and biological evaluation of 6-benzoxazole benzimidazole derivatives with antihypertension activities.ACS Med. Chem. Lett.2019101404310.1021/acsmedchemlett.8b00335 30655944
    [Google Scholar]
  105. KhanM.T. RaziM.T. JanS.U. MukhtiarM. GulR. IzharUllah; Hussain, A.; Hashmi, A.M.; Ahmad, M.T.; Shahwani, N.A.; Rabbani, I. Synthesis, characterization and antihypertensive activity of 2-phenyl substituted benzimidazoles.Pak. J. Pharm. Sci.2018313Supplementary10671074 29731445
    [Google Scholar]
  106. IqbalH. VermaA.K. YadavP. AlamS. ShafiqM. MishraD. KhanF. HanifK. NegiA.S. ChandaD. Antihypertensive effect of a novel angiotensin II receptor blocker fluorophenyl benzimidazole: Contribution of cGMP, voltage-dependent calcium channels, and BKCa channels to vasorelaxant mechanisms.Front. Pharmacol.20211261110910.3389/fphar.2021.611109 33859561
    [Google Scholar]
  107. SharmaS. GuptaM. GuptaM. SahuJ.K. Significance of Benzimidazole analogues for the creation of novel molecules in drug discovery.Current Chemistry Letters2023121274410.5267/j.ccl.2022.9.008
    [Google Scholar]
  108. PatelM. AvashthiG. GacemA. AlqahtaniM.S. ParkH.K. JeonB.H. A review of approaches to the metallic and non-metallic synthesis of benzimidazole (BnZ) and their derivatives for biological efficacy.Molecules20232814549010.3390/molecules28145490 37513362
    [Google Scholar]
  109. BhagatP.K. RajR. ThakurD. Preparation and characterization of some bivalent metal complexes with bis[2-(2ethyledenebenzimidazolyl) thiocarbohydrazide] and studies of their antiamoebic and antihelminthic activities.Int. J. Environ. Sci.2023424953
    [Google Scholar]
  110. SahuS. SahuS.C. MeherA.K. PradhanD. MeherV.K. MeherC.P. Screening of a benzimidazole derivative for anthelmintic activity with rule of 5 approach.J. Pharm. Res. Int.2022814
    [Google Scholar]
  111. AnichinaK. ArgirovaM. TzonevaR. UzunovaV. MavrovaA. VuchevD. Popova-DaskalovaG. FratevF. GunchevaM. YanchevaD. 1H-benzimidazole-2-yl hydrazones as tubulin-targeting agents: Synthesis, structural characterization, anthelmintic activity and antiproliferative activity against MCF-7 breast carcinoma cells and molecular docking studies.Chem. Biol. Interact.202134510954010.1016/j.cbi.2021.109540 34139148
    [Google Scholar]
  112. NairS. BeeviJ. NjM. EmmanuelB. DharanS. CrR. Insilico design, synthesis and in vitro antidiabetic and anti-inflammatory activitiesof 1, 3, 4-thiadiazole substituted 2-methylbenzimidazole derivatives.J. Pharm. Res. Clin. Pract.201662736
    [Google Scholar]
  113. Campos-AlmazánM.I. Flores-RamosM. Hernández-CamposA. CastilloR. Sierra-CamposE. TorgesonK. PetiW. Valdez-SolanaM. Oria-HernándezJ. MéndezS.T. Castillo-VillanuevaA. Jiménez-de JesúsH. Avitia-DomínguezC. Téllez-ValenciaA. Design, synthesis, kinetic, molecular dynamics, and hypoglycemic effect characterization of new and potential selective benzimidazole derivatives as Protein Tyrosine Phosphatase 1B inhibitors.Bioorg. Med. Chem.20214811641810.1016/j.bmc.2021.116418 34563877
    [Google Scholar]
  114. Dı̇kB. CoşkunD. Bahçı̇vanE. ÜneyK. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats.Turk. J. Med. Sci.20215131578158510.3906/sag‑2004‑38 33641315
    [Google Scholar]
  115. NageshK.M.J. PrashanthT. KhameesH.A. KhanumS.A. Synthesis, analgesic, anti-inflammatory, COX/5-LOX inhibition, ulcerogenic evaluation, and docking study of benzimidazole bearing indole and benzophenone analogs.J. Mol. Struct.2022125913274110.1016/j.molstruc.2022.132741
    [Google Scholar]
  116. SakrM. Design, synthesis of analgesics and anticancer of some new derivatives of benzimidazole.Int. J. Org. Chem.2021110314416910.4236/ijoc.2021.113011
    [Google Scholar]
  117. RakaS.C. RahmanA. HussainF. RahmanS.M.A. Synthesis, characterization and in vitro, in vivo, in silico biological evaluations of substituted benzimidazole derivatives.Saudi J. Biol. Sci.202229123925010.1016/j.sjbs.2021.08.082 35002414
    [Google Scholar]
  118. MaltsevD.V. SpasovA.A. VassilievP.M. SkripkaM.O. MiroshnikovM.V. KochetkovA.N. EliseevaN.V. LifanovaY.V. KuzmenkoT.A. DivaevaL.N. MorkovnikA.S. Synthesis and pharmacological evaluation of novel 2,3,4,5-tetrahydro[1,3]diazepino[1,2-a]benzimidazole derivatives as promising anxiolytic and analgesic agents.Molecules20212619604910.3390/molecules26196049 34641593
    [Google Scholar]
  119. SahaP. BrishtyS.R. Synthesis and evaluation of disubstituted benzimidazole derivatives as potential analgesic and antidiarrheal agents.Indian J. Pharm. Sci.202082219219810.36468/pharmaceutical‑sciences.698
    [Google Scholar]
  120. AydinS. BeisR. CanÖ.D. Analgesic and antispasmodic activities of 2-(2-nitro-phenyl)-1H-benzimidazole 5-carboxylic acid: Evidence for the importance of the 2-(o-substituted phenyl) group.Pharmazie2003586405408 12857004
    [Google Scholar]
  121. ChauhanB. KumarR. MazumderA. Salahuddin; Singh, H.; Yadav, R.K.; Abdullah, M.M. Updates on the synthetic strategies and structure-activity relationship of anticonvulsant benzothiazole and benzimidazole derivatives.Lett. Drug Des. Discov.202320101458148210.2174/03666220606143616
    [Google Scholar]
  122. TiglaniD. SalahuddinA. Synthesis anticonvulsant and cytotoxic evaluation of benzimidazole-quinoline hybrids schiff base analogs.Polycycl Aromat Comp2023121
    [Google Scholar]
  123. MohammedL.A. FarhanM.A. DadooshS.A. AlheetyM.A. MajeedA.H. MahmoodA.S. MahmoudZ.H. A review on benzimidazole heterocyclic compounds: Synthesis and their medicinal activity applications.SynOpen20237465267310.1055/a‑2155‑9125
    [Google Scholar]
  124. Prasad SahuR. Prakash GuptaS. Synthesis and antidepressant activity of some N-substituted-2-phenyl indole derivatives.Res J Pharm Technol.20231662715271810.52711/0974‑360X.2023.00446
    [Google Scholar]
  125. HaqF.U. ShoaibM. Ali ShahS.W. HussainH. ZahoorM. UllahR. BariA. AlotaibiA. HayatM.F. Antidepressant activities of synthesized benzodiazepine analogues in mice.Brain Sci.202313352310.3390/brainsci13030523 36979333
    [Google Scholar]
  126. GatphohB.F.D. AggarwalN. N. Madan KumarS. Vijay KumarM. RevanasiddappaB. S. Synthesis, in silico analysis, and antidepressant activity of 1, 3, 4-oxadiazole derivatives.Bangl. J. Pharmacol.2022171303810.3329/bjp.v17i1.53607
    [Google Scholar]
  127. LimbuK.R. ChhetriR.B. OhY.S. BaekD.J. ParkE.Y. Mebendazole impedes the proliferation and migration of pancreatic cancer cells through SK1 inhibition dependent pathway.Molecules20222723812710.3390/molecules27238127 36500220
    [Google Scholar]
  128. GalalS.A. OmarM.A. KhairatS.H.M. RagabF.A.F. RoyS. NaqviA.A.T. HassanM.I. El DiwaniH.I. Design and synthesis of new pyrazolylbenzimidazoles as sphingosine kinase-1 inhibitors.Med. Chem. Res.20213091614163410.1007/s00044‑021‑02760‑3
    [Google Scholar]
  129. KhairatS.H.M. OmarM.A. RagabF.A.F. RoyS. Turab NaqviA.A. AbdelsamieA.S. HirschA.K.H. GalalS.A. HassanM.I. El DiwaniH.I. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor.Arch. Pharm. (Weinheim)20213549210008010.1002/ardp.202100080 34128259
    [Google Scholar]
  130. GurjarA.S. SolankiV.S. MeshramA.R. VishwakarmaS.S. Exploring beta amyloid cleavage enzyme‐1 inhibition and neuroprotective role of benzimidazole analogues as anti‐Alzheimer agents.J. Chin. Chem. Soc. (Taipei)202067586487310.1002/jccs.201900200
    [Google Scholar]
  131. AhmedA. KhanA. NadeemH. ImranM. IrshadN. Pharmacological evaluation of newly synthesized benzimidazole derivative for anti-Alzheimer potential.Int. J. Neurosci.2022117 36259511
    [Google Scholar]
  132. LatifA. BibiS. AliS. AmmaraA. AhmadM. KhanA. Al-HarrasiA. UllahF. AliM. New multitarget directed benzimidazole‐2‐thiol‐based heterocycles as prospective anti‐radical and anti‐Alzheimer 's agents.Drug Dev. Res.202182220721610.1002/ddr.21740 32897587
    [Google Scholar]
  133. AdalatB. RahimF. TahaM. AlshamraniF.J. AnouarE.H. UddinN. ShahS.A.A. AliZ. ZakariaZ.A. Synthesis of benzimidazole-based analogs as anti Alzheimer’s disease compounds and their molecular docking studies.Molecules20202520482810.3390/molecules25204828 33092223
    [Google Scholar]
  134. VyasK.V. GhateM. ChinthaC. PatelP. 3D QSAR studies on substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist. Curr. Comput.-.Aided Drug Des.20139343344510.2174/15734099113099990028 24010938
    [Google Scholar]
  135. GuoX.Z. ShiL. WangR. LiuX.X. LiB.G. LuX.X. Synthesis and biological activities of novel nonpeptide angiotensin II receptor antagonists based on benzimidazole derivatives bearing a heterocyclic ring.Bioorg. Med. Chem.20081624103011031010.1016/j.bmc.2008.10.040 18976926
    [Google Scholar]
  136. NoorA. QaziN.G. NadeemH. KhanA. ParachaR.Z. AliF. SaeedA. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids.Chem. Cent. J.20171118510.1186/s13065‑017‑0314‑0 29086868
    [Google Scholar]
  137. ThapaS. NargundS.L. BiradarM.S. Synthesis and anti-tubercular activity evaluation of substituted benzimidazole derivatives.SSRN202310.2139/ssrn.4427119
    [Google Scholar]
  138. DubeyS. BhardwajS. PrabhakaranP. MandalS.P. SinghE. Comparison of in-silico and in-vitro studies of benzimidazoleoxothiazolidine derivatives as M. tubcerculosis transcriptor inhibitors.German J. Pharm. Biomater.202322202910.5530/gjpb.2023.2.6
    [Google Scholar]
  139. MohantyS.K. KhuntiaA. YellasubbaiahN. AyyannaC. Naga SudhaB. HarikaM.S. Design, synthesis of novel azo derivatives of benzimidazole as potent antibacterial and anti tubercular agents.Beni. Suef Univ. J. Basic Appl. Sci.20187464665110.1016/j.bjbas.2018.07.009
    [Google Scholar]
  140. RadwanM.O. TomaT. ArakakiY. KamoM. InoueN. KogaR. OtsukaM. TateishiH. FujitaM. New insight into the bioactivity of substituted benzimidazole derivatives: Repurposing from anti-HIV activity to cell migration inhibition targeting hnRNP M.Bioorg. Med. Chem.20238611729410.1016/j.bmc.2023.117294 37141680
    [Google Scholar]
  141. PanT. HeX. ChenB. ChenH. GengG. LuoH. ZhangH. BaiC. Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein.Eur. J. Med. Chem.20159550051310.1016/j.ejmech.2015.03.050 25847768
    [Google Scholar]
  142. TanakaJ. IidaH. AbeM. YudaY. InoueS. OkabeS. Gastric antisecretory and anti-ulcer effect of ME3407, a new benzimidazole derivative, in rats.Arzneimittelforschung2004544221229 15146935
    [Google Scholar]
  143. CeredaE. TurconiM. EzhayaA. BelloraE. BrambillaA. PaganiF. DonettiA. Anti-secretory and anti-ulcer activities of some new 2-(2-pyridylmethyl-sulfinyl)-benzimidazoles.Eur. J. Med. Chem.198722652753710.1016/0223‑5234(87)90293‑5
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298334834240828041219
Loading
/content/journals/mroc/10.2174/0118756298334834240828041219
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 1,2-phenylenediamines; anticancer; antimicrobial; antiprotozoal; Benzimidazole; bioactive
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test