Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Chitin is widely recognized as a highly abundant polymer found throughout the planet. This serves as a fundamental basis for the production of chitosan through deacetylation. Chitosan is non-toxic and biodegradable, making it highly suitable for applications as a biomaterial and in the development of drug delivery systems. However, the limited solubility of chitosan in neutral or alkaline environments has hindered its use in pharmacology and biology. Chitosan can undergo carboxymethylation, which enhances its water solubility while maintaining its biodegradability and compatibility with living organisms. Carboxymethyl chitosan (CMC) is a derivative of chitosan that is soluble in water and exhibits enhanced biological and physicochemical properties compared to chitosan. The CMC, or modified CMC, is a highly versatile agent with many applications. It has shown great promise in drug delivery, wound healing, bioimaging, biosensors, tissue engineering, and gene therapy. This study investigates the properties and potential applications of materials derived from carboxymethyl chitosan. These materials have attracted significant interest due to their versatility and fascinating possibilities in biomedical nanodevices and controlled-release medication formulations.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298313239240823111258
2024-09-13
2025-09-14
Loading full text...

Full text loading...

References

  1. El-KadyM.M. AnsariI. AroraC. RaiN. SoniS. VermaD.K. SinghP. MahmoudA.E.D. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment.J. Mol. Liq.202337012104610.1016/j.molliq.2022.121046
    [Google Scholar]
  2. DesaiN. RanaD. SalaveS. GuptaR. PatelP. KarunakaranB. SharmaA. GiriJ. BenivalD. KommineniN. Chitosan: A potential biopolymer in drug delivery and biomedical applications.Pharmaceutics2023154131310.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  3. Ravi KumarM.N.V. A review of chitin and chitosan applications.React. Funct. Polym.200046112710.1016/S1381‑5148(00)00038‑9
    [Google Scholar]
  4. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  5. FeltO. BuriP. GurnyR. Chitosan: A unique polysaccharide for drug delivery.Drug Dev. Ind. Pharm.1998241197999310.3109/03639049809089942 9876553
    [Google Scholar]
  6. AlvesN.M. ManoJ.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications.Int. J. Biol. Macromol.200843540141410.1016/j.ijbiomac.2008.09.007 18838086
    [Google Scholar]
  7. SartipzadehO. NaghibS.M. HaghiralsadatF. ShokatiF. RahmanianM. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications.Sci. Rep.2022121838210.1038/s41598‑022‑12031‑9 35589742
    [Google Scholar]
  8. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. SeyfooriA. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.Sci. Rep.20211111740410.1038/s41598‑021‑97081‑1 34465842
    [Google Scholar]
  9. SivanesanI. HasanN. Kashif AliS. ShinJ. GopalJ. MuthuM. OhJ-W. Novel chitosan derivatives and their multifaceted biological applications.Appl. Sci.2022127326710.3390/app12073267
    [Google Scholar]
  10. Gooneh-FarahaniS. Naimi-JamalM.R. NaghibS.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review.Expert Opin. Drug Deliv.2019161799910.1080/17425247.2019.1556257 30514124
    [Google Scholar]
  11. UpadhyayaL. SinghJ. AgarwalV. TewariR.P. Biomedical applications of carboxymethyl chitosans.Carbohydr. Polym.201391145246610.1016/j.carbpol.2012.07.076 23044156
    [Google Scholar]
  12. MouryaV.K. InamdaraN. Ashutosh TiwariN. Carboxymethyl chitosan and its applications.Adv. Mater. Lett.201011113310.5185/amlett.2010.3108
    [Google Scholar]
  13. GengY. XueH. ZhangZ. PanayiA.C. KnoedlerS. ZhouW. MiB. LiuG. Recent advances in carboxymethyl chitosan-based materials for biomedical applications.Carbohydr. Polym.202330512055510.1016/j.carbpol.2023.120555 36737218
    [Google Scholar]
  14. da Silva AlvesD.C. HealyB. PintoL.A.A. CadavalT.R.S.A.Jr BreslinC.B. Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments.Molecules202126359410.3390/molecules26030594 33498661
    [Google Scholar]
  15. KimE. XiongY. ChengY. WuH-C. LiuY. MorrowB. Ben-YoavH. GhodssiR. RubloffG. ShenJ. BentleyW. ShiX. PayneG. Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface.Polymers20147114610.3390/polym7010001
    [Google Scholar]
  16. PillaiC.K.S. PaulW. SharmaC.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation.Prog. Polym. Sci.200934764167810.1016/j.progpolymsci.2009.04.001
    [Google Scholar]
  17. RaoZ. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system.Int. J. Biol. Macromol.2018107Pt A1184119210.1016/j.ijbiomac.2017.09.096
    [Google Scholar]
  18. MuthaR.E. JainS.N. PatelS.R. PatilG.B. Formulation, development, and characterization of carboxymethyl chitosan triggered calcium carbonate hybrid microspheres for sustained delivery of quetiapine: In-vitro and ex-vivo studies. J. Macromol. Sci.Part B20241116
    [Google Scholar]
  19. ZhouT. ZhouH. WangF. ZhangP. ShangJ. ShiL. An injectable carboxymethyl chitosan hydrogel scaffold formed via coordination bond for antibacterial and osteogenesis in osteomyelitis.Carbohydr. Polym.202432412146610.1016/j.carbpol.2023.121466 37985077
    [Google Scholar]
  20. ZhaoL. FengZ. LyuY. YangJ. LinL. BaiH. LiY. FengY. ChenY. Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing.Int. J. Biol. Macromol.202323012323110.1016/j.ijbiomac.2023.123231 36641017
    [Google Scholar]
  21. KumirskaJ. WeinholdM.X. ThömingJ. StepnowskiP. Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of n-acetylation.Polymers2011341875190110.3390/polym3041875
    [Google Scholar]
  22. MuzzarelliR.A.A. Carboxymethylated chitins and chitosans.Carbohydr. Polym.19888112110.1016/0144‑8617(88)90032‑X
    [Google Scholar]
  23. JimtaisongA. SaewanN. Utilization of carboxymethyl chitosan in cosmetics.Int. J. Cosmet. Sci.2014361122110.1111/ics.12102 24152381
    [Google Scholar]
  24. ZającA. SąsiadekW. DymińskaL. Ropuszyńska-RobakP. HanuzaJ. PtakM. SmółkaS. LisieckiR. SkrzypczakK. Chitosan and its carboxymethyl-based membranes produced by crosslinking with magnesium phytate.Molecules20232816598710.3390/molecules28165987 37630242
    [Google Scholar]
  25. ChenX.G. ParkH.J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions.Carbohydr. Polym.200353435535910.1016/S0144‑8617(03)00051‑1
    [Google Scholar]
  26. ShindeU. AhmedM.H. SinghK. Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma.J. Drug Deliv.2013201311510.1155/2013/562727 24222858
    [Google Scholar]
  27. DemarchiC.A. DebrassiA. de Campos BuzziF. CorrêaR. FilhoV.C. RodriguesC.A. NedelkoN. DemchenkoP. Ślawska-WaniewskaA. DłużewskiP. GrenecheJ.M. A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: Synthesis, characterization and in vitro drug release.Soft Matter201410193441345010.1039/c3sm53157k 24647530
    [Google Scholar]
  28. ChenS.C. WuY.C. MiF.L. LinY.H. YuL.C. SungH.W. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.J. Control. Release200496228530010.1016/j.jconrel.2004.02.002 15081219
    [Google Scholar]
  29. AnithaA. Divya RaniV.V. KrishnaR. SreejaV. SelvamuruganN. NairS.V. TamuraH. JayakumarR. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles.Carbohydr. Polym.200978467267710.1016/j.carbpol.2009.05.028
    [Google Scholar]
  30. MüllerW.E.G. TolbaE. SchröderH.C. NeufurthM. WangS. LinkT. Al-NawasB. WangX. A new printable and durable N,O-carboxymethyl chitosan–Ca 2+ –polyphosphate complex with morphogenetic activity.J. Mater. Chem. B Mater. Biol. Med.2015381722173010.1039/C4TB01586J 32262445
    [Google Scholar]
  31. MirandaM.E.S. MarcollaC. RodríguesC.A. WilhelmH.M. SierakowskiM.R. BresolinT.M.B. de FreitasR.A. Chitosan and N ‐carboxymethylchitosan: I. The role of N ‐carboxymethylation of chitosan in the thermal stability and dynamic mechanical properties of its films.Polym. Int.200655896196910.1002/pi.2060
    [Google Scholar]
  32. BassaniH. Formation, drug-release kinetics and solution-stability of N-acetyl-N-carboxymethyl chitosan nanoparticles as potential drug carriers.Int. J. Drug Deliv.20135214223
    [Google Scholar]
  33. de FreitasR.A. DrenskiM.F. AlbA.M. ReedW.F. Characterization of stability, aggregation, and equilibrium properties of modified natural products; The case of carboxymethylated chitosans.Mater. Sci. Eng. C2010301344110.1016/j.msec.2009.08.005
    [Google Scholar]
  34. BidgoliH. ZamaniA. TaherzadehM.J. Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents.Carbohydr. Res.2010345182683268910.1016/j.carres.2010.09.024 20971451
    [Google Scholar]
  35. TimurM. PaşaA. Synthesis, characterization, swelling, and metal uptake studies of aryl cross-linked chitosan hydrogels.ACS Omega2018312174161742410.1021/acsomega.8b01872 31458347
    [Google Scholar]
  36. JayakumarR. Multifaceted carboxymethyl chitosan derivatives: properties and biomedical applications.Cham, SwitzerlandSpringer Nature2023292
    [Google Scholar]
  37. BiswasS. Biomedical applications of carboxymethyl chitosans.Handbook of Chitin and Chitosan.AmsterdamElsevier2020Vol. 3433470
    [Google Scholar]
  38. SongQ. ZhangZ. GaoJ. DingC. Synthesis and property studies of N ‐carboxymethyl chitosan.J. Appl. Polym. Sci.201111963282328510.1002/app.32925
    [Google Scholar]
  39. Ferreira FelicioS.G. SierakowskiM.R. Lucia de Oliveira PetkowiczC. SilveiraJ.L.M. LubamboA.F. Alves de FreitasR. Spherical aggregates obtained from N-carboxymethylation and acetylation of chitosan.Colloid Polym. Sci.2008286121387139410.1007/s00396‑008‑1908‑9
    [Google Scholar]
  40. Fatehi HassanabadA. ZarzyckiA.N. JeonK. DundasJ.A. VasanthanV. DenisetJ.F. FedakP.W.M. Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies.Biomolecules2021117102710.3390/biom11071027 34356652
    [Google Scholar]
  41. PandianM. SelvaprithvirajV. PradeepA. RangasamyJ. In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel.Int. J. Biol. Macromol.202118850151110.1016/j.ijbiomac.2021.08.040 34389392
    [Google Scholar]
  42. Danie KingsleyJ. RanjanS. DasguptaN. SahaP. Nanotechnology for tissue engineering: Need, techniques and applications.J. Pharm. Res.20137220020410.1016/j.jopr.2013.02.021
    [Google Scholar]
  43. JaikumarD. SajeshK.M. SoumyaS. NimalT.R. ChennazhiK.P. NairS.V. JayakumarR. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.Int. J. Biol. Macromol.20157431832610.1016/j.ijbiomac.2014.12.037 25544040
    [Google Scholar]
  44. CaiJ. GuoJ. WangS. Application of polymer hydrogels in the prevention of postoperative adhesion: A review.Gels2023929810.3390/gels9020098 36826268
    [Google Scholar]
  45. ten BroekR.P.G. StrikC. IssaY. BleichrodtR.P. van GoorH. Adhesiolysis-related morbidity in abdominal surgery.Ann. Surg.201325819810610.1097/SLA.0b013e31826f4969 23013804
    [Google Scholar]
  46. CostainD.J. KennedyR. CionaC. McAlisterV.C. LeeT.D.G. Prevention of postsurgical adhesions with N,O-carboxymethyl chitosan: Examination of the most efficacious preparation and the effect of N,O-carboxymethyl chitosan on postsurgical healing.Surgery1997121331431910.1016/S0039‑6060(97)90360‑3 9068673
    [Google Scholar]
  47. SingerA.J. ClarkR.A.F. Cutaneous wound healing.N. Engl. J. Med.19993411073874610.1056/NEJM199909023411006 10471461
    [Google Scholar]
  48. TrinhX.T. LongN.V. Van AnhL.T. NgaP.T. GiangN.N. ChienP.N. NamS.Y. HeoC.Y. A comprehensive review of natural compounds for wound healing: Targeting bioactivity perspective.Int. J. Mol. Sci.20222317957310.3390/ijms23179573 36076971
    [Google Scholar]
  49. ChoiC. NamJ.-P. NahJ.-W. Application of chitosan and chitosan derivatives as biomaterials.J. Ind. Eng. Chem.20163311010.1016/j.jiec.2015.10.028
    [Google Scholar]
  50. ToccoI. ZavanB. BassettoF. VindigniV. Nanotechnology-based therapies for skin wound regeneration.J. Nanomater.2012201211110.1155/2012/714134
    [Google Scholar]
  51. MurphyP.S. EvansG.R.D. Advances in wound healing: A review of current wound healing products.Plast. Surg. Int.201220121810.1155/2012/190436 22567251
    [Google Scholar]
  52. PoinernG.E.J. FawcettD. NgY.J. AliN. BrundavanamR.K. JiangZ.T. Nanoengineering a biocompatible inorganic scaffold for skin wound healing.J. Biomed. Nanotechnol.20106549751010.1166/jbn.2010.1148 21329044
    [Google Scholar]
  53. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  54. DaiT. TanakaM. HuangY.Y. HamblinM.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects.Expert Rev. Anti Infect. Ther.20119785787910.1586/eri.11.59 21810057
    [Google Scholar]
  55. UenoH. MoriT. FujinagaT. Topical formulations and wound healing applications of chitosan.Adv. Drug Deliv. Rev.200152210511510.1016/S0169‑409X(01)00189‑2 11718934
    [Google Scholar]
  56. FranceskoA. TzanovT. Chitin, chitosan and derivatives for wound healing and tissue engineering.Adv. Biochem. Eng. Biotechnol.2011125127 21072697
    [Google Scholar]
  57. JayakumarR. PrabaharanM. NairS.V. TokuraS. TamuraH. SelvamuruganN. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications.Prog. Mater. Sci.201055767570910.1016/j.pmatsci.2010.03.001
    [Google Scholar]
  58. GoyR. BrittoD. AssisO. A Review of the Antimicrobial Activity of Chitosan.Polimeros-ciencia E Tecnologia - POLIMEROS200919
    [Google Scholar]
  59. SeyfarthF. SchliemannS. ElsnerP. HiplerU.C. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata.Int. J. Pharm.20083531-2139148 18164151
    [Google Scholar]
  60. KongM. ChenX.G. XingK. ParkH.J. Antimicrobial properties of chitosan and mode of action: A state of the art review.Int. J. Food Microbiol.20101441516310.1016/j.ijfoodmicro.2010.09.012 20951455
    [Google Scholar]
  61. TantalaJ. Antimicrobial activity of chitosan and carboxymethyl chitosan from diferent types and sources of chitosan.Ital. J. Food Sci.20122497101
    [Google Scholar]
  62. StoicaA.E. ChircovC. GrumezescuA.M. Hydrogel dressings for the treatment of burn wounds: An up-to-date overview.Materials20201312285310.3390/ma13122853 32630503
    [Google Scholar]
  63. AragonaM. DekoninckS. RulandsS. LenglezS. MascréG. SimonsB.D. BlanpainC. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis.Nat. Commun.2017811468410.1038/ncomms14684 28248284
    [Google Scholar]
  64. AlJasserM.I. de GannesG. When you need a third hand, tape and gauze will do.J. Am. Acad. Dermatol.2021842e8310.1016/j.jaad.2019.08.037 31442536
    [Google Scholar]
  65. OryanA. AlemzadehE. MoshiriA. Burn wound healing: Present concepts, treatment strategies and future directions.J. Wound Care201726151910.12968/jowc.2017.26.1.5 28103165
    [Google Scholar]
  66. LunevaO. OlekhnovichR. UspenskayaM. Bilayer hydrogels for wound dressing and tissue engineering.Polymers20221415313510.3390/polym14153135 35956650
    [Google Scholar]
  67. WasiakJ. ClelandH. CampbellF. SpinksA. Dressings for superficial and partial thickness burns.Cochrane Libr.201320133CD00210610.1002/14651858.CD002106.pub4 23543513
    [Google Scholar]
  68. Skórkowska-TelichowskaK. CzemplikM. KulmaA. SzopaJ. The local treatment and available dressings designed for chronic wounds.J. Am. Acad. Dermatol.2013684e117e12610.1016/j.jaad.2011.06.028 21982060
    [Google Scholar]
  69. QianqianO. SongzhiK. YongmeiH. XianghongJ. SidongL. PuwangL. HuiL. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment.Int. J. Biol. Macromol.202118136937710.1016/j.ijbiomac.2021.03.085 33737190
    [Google Scholar]
  70. GrigoryanB. PaulsenS.J. CorbettD.C. SazerD.W. FortinC.L. ZaitaA.J. GreenfieldP.T. CalafatN.J. GounleyJ.P. TaA.H. JohanssonF. RandlesA. RosenkrantzJ.E. Louis-RosenbergJ.D. GalieP.A. StevensK.R. MillerJ.S. Multivascular networks and functional intravascular topologies within biocompatible hydrogels.Science2019364643945846410.1126/science.aav9750 31048486
    [Google Scholar]
  71. YangY. Campbell RitchieA. EverittN.M. Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering.Mater. Sci. Eng. C202112111184610.1016/j.msec.2020.111846 33579509
    [Google Scholar]
  72. HuangQ. ZouY. ArnoM.C. ChenS. WangT. GaoJ. DoveA.P. DuJ. Hydrogel scaffolds for differentiation of adipose-derived stem cells.Chem. Soc. Rev.201746206255627510.1039/C6CS00052E 28816316
    [Google Scholar]
  73. KongS. SongJ. WangY. WangS. SuF. LiS. Human umbilical cord blood mononuclear cells laden hydrogels made from carboxymethyl chitosan and oxidized hyaluronic acid for wound healing.J. Appl. Polym. Sci.202314020e5384810.1002/app.53848
    [Google Scholar]
  74. HuB. GaoM. Boakye-YiadomK.O. HoW. YuW. XuX. ZhangX.Q. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing.Bioact. Mater.20216124592460610.1016/j.bioactmat.2021.04.040 34095619
    [Google Scholar]
  75. ChenZ. ZhaoJ. WuH. WangH. LuX. ShahbaziM.A. WangS. A triple-network carboxymethyl chitosan-based hydrogel for hemostasis of incompressible bleeding on wet wound surfaces.Carbohydr. Polym.202330312043410.1016/j.carbpol.2022.120434 36657832
    [Google Scholar]
  76. ZhangM. YangM. WooM.W. LiY. HanW. DangX. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing.Carbohydr. Polym.202125611759010.1016/j.carbpol.2020.117590 33483076
    [Google Scholar]
  77. ZhaoY. LiR. LiuY. SongL. GaoZ. LiZ. PengX. WangP. An injectable, self-healable, antibacterial, and pro-healing oxidized pullulan polysaccharide/carboxymethyl chitosan hydrogel for early protection of open abdominal wounds.Int. J. Biol. Macromol.202325012628210.1016/j.ijbiomac.2023.126282 37572809
    [Google Scholar]
  78. OuyangY. ZhaoY. ZhengX. ZhangY. ZhaoJ. WangS. GuY. Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis.Int. J. Biol. Macromol.2023242Pt 312496010.1016/j.ijbiomac.2023.124960 37230448
    [Google Scholar]
  79. AnsaryT.M. HossainM.R. KamiyaK. KomineM. OhtsukiM. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging.Int. J. Mol. Sci.2021228397410.3390/ijms22083974 33921444
    [Google Scholar]
  80. LiuH.M. ChengM.Y. XunM.H. ZhaoZ.W. ZhangY. TangW. ChengJ. NiJ. WangW. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols.Int. J. Mol. Sci.2023244375510.3390/ijms24043755 36835162
    [Google Scholar]
  81. PillaiS. OresajoC. HaywardJ. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation‐induced matrix degradation – a review.Int. J. Cosmet. Sci.2005271173410.1111/j.1467‑2494.2004.00241.x 18492178
    [Google Scholar]
  82. BissettD.L. ChatterjeeR. HannonD.P. Photoprotective effect of topical anti-inflammatory agents against ultraviolet radiation-induced chronic skin damage in the hairless mouse.Photodermatol. Photoimmunol. Photomed.199074153158 2076370
    [Google Scholar]
  83. KangI.C. KimS.A. SongG.Y. BaekN.I. ParkY.D. RyuS.Y. SaikiI. KimS.H. Effects of the ethyl acetate fraction of Spatholobi caulis on tumour cell aggregation and migration.Phytother. Res.200317216316710.1002/ptr.1226 12601681
    [Google Scholar]
  84. ThacherS.M. VasudevanJ. TsangK.Y. NagpalS. ChandraratnaR.A.S. New dermatological agents for the treatment of psoriasis.J. Med. Chem.200144328129710.1021/jm0000214 11462969
    [Google Scholar]
  85. VerschooreM. BouclierM. CzernielewskiJ. HensbyC. Topical retinoids.Dermatol. Clin.199311110711510.1016/S0733‑8635(18)30287‑0 8435905
    [Google Scholar]
  86. GuentherL.C. Topical tazarotene therapy for psoriasis, acne vulgaris, and photoaging.Skin Therapy Lett.20027314 12007011
    [Google Scholar]
  87. GriffithsC.E. Retinoids and vitamin D analogues: Action on nuclear transcription.Hosp. Med.19985911216 9798558
    [Google Scholar]
  88. GuptaA.K. ChowM. Pimecrolimus: A review.J. Eur. Acad. Dermatol. Venereol.200317549350310.1046/j.1468‑3083.2003.00692.x 12941081
    [Google Scholar]
  89. RawlingsA.V. MattsP.J. Stratum corneum moisturization at the molecular level: An update in relation to the dry skin cycle.J. Invest. Dermatol.200512461099111010.1111/j.1523‑1747.2005.23726.x 15955083
    [Google Scholar]
  90. PolaskovaJ. PavlackovaJ. VltavskaP. MokrejsP. JanisR. Moisturizing effect of topical cosmetic products applied to dry skin.J. Cosmet. Sci.2013645329340 24139432
    [Google Scholar]
  91. DuttaP.K. DuttaJ. TripathiV.S. Chitin and chitosan: Chemistry, properties and applications.J. Sci. Ind. Res.2004632031
    [Google Scholar]
  92. MenonV. Venugopal. Cosmeceuticals from marine fish and shellfish.Marine Cosmeceuticals: Trends and Prospects. KimS-K. Boca Raton, FLCRC Press201221123210.1201/b10120
    [Google Scholar]
  93. ChenL. DuY. ZengX. Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of carboxymethyl chitosan.Carbohydr. Res.2003338433334010.1016/S0008‑6215(02)00462‑7 12559731
    [Google Scholar]
  94. MuzzarelliR. CucchiaraM. MuzzarelliC. N-carboxymethyl chitosan in innovative cosmeceutical products.J. Appl. Cosmetol.200220201208
    [Google Scholar]
  95. NevesJ. SarmentoB. Mucosal Delivery of Biopharmaceuticals: Biology, Challenges, and Strategies.New YorkSpringer201410.1007/978‑1‑4614‑9524‑6
    [Google Scholar]
  96. MuzzarelliR. MuzzarelliC. Chitosan chemistry: Relevance to the biomedical sciences.Polysaccharides I. Advances in Polymer ScienceSpringer2005
    [Google Scholar]
  97. XiaY. WangD. LiuD. SuJ. JinY. WangD. HanB. JiangZ. LiuB. Applications of chitosan and its derivatives in skin and soft tissue diseases.Front. Bioeng. Biotechnol.20221089466710.3389/fbioe.2022.894667 35586556
    [Google Scholar]
  98. EndoM. SetsuN. FujiwaraT. IshiiT. NakagawaM. YahiroK. KimuraA. ShimadaE. NakashimaY. MatsumotoY. Diagnosis and management of subcutaneous soft tissue sarcoma.Curr. Treat. Options Oncol.20192075410.1007/s11864‑019‑0656‑z 31129726
    [Google Scholar]
  99. PeetermansM. de ProstN. EckmannC. Norrby-TeglundA. SkredeS. De WaeleJ.J. Necrotizing skin and soft-tissue infections in the intensive care unit.Clin. Microbiol. Infect.202026181710.1016/j.cmi.2019.06.031 31284035
    [Google Scholar]
  100. GuoB. QuJ. ZhaoX. ZhangM. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration.Acta Biomater.20198418019310.1016/j.actbio.2018.12.008 30528606
    [Google Scholar]
  101. AlvenS. AderibigbeB.A. Chitosan and cellulose-based hydrogels for wound management.Int. J. Mol. Sci.20202124965610.3390/ijms21249656 33352826
    [Google Scholar]
  102. RaoF. WangY. ZhangD. LuC. CaoZ. SuiJ. WuM. ZhangY. PiW. WangB. KouY. WangX. ZhangP. JiangB. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats.Theranostics20201041590160310.7150/thno.36272 32042324
    [Google Scholar]
  103. ZhaoY. HaoJ. ChenZ. LiM. RenJ. FuX. Blood-clotting model and simulation analysis of polyvinyl alcohol–chitosan composite hemostatic materials.J. Mater. Chem. B Mater. Biol. Med.20219275465547510.1039/D1TB00159K 34143163
    [Google Scholar]
  104. HuB. BaoG. XuX. YangK. Topical hemostatic materials for coagulopathy.J. Mater. Chem. B Mater. Biol. Med.202210121946195910.1039/D1TB02523F 35230377
    [Google Scholar]
  105. MaticaM.A. AachmannF.L. TøndervikA. SlettaH. OstafeV. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action.Int. J. Mol. Sci.20192023588910.3390/ijms20235889 31771245
    [Google Scholar]
  106. WatkinsR.R. DavidM.Z. Approach to the patient with a skin and soft tissue infection.Infect. Dis. Clin. North Am.202135114810.1016/j.idc.2020.10.011 33494872
    [Google Scholar]
  107. Maleki DanaP. HallajzadehJ. AsemiZ. MansourniaM.A. YousefiB. Chitosan applications in studying and managing osteosarcoma.Int. J. Biol. Macromol.202116932132910.1016/j.ijbiomac.2020.12.058 33310094
    [Google Scholar]
  108. OryanA. SahviehS. Effectiveness of chitosan scaffold in skin, bone and cartilage healing.Int. J. Biol. Macromol.2017104Pt A1003101110.1016/j.ijbiomac.2017.06.124
    [Google Scholar]
  109. HemmingsenL.M. JulinK. AhsanL. BasnetP. JohannessenM. Škalko-BasnetN. Chitosomes-in-chitosan hydrogel for acute skin injuries: Prevention and infection control.Mar. Drugs202119526910.3390/md19050269 34065943
    [Google Scholar]
  110. RashkiS. AsgarpourK. TarrahimofradH. HashemipourM. EbrahimiM.S. FathizadehH. KhorshidiA. KhanH. MarzhoseyniZ. Salavati-NiasariM. MirzaeiH. Chitosan-based nanoparticles against bacterial infections.Carbohydr. Polym.202125111710810.1016/j.carbpol.2020.117108 33142645
    [Google Scholar]
  111. SunX. LiJ. ShaoK. SuC. BiS. MuY. ZhangK. CaoZ. WangX. ChenX. FengC. A composite sponge based on alkylated chitosan and diatom-biosilica for rapid hemostasis.Int. J. Biol. Macromol.20211822097210710.1016/j.ijbiomac.2021.05.123 34081956
    [Google Scholar]
  112. SpeicieneV. GuilmineauF. KulozikU. LeskauskaiteD. The effect of chitosan on the properties of emulsions stabilized by whey proteins.Food Chem.200710241048105410.1016/j.foodchem.2006.06.041
    [Google Scholar]
  113. MunS. DeckerE.A. McClementsD.J. Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers.Langmuir200521146228623410.1021/la050502w 15982024
    [Google Scholar]
  114. TzoumakiM.V. MoschakisT. KiosseoglouV. BiliaderisC.G. Oil-in-water emulsions stabilized by chitin nanocrystal particles.Food Hydrocoll.20112561521152910.1016/j.foodhyd.2011.02.008
    [Google Scholar]
  115. ElsabeeM.Z. MorsiR.E. Al-SabaghA.M. Surface active properties of chitosan and its derivatives.Colloids Surf. B Biointerfaces200974111610.1016/j.colsurfb.2009.06.021 19682870
    [Google Scholar]
  116. ChenY. WuW. YuJ. WangY. ZhuJ. HuZ. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator.J. Biomater. Sci. Polym. Ed.202031141770179210.1080/09205063.2020.1775760 32462969
    [Google Scholar]
  117. SahaS. AryaS.K. SinghS.P. SreenivasK. MalhotraB.D. GuptaV. Nanoporous cerium oxide thin film for glucose biosensor.Biosens. Bioelectron.20092472040204510.1016/j.bios.2008.10.032 19112013
    [Google Scholar]
  118. ShenY. WangZ. WangY. MengZ. ZhaoZ. A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection.Carbohydr. Polym.202127411864210.1016/j.carbpol.2021.118642 34702463
    [Google Scholar]
  119. LiuZ. LiuH. WangL. SuX. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles.Anal. Chim. Acta2016932889710.1016/j.aca.2016.05.025 27286773
    [Google Scholar]
  120. YangG. CaoJ. LiL. RanaR.K. ZhuJ-J. Carboxymethyl chitosan-functionalized graphene for label-free electrochemical cytosensing.Carbon20135112413310.1016/j.carbon.2012.08.020
    [Google Scholar]
  121. ShariatiniaZ. Carboxymethyl chitosan: Properties and biomedical applications.Int. J. Biol. Macromol.2018120Pt B1406141910.1016/j.ijbiomac.2018.09.131 30267813
    [Google Scholar]
  122. LuoY. TengZ. WangQ. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3.J. Agric. Food Chem.201260383684310.1021/jf204194z 22224939
    [Google Scholar]
  123. WangJ. ChenJ-S. ZongJ-Y. ZhaoD. LiF. ZhuoR-X. ChengS-X. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery.J. Phys. Chem. C201011444189401894510.1021/jp105906p
    [Google Scholar]
  124. ChenL. TianZ. DuY. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices.Biomaterials200425173725373210.1016/j.biomaterials.2003.09.100 15020148
    [Google Scholar]
  125. FengC. WangZ. JiangC. KongM. ZhouX. LiY. ChengX. ChenX. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation.Int. J. Pharm.2013457115816710.1016/j.ijpharm.2013.07.079 24029170
    [Google Scholar]
  126. StafstromC.E. CarmantL. Seizures and epilepsy: An overview for neuroscientists.Cold Spring Harb. Perspect. Med.201556a02242610.1101/cshperspect.a022426 26033084
    [Google Scholar]
  127. LiuS. YangS. HoP.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain.Asian J. Pharm. Sci.2018131728110.1016/j.ajps.2017.09.001 32104380
    [Google Scholar]
  128. JiangZ. HanB. LiuW. PengY. Evaluation on biological compatibility of carboxymethyl chitosan as biomaterials for antitumor drug delivery.J. Biomater. Appl.201731798599410.1177/0885328216688337 28077049
    [Google Scholar]
  129. WangW. MengQ. LiQ. LiuJ. ZhouM. JinZ. ZhaoK. Chitosan derivatives and their application in biomedicine.Int. J. Mol. Sci.202021248710.3390/ijms21020487 31940963
    [Google Scholar]
  130. ZhaoJ. LiJ. JiangZ. TongR. DuanX. BaiL. ShiJ. Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): The potential immune adjuvants and nano carriers.Int. J. Biol. Macromol.202015433934810.1016/j.ijbiomac.2020.03.065 32184144
    [Google Scholar]
  131. DmourI. IslamN. Recent advances on chitosan as an adjuvant for vaccine delivery.Int. J. Biol. Macromol.202220049851910.1016/j.ijbiomac.2021.12.129 34973993
    [Google Scholar]
  132. GongX. GaoY. ShuJ. ZhangC. ZhaoK. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines.Vaccines20221011190610.3390/vaccines10111906 36423002
    [Google Scholar]
  133. ZhaoZ. PengY. ShiX. ZhaoK. Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway.Int. J. Pharm.202363612284710.1016/j.ijpharm.2023.122847 36933583
    [Google Scholar]
  134. YangJ. ChenJ. PanD. WanY. WangZ. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery.Carbohydr. Polym.201392171972510.1016/j.carbpol.2012.09.036 23218359
    [Google Scholar]
  135. XieP. LiuP. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release.Carbohydr. Polym.202023611609310.1016/j.carbpol.2020.116093 32172895
    [Google Scholar]
  136. PaivaA.E. Medeiros BorsagliF.G.L. Ecofriendly multiphase aqueous colloidal based on carboxymethylcellulose nanoconjugates with luminescence properties for potential bioimaging cancer cells.J. Polym. Environ.202028123076309610.1007/s10924‑020‑01825‑5
    [Google Scholar]
  137. ChengX. ZengX. ZhengY. WangX. TangR. Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo.Carbohydr. Polym.2019208596910.1016/j.carbpol.2018.12.063 30658832
    [Google Scholar]
  138. WahidF. ZhaoX-J. JiaS-R. BaiH. ZhongC. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives.Compos., Part B Eng.202020010820810.1016/j.compositesb.2020.108208
    [Google Scholar]
  139. SoodA. GuptaA. AgrawalG. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications.Carbohydr. Polym. Technol. Appl.2021210006710.1016/j.carpta.2021.100067
    [Google Scholar]
  140. ZhanY. FuW. XingY. MaX. ChenC. Advances in versatile anti-swelling polymer hydrogels.Mater. Sci. Eng. C202112711220810.1016/j.msec.2021.112208 34225860
    [Google Scholar]
  141. SinghN. AgarwalS. JainA. KhanS. 3-Dimensional cross linked hydrophilic polymeric network hydrogels: An agriculture boom.Agric. Water Manage.202125310693910.1016/j.agwat.2021.106939
    [Google Scholar]
  142. MituraS. SionkowskaA. JaiswalA. Biopolymers for hydrogels in cosmetics Review.J. Mater. Sci. Mater. Med.20203165010.1007/s10856‑020‑06390‑w 32451785
    [Google Scholar]
  143. GullN. KhanS.M. ButtO.M. IslamA. ShahA. JabeenS. KhanS.U. KhanA. KhanR.U. ButtM.T.Z. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium.Int. J. Biol. Macromol.202016217518710.1016/j.ijbiomac.2020.06.133 32562726
    [Google Scholar]
  144. ÖzkahramanB. TamahkarE. İdilN. Kılıç SulogluA. PerçinI. Evaluation of hyaluronic acid nanoparticle embedded chitosan–gelatin hydrogels for antibiotic release.Drug Dev. Res.202182224125010.1002/ddr.21747 33009868
    [Google Scholar]
  145. AnirudhanT.S. Chithra SekharV. AthiraV.S. Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery.Int. J. Biol. Macromol.202015046847910.1016/j.ijbiomac.2020.02.053 32044367
    [Google Scholar]
  146. LemosP.V.F. MarcelinoH.R. CardosoL.G. SouzaC.O. DruzianJ.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials.Int. J. Biol. Macromol.202118421823410.1016/j.ijbiomac.2021.06.077 34144062
    [Google Scholar]
  147. NezamiS. SadeghiM. MohajeraniH. A novel pH-sensitive and magnetic starch-based nanocomposite hydrogel as a controlled drug delivery system for wound healing.Polym. Degrad. Stabil.202017910925510.1016/j.polymdegradstab.2020.109255
    [Google Scholar]
  148. HuY. HuS. ZhangS. DongS. HuJ. KangL. YangX. A double-layer hydrogel based on alginate-carboxymethyl cellulose and synthetic polymer as sustained drug delivery system.Sci. Rep.2021111914210.1038/s41598‑021‑88503‑1 33911150
    [Google Scholar]
  149. MokhtariH. TavakoliS. SafarpourF. KharazihaM. Bakhsheshi-RadH.R. RamakrishnaS. BertoF. Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering.Polymers20211311174410.3390/polym13111744 34073518
    [Google Scholar]
  150. HemmatiK. MasoumiA. GhaemyM. Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release.Carbohydr. Polym.201613663064010.1016/j.carbpol.2015.09.006 26572395
    [Google Scholar]
  151. Sadat HosseiniM. HemmatiK. GhaemyM. Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery.Int. J. Biol. Macromol.20168280681510.1016/j.ijbiomac.2015.09.067 26434524
    [Google Scholar]
  152. KapustaO. JaroszA. StadnikK. GiannakoudakisD.A. BarczyńskiB. BarczakM. Antimicrobial natural hydrogels in biomedicine: Properties, applications, and challenges—a concise review.Int. J. Mol. Sci.2023243219110.3390/ijms24032191 36768513
    [Google Scholar]
  153. YangY. LiuY. ChenS. CheongK.L. TengB. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery.Carbohydr. Polym.202024611661710.1016/j.carbpol.2020.116617 32747257
    [Google Scholar]
  154. XuC. CaoL. BilalM. CaoC. ZhaoP. ZhangH. HuangQ. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity.Carbohydr. Polym.202126211793310.1016/j.carbpol.2021.117933 33838810
    [Google Scholar]
  155. XuC. GuanS. XuJ. GongW. LiuT. MaX. SunC. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel.Carbohydr. Polym.202125211721010.1016/j.carbpol.2020.117210 33183643
    [Google Scholar]
  156. PanditA.H. NisarS. ImtiyazK. NadeemM. MazumdarN. RizviM.M.A. AhmadS. Injectable, self-healing, and biocompatible N, O -carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery.Biomacromolecules20212293731374510.1021/acs.biomac.1c00537 34436877
    [Google Scholar]
  157. YuR. Cornette de Saint-CyrL. SoussanL. BarboiuM. LiS. Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications.Int. J. Biol. Macromol.20211671146115510.1016/j.ijbiomac.2020.11.068 33189749
    [Google Scholar]
  158. ZhangS. KangL. HuS. HuJ. FuY. HuY. YangX. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease.Int. J. Biol. Macromol.20211671598161210.1016/j.ijbiomac.2020.11.117 33220374
    [Google Scholar]
  159. DasS.S. Carboxymethyl chitosan in advanced drug-delivery applications.Chitosan in Drug Delivery HasnainM.S. BegS. NayakA.K. Academic Press202232336010.1016/B978‑0‑12‑819336‑5.00006‑6
    [Google Scholar]
  160. OmerA.M. AhmedM.S. El-SubruitiG.M. KhalifaR.E. EltaweilA.S. pH-Sensitive alginate/carboxymethyl chitosan/aminated chitosan microcapsules for efficient encapsulation and delivery of diclofenac sodium.Pharmaceutics202113333810.3390/pharmaceutics13030338 33807967
    [Google Scholar]
  161. ZhaoM. ZhouH. ChenL. HaoL. ChenH. ZhouX. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide.Carbohydr. Polym.202024311643310.1016/j.carbpol.2020.116433 32532386
    [Google Scholar]
  162. SakrM.A. SakthivelK. HossainT. ShinS.R. SiddiquaS. KimJ. KimK. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering.J. Biomed. Mater. Res. A2022110370872410.1002/jbm.a.37310 34558808
    [Google Scholar]
  163. LiC. LiF. WangK. WangQ. LiuH. SunX. XieD. Synthesis, characterizations, and release mechanisms of carboxymethyl chitosan-graphene oxide-gelatin composite hydrogel for controlled delivery of drug.Inorg. Chem. Commun.202315511096510.1016/j.inoche.2023.110965
    [Google Scholar]
  164. GharakhlooM. KarbarzM. Autonomous self-healing hydrogels: Recent development in fabrication strategies.Eur. Polym. J.202216511100410.1016/j.eurpolymj.2022.111004
    [Google Scholar]
  165. SikdarP. UddinM.M. DipT.M. IslamS. HoqueM.S. DharA.K. WuS. Recent advances in the synthesis of smart hydrogels.Materials Advances20212144532457310.1039/D1MA00193K
    [Google Scholar]
  166. Madduma-BandarageU.S.K. MadihallyS.V. Synthetic hydrogels: Synthesis, novel trends, and applications.J. Appl. Polym. Sci.2021138195037610.1002/app.50376
    [Google Scholar]
  167. ZhangH. ShenH. LanJ. WuH. WangL. ZhouJ. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors.Carbohydr. Polym.202229511984810.1016/j.carbpol.2022.119848 35988999
    [Google Scholar]
  168. KhanS. AkhtarN. MinhasM.U. BadshahS.F. pH/thermo-dual responsive tunable in situ cross-linkable depot injectable hydrogels based on poly(N-Isopropylacrylamide)/Carboxymethyl chitosan with potential of controlled localized and systemic drug delivery.AAPS PharmSciTech201920311910.1208/s12249‑019‑1328‑9 30790143
    [Google Scholar]
  169. RodkateN. RutnakornpitukM. Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release.Carbohydr. Polym.201615125125910.1016/j.carbpol.2016.05.081 27474565
    [Google Scholar]
  170. JeongH.J. NamS.J. SongJ.Y. ParkS.N. Synthesis and physicochemical properties of pH-sensitive hydrogel based on carboxymethyl chitosan/2-hydroxyethyl acrylate for transdermal delivery of nobiletin.J. Drug Deliv. Sci. Technol.20195119420310.1016/j.jddst.2019.02.029
    [Google Scholar]
  171. YuR. ZhangY. BarboiuM. MaumusM. NoëlD. JorgensenC. LiS. Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold.Carbohydr. Polym.202024411647110.1016/j.carbpol.2020.116471 32536386
    [Google Scholar]
  172. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  173. KaurR. KaurS. Role of polymers in drug delivery.J. Drug Deliv. Ther.2014433236
    [Google Scholar]
  174. LaftahW.A. HashimS. IbrahimA.N. Polymer hydrogels: A review.Polym. Plast. Technol. Eng.201150141475148610.1080/03602559.2011.593082
    [Google Scholar]
  175. ZhaoF. YaoD. GuoR. DengL. DongA. ZhangJ. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications.Nanomaterials2015542054213010.3390/nano5042054 28347111
    [Google Scholar]
  176. BarkhordariS. YadollahiM. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for cephalexin oral delivery.Appl. Clay Sci.2016121-122778510.1016/j.clay.2015.12.026
    [Google Scholar]
  177. YadollahiM. GholamaliI. NamaziH. AghazadehM. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels.Int. J. Biol. Macromol.20157413614110.1016/j.ijbiomac.2014.11.032 25524743
    [Google Scholar]
  178. YadollahiM. NamaziH. AghazadehM. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides.Int. J. Biol. Macromol.20157926927710.1016/j.ijbiomac.2015.05.002 25964179
    [Google Scholar]
  179. KłosińskiK.K. WachR.A. Girek-BąkM.K. RokitaB. KołatD. Kałuzińska-KołatŻ. KłosińskaB. DudaŁ. PasiekaZ.W. Biocompatibility and mechanical properties of carboxymethyl chitosan hydrogels.Polymers202215114410.3390/polym15010144 36616494
    [Google Scholar]
  180. YadollahiM. GholamaliI. NamaziH. AghazadehM. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels.Int. J. Biol. Macromol.20157310911410.1016/j.ijbiomac.2014.10.063 25605426
    [Google Scholar]
  181. GholamaliI. Facile preparation of carboxymethyl cellulose/Cu bionanocomposite hydrogels for controlled release of ibuprofen.Regen. Eng. Transl. Med.20196182189
    [Google Scholar]
  182. ForoutanR. AhmadlouydarabM. RamavandiB. MohammadiR. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite.J. Environ. Chem. Eng.2018656049605810.1016/j.jece.2018.09.030
    [Google Scholar]
  183. ShenJ. SongZ. QianX. YangF. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: Preparation and their use in papermaking.Carbohydr. Polym.201081354555310.1016/j.carbpol.2010.03.012
    [Google Scholar]
  184. ChenY. LongY. LiQ. ChenX. XuX. Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II).Int. J. Biol. Macromol.201912610711710.1016/j.ijbiomac.2018.12.119 30557641
    [Google Scholar]
  185. Mohd AliN. Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes.J. Non-Cryst. Solids2019511201211
    [Google Scholar]
  186. NanN.F.C. ZainuddinN. AhmadM. Preparation and swelling study of CMC hydrogel as potential superabsorbent.Pertanika J. Sci. Technol.201927489498
    [Google Scholar]
  187. Behzadi NiaS. PooresmaeilM. NamaziH. Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: A controlled amoxicillin nanocarrier for colonic bacterial infections treatment.Int. J. Biol. Macromol.20201551401140910.1016/j.ijbiomac.2019.11.115 31733247
    [Google Scholar]
  188. YoussefA.M. El-SayedS.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook.Carbohydr. Polym.2018193192710.1016/j.carbpol.2018.03.088 29773372
    [Google Scholar]
  189. RakhshaeiR. NamaziH. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.Mater. Sci. Eng. C20177345646410.1016/j.msec.2016.12.097 28183632
    [Google Scholar]
  190. JavanbakhtS. ShaabaniA. Carboxymethyl cellulose-based oral delivery systems.Int. J. Biol. Macromol.2019133212910.1016/j.ijbiomac.2019.04.079 30986470
    [Google Scholar]
  191. RasoulzadehM. NamaziH. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent.Carbohydr. Polym.201716832032610.1016/j.carbpol.2017.03.014 28457456
    [Google Scholar]
  192. HamediH. MoradiS. HudsonS.M. TonelliA.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review.Carbohydr. Polym.201819944546010.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  193. AliA. AhmedS. A review on chitosan and its nanocomposites in drug delivery.Int. J. Biol. Macromol.201810927328610.1016/j.ijbiomac.2017.12.078 29248555
    [Google Scholar]
  194. KhorasaniM.T. JoorablooA. MoghaddamA. ShamsiH. MansooriMoghadam, Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application.Int. J. Biol. Macromol.20181141203121510.1016/j.ijbiomac.2018.04.010 29634965
    [Google Scholar]
  195. RivaR. Chitosan and chitosan derivatives in drug delivery and tissue engineering.Chitosan for Biomaterials II. Advances in Polymer ScienceSpringerBerlin, Heidelberg.2011244194410.1007/12_2011_137
    [Google Scholar]
  196. Morin-CriniN. LichtfouseE. TorriG. CriniG. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry.Environ. Chem. Lett.2019171667169210.1007/s10311‑019‑00904‑x
    [Google Scholar]
  197. MerzendorferH. CohenE. Chitin/chitosan: Versatile ecological, industrial, and biomedical applications.BIS20191254162410.1007/978‑3‑030‑12919‑4_14
    [Google Scholar]
  198. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  199. GholamaliI. AsnaashariisfahaniM. AlipourE. Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan–poly (vinyl alcohol) for use in a drug delivery system. Regener.Eng. Transl. Med.2019613815310.1007/s40883‑019‑00120‑7
    [Google Scholar]
  200. GholamaliI. AsnaashariisfahaniM. AlipourE. SepahiA.A. In-situ synthesized carboxymethyl chitosan/poly(vinyl alcohol) bio-nanocomposite hydrogels containing nanoparticles with drug-delivery properties.Bull. Mater. Sci.202043126410.1007/s12034‑020‑02231‑2
    [Google Scholar]
  201. Iman Gholamali AsnaashariisfahaniM. AlipourE. pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan/poly(vinyl alcohol)/ZnO nanoparticle with drug delivery properties.Polym. Sci. Ser. A202062550251410.1134/S0965545X20050089
    [Google Scholar]
  202. GholamaliI. AlipourE. Carboxymethyl chitosan/starch/CuO nanocomposite hydrogels for controlled release of amoxicillin.Regen. Eng. Transl. Med.20206398406
    [Google Scholar]
  203. WahidF. WangH.S. LuY.S. ZhongC. ChuL.Q. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels.Int. J. Biol. Macromol.201710169069510.1016/j.ijbiomac.2017.03.132 28356237
    [Google Scholar]
  204. WahidF. YinJ.J. XueD.D. XueH. LuY.S. ZhongC. ChuL.Q. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels.Int. J. Biol. Macromol.20168827327910.1016/j.ijbiomac.2016.03.044 27017980
    [Google Scholar]
  205. UllahK. SohailM. MurtazaG. KhanS.A. Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: Fabrication, characterization, In-Vitro and In-Vivo safety profiling.Int. J. Biol. Macromol.201912253854810.1016/j.ijbiomac.2018.10.203 30389527
    [Google Scholar]
  206. RafieianS. MirzadehH. MahdaviH. MasoumiM.E. A review on nanocomposite hydrogels and their biomedical applications.Sci. Eng. Compos. Mater.201926115417410.1515/secm‑2017‑0161
    [Google Scholar]
  207. Sánchez-CidP. Jiménez-RosadoM. RomeroA. Pérez-PuyanaV. Novel trends in hydrogel development for biomedical applications: A review.Polymers20221415302310.3390/polym14153023 35893984
    [Google Scholar]
  208. SharmaG. ThakurB. NaushadM. KumarA. StadlerF. J. AlfadulS.M. MolaG.T. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection.Environ. Chem. Lett.20181611314610.1007/s10311‑017‑0671‑x
    [Google Scholar]
  209. SchexnailderP. SchmidtG. Nanocomposite polymer hydrogels.Colloid Polym. Sci.2009287111110.1007/s00396‑008‑1949‑0
    [Google Scholar]
  210. YadollahiM. FarhoudianS. BarkhordariS. GholamaliI. FarhadnejadH. MotasadizadehH. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems.Int. J. Biol. Macromol.20168227327810.1016/j.ijbiomac.2015.09.064 26433177
    [Google Scholar]
  211. HamidiM. AzadiA. RafieiP. Hydrogel nanoparticles in drug delivery.Adv. Drug Deliv. Rev.200860151638164910.1016/j.addr.2008.08.002 18840488
    [Google Scholar]
  212. HaraguchiK. Nanocomposite hydrogels.Curr. Opin. Solid State Mater. Sci.2007113-4475410.1016/j.cossms.2008.05.001
    [Google Scholar]
  213. KabiriK. OmidianH. Zohuriaan-MehrM.J. DoroudianiS. Superabsorbent hydrogel composites and nanocomposites: A review.Polym. Compos.201132227728910.1002/pc.21046
    [Google Scholar]
  214. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  215. DristantU. MukherjeeK. SahaS. MaityD. An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.20232210.1177/15330338231152083 36718541
    [Google Scholar]
  216. MadhusudhanA. ReddyG. VenkateshamM. VeerabhadramG. KumarD. NatarajanS. YangM.Y. HuA. SinghS. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan.Int. J. Mol. Sci.20141558216823410.3390/ijms15058216 24821542
    [Google Scholar]
  217. ZhouH. ChenJ. ZhangX. ChenJ. ChenJ. JiaS. WangD. ZengH. WengJ. YuF. Exploring the application of graphene oxide-based nanomaterials in the repair of osteoporotic fractures.Nanomaterials202414655310.3390/nano14060553 38535701
    [Google Scholar]
  218. SunX. LiuZ. WelsherK. RobinsonJ.T. GoodwinA. ZaricS. DaiH. Nano-graphene oxide for cellular imaging and drug delivery.Nano Res.20081320321210.1007/s12274‑008‑8021‑8 20216934
    [Google Scholar]
  219. ShiY. XiongZ. LuX. YanX. CaiX. XueW. Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery.J. Mater. Sci. Mater. Med.2016271116910.1007/s10856‑016‑5774‑6 27709459
    [Google Scholar]
  220. RayaI. Carboxymethyl chitosan nano-fibers for controlled releasing 5-fluorouracil anticancer drug.J. Nanostruct.202212136143
    [Google Scholar]
  221. RazaM.A. LimY.M. LeeS.W. SeralathanK.K. ParkS.H. Synthesis and characterization of hydrogels based on carboxymethyl chitosan and poly(vinylpyrrolidone) blends prepared by electron beam irradiation having anticancer efficacy, and applications as drug carrier for controlled release of drug.Carbohydr. Polym.202125811771810.1016/j.carbpol.2021.117718 33593580
    [Google Scholar]
  222. AnithaA. MayaS. DeepaN. ChennazhiK.P. NairS.V. TamuraH. JayakumarR. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells.Carbohydr. Polym.201183245246110.1016/j.carbpol.2010.08.008
    [Google Scholar]
  223. AnithaA. MayaS. DeepaN. ChennazhiK.P. NairS.V. JayakumarR. Curcumin-loadedN. O-carboxymethyl chitosan nanoparticles for cancer drug delivery.J. Biomater. Sci. Polym. Ed.201223111381140010.1163/092050611X581534 21722423
    [Google Scholar]
  224. BenettayebA. SeihoubF.Z. PalP. GhoshS. UsmanM. ChiaC.H. UsmanM. SillanpääM. Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants.Nanomaterials202313344710.3390/nano13030447 36770407
    [Google Scholar]
  225. VakiliM. DengS. CagnettaG. WangW. MengP. LiuD. YuG. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review.Separ. Purif. Tech.201922437338710.1016/j.seppur.2019.05.040
    [Google Scholar]
  226. AshrafA. DuttaJ. FarooqA. RafatullahM. PalK. KyzasG.Z. Chitosan-based materials for heavy metal adsorption: Recent advancements, challenges and limitations.J. Mol. Struct.2024130913822510.1016/j.molstruc.2024.138225
    [Google Scholar]
  227. YuanH. LiuW. FuY. WuJ. ChenS. WangX. Clinical applicable carboxymethyl chitosan with gel-forming and stabilizing properties based on terminal sterilization methods of electron beam irradiation.ACS Omega2024916185991860710.1021/acsomega.4c01299 38680333
    [Google Scholar]
  228. SouzaV.G.L. PiresJ.R.A. RodriguesC. CoelhosoI.M. FernandoA.L. Chitosan composites in packaging industry—Current trends and future challenges.Polymers202012241710.3390/polym12020417 32054097
    [Google Scholar]
  229. LiZ. LiuC. HongS. LianH. MeiC. LeeJ. WuQ. HubbeM.A. LiM-C. Recent advances in extraction and processing of chitin using deep eutectic solvents.Chem. Eng. J.202244613695310.1016/j.cej.2022.136953
    [Google Scholar]
  230. SarfrazM.H. HayatS. SiddiqueM.H. AslamB. AshrafA. SaqaleinM. KhurshidM. SarfrazM.F. AfzalM. MuzammilS. Chitosan based coatings and films: A perspective on antimicrobial, antioxidant, and intelligent food packaging.Prog. Org. Coat.202418810823510.1016/j.porgcoat.2024.108235
    [Google Scholar]
  231. SeyedzadehS. RahimianF. GleskI. RoperM. Machine learning for estimation of building energy consumption and performance: A review.Vis. Eng.20186510.1186/s40327‑018‑0064‑7
    [Google Scholar]
  232. MittalH. KushwahaO.S. Machine learning in commercialized coatings.Functional Coatings.Hoboken, NJWiley202445047410.1002/9781394207305.ch17
    [Google Scholar]
  233. MittalH. KushwahaO.S. Policy implementation roadmap, diverse perspectives, challenges, solutions towards low-carbon hydrogen economy.Green and Low-Carbon Economy.Bon View Publishing Pte Ltd.202410.47852/bonviewGLCE42021846
    [Google Scholar]
  234. ArafaE.G. MahmoudR. GadelhakY. GawadO.F.A. Design, preparation, and performance of different adsorbents based on carboxymethyl chitosan/sodium alginate hydrogel beads for selective adsorption of Cadmium (II) and Chromium (III) metal ions.Int. J. Biol. Macromol.2024273Pt 113280910.1016/j.ijbiomac.2024.132809 38825296
    [Google Scholar]
  235. MumtazM. Chitosan-based nanomaterials for removal of water pollutants.Chitosan-Based Hybrid Nanomaterials. AliN. Elsevier202429131810.1016/B978‑0‑443‑21891‑0.00016‑0
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298313239240823111258
Loading
/content/journals/mroc/10.2174/0118756298313239240823111258
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test