Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

This review is about a class of plant polyphenols known as Stilbenes. Resveratrol – the first stilbene was extracted from White Hellebore in 1940, since then 400 plus stilbene derivatives have been discovered. The core purpose of this paper is to summarize the history, extraction sources, biosynthesis and chemical synthesis and applications of stilbenes. Apart from biosynthesis, its novel derivatives are being synthesized in laboratories. This class of compounds has extensive clinical (including antioxidant, anticancer, anti-inflammatory activities ) and industrial applications such as optical dyes, laser dyes, scintillators, .

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298307930240531072440
2024-06-20
2025-10-14
Loading full text...

Full text loading...

References

  1. PervaizS. Resveratrol: from grapevines to mammalian biology.FASEB J.200317141975198510.1096/fj.03‑0168rev14597667
    [Google Scholar]
  2. El KhawandT. CourtoisA. VallsJ. RichardT. KrisaS. A review of dietary stilbenes: Sources and bioavailability.Phytochem. Rev.20181751007102910.1007/s11101‑018‑9578‑9
    [Google Scholar]
  3. DixonR.A. PaivaN.L. Stress-induced phenylpropanoid metabolism.Plant Cell1995771085109710.2307/387005912242399
    [Google Scholar]
  4. ManachC. WilliamsonG. MorandC. ScalbertA. RémésyC. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.Am. J. Clin. Nutr.2005811Suppl.230S242S10.1093/ajcn/81.1.230S15640486
    [Google Scholar]
  5. RivièreC. PawlusA.D. MérillonJ.M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae.Nat. Prod. Rep.201229111317133310.1039/c2np20049j23014926
    [Google Scholar]
  6. NonomuraS. KanagawaH. MakimotoA. Chemical constituents of polygonaceous plants. i. studies on the components of ko-j o-kon.(Polygonum cuspidatum sieb. et zucc.).Yakugaku Zasshi1963831098899010.1248/yakushi1947.83.10_98814089847
    [Google Scholar]
  7. TakaokaM. Of the phenolic substrate of hellebore (Veratrum grandiflorum Loes. fil.).J Fac Sci Hokkaido Imper Univ.19403116
    [Google Scholar]
  8. LangcakeP. PryceR.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury.Physiol. Plant Pathol.197691778610.1016/0048‑4059(76)90077‑1
    [Google Scholar]
  9. SiemannE.H. CreasyL.L. Concentration of the phytoalexin resveratrol in wine.Am. J. Enol. Vitic.1992431495210.5344/ajev.1992.43.1.49
    [Google Scholar]
  10. SatoM. MaulikN. DasD.K. Cardioprotection with Alcohol.Ann. N. Y. Acad. Sci.2002957112213510.1111/j.1749‑6632.2002.tb02911.x12074967
    [Google Scholar]
  11. KoppP. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’?Eur. J. Endocrinol.1998138661962010.1530/eje.0.13806199678525
    [Google Scholar]
  12. FrankelE.N. ParksE.J. XuR. SchneemanB.O. DavisP.A. GermanJ.B. Effect of n−3 fatty acid‐rich fish oil supplementation on the oxidation of low density lipoproteins.Lipids199429423323610.1007/BF025363268177016
    [Google Scholar]
  13. GoldbergD.M. HahnS.E. ParkesJ.G. Beyond alcohol: Beverage consumption and cardiovascular mortality.Clin. Chim. Acta19952371-215518710.1016/0009‑8981(95)06069‑P7664473
    [Google Scholar]
  14. RupasingheH.V. Application of NMR spectroscopy in plant polyphenols associated with human health.Applications of NMR spectroscopy.Elsevier2015392
    [Google Scholar]
  15. BenbouguerraN. Hornedo-OrtegaR. GarciaF. El KhawandT. SaucierC. RichardT. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review.Trends Food Sci. Technol.202111236238110.1016/j.tifs.2021.03.060
    [Google Scholar]
  16. BiaisB. KrisaS. CluzetS. Da CostaG. Waffo-TeguoP. MérillonJ.M. RichardT. Antioxidant and cytoprotective activities of grapevine stilbenes.J. Agric. Food Chem.201765244952496010.1021/acs.jafc.7b0125428551990
    [Google Scholar]
  17. ChongJ. PoutaraudA. HugueneyP. Metabolism and roles of stilbenes in plants.Plant Sci.2009177314315510.1016/j.plantsci.2009.05.012
    [Google Scholar]
  18. ShenT. WangX.N. LouH.X. Natural stilbenes: An overview.Nat. Prod. Rep.200926791693510.1039/b905960a19554241
    [Google Scholar]
  19. NiesenD.B. HesslerC. SeeramN.P. Beyond resveratrol: A review of natural stilbenoids identified from 2009–2013.J. Berry Res.20133418119610.3233/JBR‑130062
    [Google Scholar]
  20. GambiniJ. InglésM. OlasoG. Lopez-GruesoR. Bonet-CostaV. Gimeno-MallenchL. Mas-BarguesC. AbdelazizK.M. Gomez-CabreraM.C. VinaJ. BorrasC. Properties of Resveratrol: In vitro and In vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxid. Med. Cell Longev20152015837042
    [Google Scholar]
  21. VangO. AhmadN. BaileC.A. BaurJ.A. BrownK. CsiszarA. DasD.K. DelmasD. GottfriedC. LinH.Y. MaQ.Y. MukhopadhyayP. NaliniN. PezzutoJ.M. RichardT. ShuklaY. SurhY.J. SzekeresT. SzkudelskiT. WalleT. WuJ.M. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol.PLoS One201166e1988110.1371/journal.pone.001988121698226
    [Google Scholar]
  22. JangM. CaiL. UdeaniG. O. SlowingK. V. ThomasC. F. BeecherC. W. FongH. H. FarnsworthN. R. KinghornA. D. MehtaR. G. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes.science19972755297218220
    [Google Scholar]
  23. BhatK.P.L. PezzutoJ.M. Cancer chemopreventive activity of resveratrol.Ann. N. Y. Acad. Sci.2002957121022910.1111/j.1749‑6632.2002.tb02918.x12074974
    [Google Scholar]
  24. WeiskirchenS. WeiskirchenR. Resveratrol: How much wine do you have to drink to stay healthy?Adv. Nutr.20167470671810.3945/an.115.01162727422505
    [Google Scholar]
  25. YoshiyukiK. HiromichiO. ShigeruA. Effects of stilbenes on arachidonate metabolism in leukocytes.Biochim. Biophys. Acta Lipids Lipid Metab.1985834227527810.1016/0005‑2760(85)90167‑5
    [Google Scholar]
  26. FrankelE.N. GermanJ.B. KinsellaJ.E. ParksE. KannerJ. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine.Lancet1993341884345445710.1016/0140‑6736(93)90206‑V8094487
    [Google Scholar]
  27. ShanC.W. YangS.Q. HeH.D. ShaoS.L. ZhangP.W. Influences of 3,4,5-trihydroxystibene-3-beta-mono-D-glucoside on rabbits’ platelet aggregation and thromboxane B2 production in vitro.Chung Kuo Yao Li Hsueh Pao19901165275302130618
    [Google Scholar]
  28. WangQ. XuJ. RottinghausG.E. SimonyiA. LubahnD. SunG.Y. SunA.Y. Resveratrol protects against global cerebral ischemic injury in gerbils.Brain Res.2002958243944710.1016/S0006‑8993(02)03543‑612470882
    [Google Scholar]
  29. SinhaK. ChaudharyG. Kumar GuptaY. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats.Life Sci.200271665566510.1016/S0024‑3205(02)01691‑012072154
    [Google Scholar]
  30. HowitzK.T. BittermanK.J. CohenH.Y. LammingD.W. LavuS. WoodJ.G. ZipkinR.E. ChungP. KisielewskiA. ZhangL.L. SchererB. SinclairD.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.Nature2003425695419119610.1038/nature0196012939617
    [Google Scholar]
  31. ValenzanoD.R. TerzibasiE. GenadeT. CattaneoA. DomeniciL. CellerinoA. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate.Curr. Biol.200616329630010.1016/j.cub.2005.12.03816461283
    [Google Scholar]
  32. GehmB.D. McAndrewsJ.M. ChienP.Y. JamesonJ.L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.Proc. Natl. Acad. Sci.19979425141381414310.1073/pnas.94.25.141389391166
    [Google Scholar]
  33. LoboR.A. Benefits and risks of estrogen replacement therapy.Am. J. Obstet. Gynecol.1995173398298910.1016/0002‑9378(95)90247‑37573295
    [Google Scholar]
  34. SoleasG.J. DiamandisE.P. GoldbergD.M. Resveratrol: A molecule whose time has come? And gone?Clin. Biochem.19973029111310.1016/S0009‑9120(96)00155‑59127691
    [Google Scholar]
  35. ReinisaloM. KårlundA. KoskelaA. KaarnirantaK. KarjalainenR. O. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases.Oxid Med Cell Longev2015201534052010.1155/2015/340520
    [Google Scholar]
  36. DvorakovaM. LandaP. Anti-inflammatory activity of natural stilbenoids: A review.Pharmacol. Res.201712412614510.1016/j.phrs.2017.08.00228803136
    [Google Scholar]
  37. SirerolJ.A. RodríguezM.L. MenaS. AsensiM.A. EstrelaJ.M. OrtegaA.L. Role of natural stilbenes in the prevention of cancer.Oxid. Med. Cell. Longev.2016201611510.1155/2016/312895126798416
    [Google Scholar]
  38. ChouY.C. HoC.T. PanM.H. Stilbenes: Chemistry and molecular mechanisms of anti-obesity.Curr. Pharmacol. Rep.20184320220910.1007/s40495‑018‑0134‑5
    [Google Scholar]
  39. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  40. WalleT. Bioavailability of resveratrol.Ann. N. Y. Acad. Sci.20111215191510.1111/j.1749‑6632.2010.05842.x21261636
    [Google Scholar]
  41. DoréS. Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; Gene/protein regulatory activity.Neurosignals2005141-2617010.1159/00008538615956815
    [Google Scholar]
  42. KiziltepeU. TuranN.N.D. HanU. UlusA.T. AkarF. Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury.J. Vasc. Surg.200440113814510.1016/j.jvs.2004.03.03215218474
    [Google Scholar]
  43. NicoliniG. RigolioR. ScuteriA. MilosoM. SaccomannoD. CavalettiG. TrediciG. Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells.Neurochem. Int.200342541942910.1016/S0197‑0186(02)00132‑812510025
    [Google Scholar]
  44. WangY.J. HeF. LiX.L. The neuroprotection of resveratrol in the experimental cerebral ischemia.Zhonghua Yi Xue Za Zhi200383753453612887737
    [Google Scholar]
  45. WoodJ.G. RoginaB. LavuS. HowitzK. HelfandS.L. TatarM. SinclairD. Sirtuin activators mimic caloric restriction and delay ageing in metazoans.Nature2004430700068668910.1038/nature0278915254550
    [Google Scholar]
  46. VirgiliM. ContestabileA. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats.Neurosci. Lett.20002812-312312610.1016/S0304‑3940(00)00820‑X10704758
    [Google Scholar]
  47. GuptaY.K. ChaudharyG. SrivastavaA.K. Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system.Pharmacology200265317017410.1159/00005804412037381
    [Google Scholar]
  48. GuptaY.K. ChaudharyG. SinhaK. SrivastavaA.K. Protective effect of resveratrol against intracortical FeCl3-induced model of posttraumatic seizures in rats.Methods Find. Exp. Clin. Pharmacol.200123524124410.1358/mf.2001.23.5.66212011712643
    [Google Scholar]
  49. Reagan-ShawS. AfaqF. AzizM.H. AhmadN. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin.Oncogene200423305151516010.1038/sj.onc.120766615122319
    [Google Scholar]
  50. PotterG.A. PattersonL.H. WanoghoE. PerryP.J. ButlerP.C. IjazT. RupareliaK.C. LambJ.H. FarmerP.B. StanleyL.A. BurkeM.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1.Br. J. Cancer200286577477810.1038/sj.bjc.660019711875742
    [Google Scholar]
  51. WuS.N. Large-conductance Ca2+- activated K+ channels: Physiological role and pharmacology.Curr. Med. Chem.200310864966110.2174/092986703345786312678784
    [Google Scholar]
  52. GentilliM. MazoitJ.X. BouazizH. FletcherD. CasperR.F. BenhamouD. SavouretJ.F. Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw.Life Sci.200168111317132110.1016/S0024‑3205(00)01018‑311233998
    [Google Scholar]
  53. KarlssonJ. EmgardM. BrundinP. BurkittM.J. Trans-resveratrol protects embryonic mesencephalic cells from tert-butyl hydroperoxide: Electron paramagnetic resonance spin trapping evidence for a radical scavenging mechanism.J. Neurochem.200075114115010.1046/j.1471‑4159.2000.0750141.x10854257
    [Google Scholar]
  54. SharmaM. GuptaY.K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats.Life Sci.200271212489249810.1016/S0024‑3205(02)02083‑012270754
    [Google Scholar]
  55. HuangS.S. TsaiM.C. ChihC.L. HungL.M. TsaiS.K. Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia.Life Sci.20016991057106510.1016/S0024‑3205(01)01195‑X11508648
    [Google Scholar]
  56. JeandetP. DelaunoisB. ConreuxA. DonnezD. NuzzoV. CordelierS. ClémentC. CourotE. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants.Biofactors201036533134110.1002/biof.10820726013
    [Google Scholar]
  57. HathwayD.E. SeakinsJ.W.T. Hydroxystilbenes of Eucalyptus wandoo.Biochem. J.195972336937410.1042/bj0720369b13852040
    [Google Scholar]
  58. HillisW.E. HartJ.H. YazakiY. Polyphenols of Eucalyptus sideroxylon wood.Phytochemistry19741381591159510.1016/0031‑9422(74)80334‑1
    [Google Scholar]
  59. RolfsC.H. KindlH. Stilbene synthase and chalcone synthase: Two different constitutive enzymes in cultured cells of Picea excelsa.Plant Physiol.198475248949210.1104/pp.75.2.48916663649
    [Google Scholar]
  60. AnjaneyuluA.S.R. Raghava ReddyA.V. ReddyD.S.K. WardR.S. AdhikesavaluD. Stanley CameronT. Pacharin: A new dibenzo(2,3-6,7)oxepin derivative from Bauhinia racemosa lamk.Tetrahedron198440214245425210.1016/S0040‑4020(01)98799‑X
    [Google Scholar]
  61. KuboM. KimuraY. ShinH. HanedaT. TaniT. NambaK. Studies on the antifungal substance of crude drug: 2. On the roots of Polygonum cuspidatum (Poligonaceae).Shoyakugaku Zasshe19813515861
    [Google Scholar]
  62. KumarR.J. JyostnaD. KrupadanamG.L.D. SrimannarayanaG. Phenanthrene and stilbenes from Pterolobium hexapetallum.Phytochemistry198827113625362610.1016/0031‑9422(88)80779‑9
    [Google Scholar]
  63. HurstW.J. GlinskiJ.A. MillerK.B. ApgarJ. DaveyM.H. StuartD.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products.J. Agric. Food Chem.200856188374837810.1021/jf801297w18759443
    [Google Scholar]
  64. GescherA.J. StewardW.P. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: A conundrum.Cancer Epidemiol. Biomarkers Prev.2003121095395714578128
    [Google Scholar]
  65. EhalaS. VaherM. KaljurandM. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity.J. Agric. Food Chem.200553166484649010.1021/jf050397w16076138
    [Google Scholar]
  66. BabazadehA. TaghvimiA. HamishehkarH. TabibiazarM. Development of new ultrasonic–solvent assisted method for determination of trans-resveratrol from red grapes: Optimization, characterization, and antioxidant activity (ORAC assay).Food Biosci.201720364210.1016/j.fbio.2017.08.003
    [Google Scholar]
  67. LeBlancM.R. Cultivar, juice extraction, ultra violet irradiation and storage influence the stilbene content of muscadine grapes (Vitis rotundifolia Michx.); Doctoral dissertation, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA,200610.31390/gradschool_dissertations.3199
    [Google Scholar]
  68. AkhtarM.S. SwamyM.K. SinniahU.R. Eds. Natural bio-active compounds: Volume 1 - production and applications; Springer Singapore: Singapore,2019ISBN 978-981-13-7153-010.1007/978‑981‑13‑7154‑7
    [Google Scholar]
  69. Lamuela-RaventosR.M. Romero-PerezA.I. WaterhouseA.L. de la Torre-BoronatM.C. Direct HPLC analysis of cis- and trans-resveratrol and piceid isomers in spanish red Vitis vinifera wines.J. Agric. Food Chem.199543228128310.1021/jf00050a003
    [Google Scholar]
  70. NeveuV. Perez-JiménezJ. VosF. CrespyV. du ChaffautL. MennenL. KnoxC. EisnerR. CruzJ. WishartD. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods.Database20102010bap02410.1093/database/bap024
    [Google Scholar]
  71. SebastiaN. Resveratrol in berries: A review.In: Berries: properties, consumption and nutrition;Nova Biomedical Books: New York20123753
    [Google Scholar]
  72. TianB. LiuJ. Resveratrol: A review of plant sources, synthesis, stability, modification and food application.J. Sci. Food Agric.202010041392140410.1002/jsfa.1015231756276
    [Google Scholar]
  73. WaterhouseA.L. Lamuela-RaventósR.M. The occurrence of piceid, a stilbene glucoside, in grape berries.Phytochemistry199437257157310.1016/0031‑9422(94)85102‑6
    [Google Scholar]
  74. KimuraY. OhminamiH. OkudaH. BabaK. KozawaM. ArichiS. Effects of stilbene components of roots of Polygonum ssp. on liver injury in peroxidized oil-fed rats.Planta Med.1983499515410.1055/s‑2007‑9698106635018
    [Google Scholar]
  75. ErdtmanH. The chemistry of heartwood constituents of conifers and their taxonomic importance.Experientia Suppl.195556156180
    [Google Scholar]
  76. JorgensenE. The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa Ait.Can. J. Bot.19613971765177210.1139/b61‑155
    [Google Scholar]
  77. LangcakeP. PryceR.J. Oxidative dimerisation of 4-hydroxystilbenes in vitro: Production of a grapevine phytoalexin mimic.J. Chem. Soc. Chem. Commun.1977720821010.1039/c39770000208
    [Google Scholar]
  78. JeandetP. Douillet-BreuilA.C. BessisR. DebordS. SbaghiM. AdrianM. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism.J. Agric. Food Chem.200250102731274110.1021/jf011429s11982391
    [Google Scholar]
  79. GoldbergD.M. YanJ. NgE. DiamandisE.P. KarumanchiriA. SoleasG. WaterhouseA.L. A global survey of trans-resveratrol concentrations in commercial wines.Am. J. Enol. Vitic.199546215916510.5344/ajev.1995.46.2.159
    [Google Scholar]
  80. TekaT. ZhangL. GeX. LiY. HanL. YanX. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review.Phytochemistry202219711312810.1016/j.phytochem.2022.11312835183567
    [Google Scholar]
  81. VitaglioneP. SforzaS. Del RioD. Occurrence, bioavailability, and metabolism of resveratrol.Flavonoids and Related Compounds: Bioavailability and Function SpencerJ. P. E. CrozierA. CRC Press: Boca Raton, FL2012167183
    [Google Scholar]
  82. SethiM.L. TanejaS.C. AgarwalS.G. DharK.L. AtalC.K. Isoflavones and stilbenes from Juniperus macropoda.Phytochemistry19801981831183210.1016/S0031‑9422(00)83822‑4
    [Google Scholar]
  83. McKayD.L. BlumbergJ.B. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors.Nutr. Rev.2007651149050210.1301/nr.2007.nov.490‑50218038941
    [Google Scholar]
  84. MasekA. Latos-BrozioM. ChrzescijanskaE. PodsedekA. Polyphenolic profile and antioxidant activity of Juglans regia L. leaves and husk extracts.Forests2019101198810.3390/f10110988
    [Google Scholar]
  85. SobolevV.S. KhanS.I. TabancaN. WedgeD.E. ManlyS.P. CutlerS.J. CoyM.R. BecnelJ.J. NeffS.A. GloerJ.B. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids.J. Agric. Food Chem.20115951673168210.1021/jf104742n21314127
    [Google Scholar]
  86. de BruijnW.J.C. Araya-CloutierC. BijlsmaJ. de SwartA. SandersM.G. de WaardP. GruppenH. VinckenJ.P. Antibacterial prenylated stilbenoids from peanut (Arachis hypogaea).Phytochem. Lett.201828131810.1016/j.phytol.2018.09.004
    [Google Scholar]
  87. ShenJ. ZhouQ. LiP. WangZ. LiuS. HeC. ZhangC. XiaoP. Update on phytochemistry and pharmacology of naturally occurring resveratrol oligomers.Molecules20172212205010.3390/molecules2212205029186764
    [Google Scholar]
  88. KakorinP.A. BabenkovaI.V. TeselkinY.O. RamenskayaG.V. DemuraT.A. KukesV.G. Hepatoprotective activity of aqueous extract from Caragana jubata (Pall.) Poir. shoots in the model of acute hepatitis induced by acetaminophen in rats.Biomed. Khim.201864324124610.18097/PBMC2018640324129964259
    [Google Scholar]
  89. ChengK.J. MaD.Y. YangG.X. HuC.Q. A new tetrastilbene from Caragana sinica.Chin. Chem. Lett.200819671171510.1016/j.cclet.2008.04.025
    [Google Scholar]
  90. JinQ. HanX.H. HongS.S. LeeC. ChoeS. LeeD. KimY. HongJ.T. LeeM.K. HwangB.Y. Antioxidative oligostilbenes from Caragana sinica.Bioorg. Med. Chem. Lett.201222297397610.1016/j.bmcl.2011.12.01222209460
    [Google Scholar]
  91. JeongW. AhnE.K. OhJ.S. HongS.S. CaragasininC. Caragasinin C: A new oligostilbene from the roots of Caragana sinica.J. Asian Nat. Prod. Res.201719111143114710.1080/10286020.2017.130294128347167
    [Google Scholar]
  92. MaD.Y. HuC.Q. Studies on chemical constituents from roots of Caragana sinica.Zhongguo Zhongyao Zazhi200833551752118536372
    [Google Scholar]
  93. HanawaF. TaharaS. MizutaniJ. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride.Phytochemistry19923193005300710.1016/0031‑9422(92)83436‑3
    [Google Scholar]
  94. FidelisM. SantosJ.S. EscherG.B. Vieira do CarmoM. AzevedoL. Cristina da SilvaM. PutnikP. GranatoD. In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study.Food Chem. Toxicol.201812047949010.1016/j.fct.2018.07.04330055315
    [Google Scholar]
  95. HeC.N. PengY. XuL.J. LiuZ.A. GuJ. ZhongA.G. XiaoP.G. Three new oligostilbenes from the seeds of Paeonia suffruticosa.Chem. Pharm. Bull.201058684384710.1248/cpb.58.84320522997
    [Google Scholar]
  96. SarkerS.D. WhitingP. DinanL. ŠikV. ReesH.H. Identification and ecdysteroid antagonist activity of three resveratrol trimers (suffruticosols A, B and C) from Paeonia suffruticosa.Tetrahedron199955251352410.1016/S0040‑4020(98)01049‑7
    [Google Scholar]
  97. WangD.G. LiuW.Y. ChenG.T. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal.20133424124710.1016/j.jpha.2012.12.00129403824
    [Google Scholar]
  98. GhanimH. SiaC.L. AbuayshehS. KorzeniewskiK. PatnaikP. MarumgantiA. ChaudhuriA. DandonaP. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol.J. Clin. Endocrinol. Metab.2010959E1E810.1210/jc.2010‑048220534755
    [Google Scholar]
  99. LinH.W. SunM.X. WangY.H. YangL.M. YangY.R. HuangN. XuanL.J. XuY.M. BaiD.L. ZhengY.T. XiaoK. Anti-HIV activities of the compounds isolated from Polygonum cuspidatum and Polygonum multiflorum.Planta Med.201076988989210.1055/s‑0029‑124079620112182
    [Google Scholar]
  100. AvulaB. JoshiV.C. WangY.H. KhanI.A. Simultaneous identification and quantification of anthraquinones, polydatin, and resveratrol in Polygonum multiflorum, various Polygonum species, and dietary supplements by liquid chromatography and microscopic study of Polygonum species.J. AOAC Int.20079061532153810.1093/jaoac/90.6.153218193729
    [Google Scholar]
  101. TekaT. WangL. GaoJ. MouJ. PanG. YuH. GaoX. HanL. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms.J. Ethnopharmacol.202127111386410.1016/j.jep.2021.11386433485980
    [Google Scholar]
  102. PogačnikL. BergantT. SkrtM. Poklar UlrihN. ViktorováJ. RumlT. In vitro comparison of the bioactivities of japanese and bohemian knotweed ethanol extracts.Foods20209554410.3390/foods905054432365900
    [Google Scholar]
  103. OhM. ParkS. SongJ.H. KoH.J. KimS.H. Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity.J. Nat. Med.2020741263310.1007/s11418‑019‑01335‑231243670
    [Google Scholar]
  104. FrancoL. BravoR. GalanC. SanchezC. RodriguezA. B. BarrigsC. CuberoJ. Effects of beer, Hops (Humulus lupulus) on total antioxidant capacity in plasma of stressed subjects.Cell Membr. Free. Rad. Res.20135116
    [Google Scholar]
  105. AdrianM. JeandetP. Douillet-BreuilA.C. TessonL. BessisR. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation.J. Agric. Food Chem.200048126103610510.1021/jf000991011312782
    [Google Scholar]
  106. AjaI. Da CostaG. PedrotE. IglesiasM-L. Palos PintoA. VallsJ. ChaherN. Ruiz-LarreaM.B. MérillonJ-M. AtmaniD. Ruiz SanzJ.I. RichardT. Unusual stilbene glucosides from Vitis vinifera roots.OENO One201953357357910.20870/oeno‑one.2019.53.3.2462
    [Google Scholar]
  107. ChuanasaT. PhromjaiJ. LipipunV. LikhitwitayawuidK. SuzukiM. PramyothinP. HattoriM. ShirakiK. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice.Antiviral Res.2008801627010.1016/j.antiviral.2008.05.00218565600
    [Google Scholar]
  108. ItoT. EndoH. ShinoharaH. OyamaM. AkaoY. IinumaM. Occurrence of stilbene oligomers in Cyperus rhizomes.Fitoterapia20128381420142910.1016/j.fitote.2012.08.00523339254
    [Google Scholar]
  109. EsatbeyogluT. EwaldP. YasuiY. YokokawaH. WagnerA.E. MatsugoS. WinterhalterP. RimbachG. Chemical characterization, free radical scavenging, and cellular antioxidant and anti-inflammatory properties of a stilbenoid-rich root extract of Vitis vinifera.Oxid. Med. Cell. Longev.2016201611110.1155/2016/859128626788254
    [Google Scholar]
  110. De MarinoS. GalaF. BorboneN. ZolloF. VitaliniS. VisioliF. IorizziM. Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity.Phytochemistry200768131805181210.1016/j.phytochem.2007.03.02917498761
    [Google Scholar]
  111. RakotobeL. MambuL. DevilleA. DubostL. JeannodaV. RakotoD. BodoB. Clerodane and 19-norclerodane diterpenoids from the tubers of Dioscorea antaly.Phytochemistry2010718-91007101310.1016/j.phytochem.2010.03.01420385395
    [Google Scholar]
  112. BabaK. KidoT. MaedaK. TaniguchiM. KozawaM. Two stilbenoids from Cassia garrettiana.Phytochemistry19923193215321810.1016/0031‑9422(92)83478‑H
    [Google Scholar]
  113. ElsbaeyM. IbrahimM.A.A. BarF.A. ElgazarA.A. Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2.S. Afr. J. Bot.202114127828910.1016/j.sajb.2021.05.01834092840
    [Google Scholar]
  114. XiangT. UnoT. OginoF. AiC. DuoJ. SankawaU. Antioxidant constituents of Caragana tibetica.Chem. Pharm. Bull.20055391204120610.1248/cpb.53.120416141600
    [Google Scholar]
  115. LamS.H. LeeS.S. Unusual stilbenoids and a stilbenolignan from seeds of Syagrus romanzoffiana.Phytochemistry201071779279710.1016/j.phytochem.2010.01.01320156629
    [Google Scholar]
  116. BorgonovoG. CaimiS. MoriniG. ScaglioniL. BassoliA. Taste-active compounds in a traditional Italian food: ‘lampascioni’.Chem. Biodivers.2008561184119410.1002/cbdv.20089009518618404
    [Google Scholar]
  117. WangY.M. FanM.Y. LiJ. WangZ.M. GaoH.M. Homoisoflavanones and stilbenes from fresh bulb of Scilla scilloides.Zhongguo Zhongyao Zazhi201439193788379325612441
    [Google Scholar]
  118. NigroP. BloiseE. TurcoM.C. SkhirtladzeA. MontoroP. PizzaC. PiacenteS. BelisarioM.A. Antiproliferative and pro-apoptotic activity of novel phenolic derivatives of resveratrol.Life Sci.2007811187388310.1016/j.lfs.2007.07.01017764700
    [Google Scholar]
  119. PiacenteS. PizzaC. OleszekW. Saponins and phenolics of yucca schidigera roezl: Chemistry and bioactivity.Phytochem. Rev.200542-317719010.1007/s11101‑005‑1234‑5
    [Google Scholar]
  120. BohlmannF. HoffmannE. Cannabigerol-ähnliche verbindungen aus Helichrysum umbraculigerum.Phytochemistry19791881371137410.1016/0031‑9422(79)83025‑3
    [Google Scholar]
  121. SegunP.A. OgboleO.O. AkinleyeT.E. FaleyeT.O.C. AdenijiA.J. In vitro anti-enteroviral activity of stilbenoids isolated from the leaves of Macaranga barteri.Nat. Prod. Res.202135111909191310.1080/14786419.2019.164450531343270
    [Google Scholar]
  122. RadwanM. RossS. SladeD. AhmedS. ZulfiqarF. ElSohlyM. Isolation and characterization of new Cannabis constituents from a high potency variety.Planta Med.200874326727210.1055/s‑2008‑103431118283614
    [Google Scholar]
  123. KawazoeK. ShimogaiN. TakaishiY. RaoK.S. ImakuraY. Four stilbenes from Salacia lehmbachii.Phytochemistry19974481569157310.1016/S0031‑9422(96)00768‑6
    [Google Scholar]
  124. PettitG.R. SinghS.B. HamelE. LinC.M. AlbertsD.S. Garcia-KendalD. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4.Experientia198945220921110.1007/BF019548812920809
    [Google Scholar]
  125. DawidarA.M. EzmiriyS.T. Abdel-MogibM. el-DessoukiY. AngawiR.F. New stilbene carboxylic acid from Convolvulus hystrix.Pharmazie2000551184884911126004
    [Google Scholar]
  126. D’AbroscaB. FiorentinoA. GolinoA. MonacoP. OrianoP. PacificoS. Carexanes: Prenyl stilbenoid derivatives from Carex distachya.Tetrahedron Lett.200546325269527210.1016/j.tetlet.2005.06.036
    [Google Scholar]
  127. FiorentinoA. D’AbroscaB. PacificoS. NataleA. MonacoP. Structures of bioactive carexanes from the roots of Carex distachya Desf.Phytochemistry2006671097197710.1016/j.phytochem.2006.04.00316730033
    [Google Scholar]
  128. KawabataJ. IchikawaS. KuriharaH. MizutaniJ. KobophenolA. A unique tetrastilbene from Carex kobomugi Ohwi (Cyperaceae).Tetrahedron Lett.198930293785378810.1016/S0040‑4039(01)80655‑9
    [Google Scholar]
  129. KitanakaS. TakidoM. MizoueK. KondoH. NakaikeS. Oligomeric stilbenes from Caragana chamlagu Lamark Root.Chem. Pharm. Bull.199644356556710.1248/cpb.44.5658882460
    [Google Scholar]
  130. ChoH. ParkJ.H. AhnE.K. OhJ.S. KobophenolA. Kobophenol A isolated from roots of Caragana sinica (buc’hoz) rehder exhibits anti-inflammatory activity by regulating NF-κB nuclear translocation in J774A.1 cells.Toxicol. Rep.2018564765310.1016/j.toxrep.2018.05.01130023311
    [Google Scholar]
  131. KulanthaivelP. JanzenW. BallasL. JiangJ. HuC.Q. DargesJ. SeldinJ. CofieldD. AdamsL. Naturally occurring protein kinase C inhibitors; II. Isolation of oligomeric stilbenes from Caragana sinica.Planta Med.1995611414410.1055/s‑2006‑9579967700990
    [Google Scholar]
  132. LiuH.X. LinW.H. YangJ.S. Oligomeric stilbenes from the root of Caragana stenophylla.Chem. Pharm. Bull.200452111339134110.1248/cpb.52.133915516758
    [Google Scholar]
  133. PanL. ZhangT. YuM. ShiM. JiaX. JiaX. ZouZ. Bioactive-guided isolation and identification of oligostilbenes as anti-rheumatoid arthritis constituents from the roots of Caragana stenophylla.J. Ethnopharmacol.202128011413410.1016/j.jep.2021.11413433887420
    [Google Scholar]
  134. KawabataJ. MishimaM. KuriharaH. MizutaniJ. KobophenolB. A tetrastilbene from Carex pumila.Phytochemistry199130264564710.1016/0031‑9422(91)83744‑6
    [Google Scholar]
  135. ShenT. XieC-F. WangX-N. LouH-X. Stilbenoids.Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. RamawatK.G. MérillonJ-M. Berlin, HeidelbergSpringer Berlin Heidelberg20131901194910.1007/978‑3‑642‑22144‑6_63
    [Google Scholar]
  136. IliyaI. TanakaT. AliZ. IinumaM. FurusawaM. NakayaK.-i. MurataJ. DarnaediD. MatuuraM. UbukataM. Six flavonostilbenes from Gnetum africanum and Gnetum.gnemon.20052520
    [Google Scholar]
  137. NakajimaK. TaguchiH. EndoT. YosiokaI. The constituents of Scirpus fluviatilis(Torr). A. Gray. I. The structures of two new hydroxystilbene dimers, scirpusin A and B.Chem. Pharm. Bull.197826103050305710.1248/cpb.26.3050
    [Google Scholar]
  138. UtkinaN.K. KuleshN.I. Antioxidant activity of polyphenols and polyphenol complex from the far-eastern tree Maackia amurensis.Pharm. Chem. J.201246848849110.1007/s11094‑012‑0831‑z
    [Google Scholar]
  139. NassraM. KrisaS. PapastamoulisY. KapcheG. BissonJ. AndréC. KonsmanJ.P. SchmitterJ.M. MérillonJ.M. Waffo-TéguoP. Inhibitory activity of plant stilbenoids against nitric oxide production by lipopolysaccharide-activated microglia.Planta Med.2013791196697010.1055/s‑0032‑132865123807809
    [Google Scholar]
  140. YamadaM. HayashiK. HayashiH. IkedaS. HoshinoT. TsutsuiK. TsutsuiK. IinumaM. NozakiH. Stilbenoids of Kobresia nepalensis (Cyperaceae) exhibiting DNA topoisomerase II inhibition.Phytochemistry200667330731310.1016/j.phytochem.2005.11.00116376391
    [Google Scholar]
  141. Abdel-MogibM. BasaifS. SobahiT. Stilbenes and a new acetophenone derivative from Scirpus holoschoenus.Molecules20016866366710.3390/60800663
    [Google Scholar]
  142. LiangQ.L. LeiL.L. CuiX. ZouN.S. DuanJ.A. Bioactive cis-stilbenoids from the tubers of Scirpus yagara.Fitoterapia20138417017310.1016/j.fitote.2012.11.01223219979
    [Google Scholar]
  143. MatsudaH. AsaoY. NakamuraS. HamaoM. SugimotoS. HongoM. PongpiriyadachaY. YoshikawaM. Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon.Chem. Pharm. Bull.200957548749410.1248/cpb.57.48719420780
    [Google Scholar]
  144. AtunS. Activity of oligoresveratrols from stem bark of Hopea mengarawan (Dipterocarpaceae) as Hydroxyl Radical Scavenger.Hayati J. Biosci.2006132656510.1016/S1978‑3019(16)30383‑7
    [Google Scholar]
  145. ItoT. AliZ. IliyaI. FurusawaM. TanakaT. NakayaK. TakahashiY. SawaR. MurataJ. DarnaediD. IinumaM. Occurrence of stilbene glucosides in Upuna borneensis.Helv. Chim. Acta2005881233410.1002/hlca.200490293
    [Google Scholar]
  146. I, S.; W, W.; Malaka, M. H.; I, I., Antibacterial and cytotoxic potencies of stilbene oligomers from stem barks of baoti (Dryobalanops lanceolata) growing in kendari, Indonesia.Asian J. Pharm. Clin. Res.201710813914310.22159/ajpcr.2017.v10i8.18664
    [Google Scholar]
  147. ItoT. TanakaT. NakayaK. IinumaM. TakahashiY. NaganawaH. OhyamaM. NakanishiY. BastowK.F. LeeK.H. A novel bridged stilbenoid trimer and four highly condensed stilbenoid oligomers in Vatica rassak.Tetrahedron200157347309732110.1016/S0040‑4020(01)00697‑4
    [Google Scholar]
  148. DaiJ.R. HallockY.F. CardellinaJ.H.II BoydM.R. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato.J. Nat. Prod.199861335135310.1021/np970519h9544565
    [Google Scholar]
  149. FanY. ZhaoL. HuangX. JiaQ. WangW. GaoM. JiaX. ChangY. OuyangH. HeJ. Pharmacokinetic and bioavailability studies of α-viniferin after intravenous and oral administration to rats.J. Pharm. Biomed. Anal.202018811337610.1016/j.jpba.2020.11337632502955
    [Google Scholar]
  150. MoriyamaH. MoriyamaM. NinomiyaK. MorikawaT. HayakawaT. Inhibitory effects of oligostilbenoids from the bark of Shorea roxburghii on malignant melanoma cell growth: Implications for novel topical anticancer candidates.Biol. Pharm. Bull.201639101675168210.1248/bpb.b16‑0042027725445
    [Google Scholar]
  151. HuangY.L. TsaiW.J. ShenC.C. ChenC.C. Resveratrol derivatives from the roots of Vitis thunbergii.J. Nat. Prod.200568221722010.1021/np049686p15730246
    [Google Scholar]
  152. LeeS. YoonK.D. LeeM. ChoY. ChoiG. JangH. KimB. JungD.H. OhJ.G. KimG.W. OhJ.W. JeongY.J. KwonH.J. BaeS.K. MinD.H. WindischM.P. HeoT.H. LeeC. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase.Br. J. Pharmacol.2016173119121110.1111/bph.1335826445091
    [Google Scholar]
  153. LimaN.M. AndradeJ.I.A. LimaK.C.S. dos SantosF.N. BarisonA. SaloméK.S. MatsuuraT. NunezC.V. Chemical profile and biological activities of Deguelia duckeana A.M.G. Azevedo (Fabaceae).Nat. Prod. Res.2013274-542543210.1080/14786419.2012.73338723092395
    [Google Scholar]
  154. IliyaI. TanakaT. IinumaM. AliZ. FurasawaM. NakayaK. Dimeric stilbenes from stem lianas of Gnetum africanum.ChemInform2002334324224210.1002/chin.200243242
    [Google Scholar]
  155. LiuA.L. YangF. ZhuM. ZhouD. LinM. LeeS. WangY.T. DuG.H. In vitro anti-influenza viral activities of stilbenoids from the lianas of Gnetum pendulum.Planta Med.201076161874187610.1055/s‑0030‑125003020539973
    [Google Scholar]
  156. TaniH. KoshinoH. TaniguchiT. YoshimatsuM. HikamiS. TakahashiS. Structural studies on stilbene oligomers isolated from the seeds of melinjo ( Gnetum gnemon L.).ACS Omega2020521122451225010.1021/acsomega.0c0091032548407
    [Google Scholar]
  157. DucrotP.H. KollmannA. BalaA.E. MajiraA. KerhoasL. DelormeR. EinhornJ. CyphostemminsA-B. Cyphostemmins A-B, two new antifungal oligostilbenes from Cyphostemma crotalarioides (Vitaceae).Tetrahedron Lett.199839529655965810.1016/S0040‑4039(98)02207‑2
    [Google Scholar]
  158. BoralleN. GottliebH.E. GottliebO.R. KubitzkiK. LopesL.M.X. YoshidaM. YoungM. M. C., Oligostilbenoids from Gnetum venosum.Phytochemistry19933451403140710.1016/0031‑9422(91)80038‑3
    [Google Scholar]
  159. AbeN. ItoT. OhguchiK. NasuM. MasudaY. OyamaM. NozawaY. ItoM. IinumaM. Resveratrol oligomers from Vatica albiramis.J. Nat. Prod.20107391499150610.1021/np100267520735051
    [Google Scholar]
  160. ItoT. TanakaT. IinumaM. IliyaI. NakayaK. AliZ. TakahashiY. SawaR. ShiratakiY. MurataJ. DarnaediD. New resveratrol oligomers in the stem bark of Vatica pauciflora.Tetrahedron200359285347536310.1016/S0040‑4020(03)00730‑0
    [Google Scholar]
  161. ItoT. TanakaT. IinumaM. NakayaK. TakahashiY. SawaR. MurataJ. DarnaediD. Three new resveratrol oligomers from the stem bark of Vatica pauciflora.J. Nat. Prod.200467693293710.1021/np030236r15217269
    [Google Scholar]
  162. Wei-shengiF. A new stilbene glycoside from Dryopteris sublaeta.Yao Xue Xue Bao2005401211311134
    [Google Scholar]
  163. ChakrabortyA. GuptaN. GhoshK. RoyP. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium.Toxicol. In Vitro 20102441215122810.1016/j.tiv.2010.02.00720152895
    [Google Scholar]
  164. McCormackD. McFaddenD. Pterostilbene and cancer: Current review.J. Surg. Res.20121732e53e6110.1016/j.jss.2011.09.05422099605
    [Google Scholar]
  165. RimandoA.M. KaltW. MageeJ.B. DeweyJ. BallingtonJ.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.J. Agric. Food Chem.200452154713471910.1021/jf040095e15264904
    [Google Scholar]
  166. LoboL.T. SilvaG.A. FreitasM.C.C. Souza FilhoA.P.S. SilvaM.N. ArrudaA.C. GuilhonG.M.S.P. SantosL.S. SantosA.S. ArrudaM.S.P. Stilbenes from Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo leaves: Effects on seed germination and plant growth.J. Braz. Chem. Soc.201021101838184410.1590/S0103‑50532010001000007
    [Google Scholar]
  167. SpäthE. SchlägerJ. Über die inhaltsstoffe des roten sandelholzes. ii. Mitteil.: die konstitution des pterostilbens.Ber. Dtsch. Chem. Ges. B194073888188410.1002/cber.19400730808
    [Google Scholar]
  168. SongI. LimH. ChunS. LeeS.B. HuhJ. OhD.C. HongS. First total synthesis of gaylussacin and its stilbene derivatives.J. Nat. Prod.20218441366137210.1021/acs.jnatprod.1c0017333734713
    [Google Scholar]
  169. AskariA. WorthenL.R. ShimizuY. Gaylussacin, a new stilbene derivative from species of Gaylussacia.Lloydia197235149545037481
    [Google Scholar]
  170. SyahY. M. GhisalbertiE. L. Phenolic derivatives with an irregular sesquiterpenyl side chain from Macaranga pruinosa.Nat. Prod. Communic.20105221922210.1177/1934578X1000500209
    [Google Scholar]
  171. PéresseT. JézéquelG. AllardP.M. PhamV.C. HuongD.T.M. BlanchardF. BignonJ. LévaiqueH. WolfenderJ.L. LitaudonM. RoussiF. Cytotoxic prenylated stilbenes isolated from Macaranga tanarius.J. Nat. Prod.201780102684269110.1021/acs.jnatprod.7b0040928972755
    [Google Scholar]
  172. BeutlerJ.A. JatoJ. CraggG.M. BoydM.R. SchweinfurthinD. Schweinfurthin D, A cytotoxic stilbene from Macaranga schweinfurthii.Nat. Prod. Lett.200014539940410.1080/10575630008043774
    [Google Scholar]
  173. HarmalkarD.S. MaliJ.R. SivaramanA. ChoiY. LeeK. SchweinfurthinsA-Q. Schweinfurthins A–Q: isolation, synthesis, and biochemical properties.RSC Advances2018838211912120910.1039/C8RA02872A35539907
    [Google Scholar]
  174. IliyaI. AliZ. TanakaT. IinumaM. FurusawaM. NakayaK. MurataJ. DarnaediD. Four new Stilbene oligomers in the root of Gnetum gnemon.Helv. Chim. Acta20028582538254610.1002/1522‑2675(200208)85:8<2538::AID‑HLCA2538>3.0.CO;2‑J
    [Google Scholar]
  175. KloypanC. JeenapongsaR. Sri-inP. ChantaS. DokpuangD. Tip-pyangS. SurapinitN. Stilbenoids from Gnetum macrostachyum attenuate human platelet aggregation and adhesion.Phytother. Res.201226101564156810.1002/ptr.460522511550
    [Google Scholar]
  176. AliF. AssantaM.A. RobertC. Gnetum africanum: A wild food plant from the African forest with many nutritional and medicinal properties.J. Med. Food201114111289129710.1089/jmf.2010.032721864089
    [Google Scholar]
  177. YaoC.S. LinM. WangL. Isolation and biomimetic synthesis of anti-inflammatory stilbenolignans from Gnetum cleistostachyum.Chem. Pharm. Bull.20065471053105710.1248/cpb.54.105316819232
    [Google Scholar]
  178. AliZ. TanakaT. IliyaI. IinumaM. FurusawaM. ItoT. NakayaK. MurataJ. DarnaediD. Phenolic Constituents of Gnetum k lossii.J. Nat. Prod.200366455856010.1021/np020532o12713416
    [Google Scholar]
  179. ChenH. LinM. A pair of dimeric stilbene epimers from Gnetum montanum.Chin. Chem. Lett.199891110131015
    [Google Scholar]
  180. HuangK.S. ZhouS. LinM. WangY.H. An isorhapontigenin tetramer and a novel stilbene dimer from Gnetum hainanense.Planta Med.2002681091692010.1055/s‑2002‑3495112391556
    [Google Scholar]
  181. TanakaT. IliyaI. ItoT. FurusawaM. NakayaK. IinumaM. ShiratakiY. MatsuuraN. UbukataM. MurataJ. SimozonoF. HiraiK. Stilbenoids in lianas of Gnetum parvifolium.Chem. Pharm. Bull.200149785886210.1248/cpb.49.85811456092
    [Google Scholar]
  182. YaoC.S. LinM. LiuX. WangY.H. Stilbene derivatives from Gnetum cleistostachyum.J. Asian Nat. Prod. Res.20057213113710.1080/1028602031000162510215621615
    [Google Scholar]
  183. TriputraM.A. YanuarA. Analysis of compounds isolated from Gnetum gnemon l. seeds as potential ACE inhibitors through molecular docking and molecular dynamics simulations.J. Young Pharm.2018102sS32S3910.5530/jyp.2018.2s.7
    [Google Scholar]
  184. HuangK.S. LinM. YuL.N. KongM. Four novel oligostilbenes from the roots of Vitis amurensis.Tetrahedron200056101321132910.1016/S0040‑4020(99)01034‑0
    [Google Scholar]
  185. HuangK.S. LiR.L. WangY.H. LinM. Three new stilbene trimers from the lianas of Gnetum hainanense.Planta Med.2001671616410.1055/s‑2001‑1087511270724
    [Google Scholar]
  186. WangY.H. HuangK.S. LinM. Four new stilbene dimers from the lianas of Gnetum hainanense.J. Asian Nat. Prod. Res.20013316917610.1080/1028602010804138711491391
    [Google Scholar]
  187. HölscherD. SchneiderB. A resveratrol dimer from Anigozanthos preissii and Musa cavendish.Phytochemistry199643247147310.1016/0031‑9422(96)00317‑2
    [Google Scholar]
  188. HölscherD. SchneiderB. HPLC-NMR analysis of phenylphenalenones and a stilbene from Anigozanthos flavidus1Dedicated to Professor Günter Adam on the occasion of his sixty-fifth birthday.1.Phytochemistry199950115516110.1016/S0031‑9422(98)00495‑6
    [Google Scholar]
  189. BrkljačaR. WhiteJ.M. UrbanS. Phytochemical investigation of the constituents derived from the australian plant Macropidia fuliginosa.J. Nat. Prod.20157871600160810.1021/acs.jnatprod.5b0016126151487
    [Google Scholar]
  190. ZhangH. MatsudaH. YamashitaC. NakamuraS. YoshikawaM. Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound.Eur. J. Pharmacol.20096061-325526110.1016/j.ejphar.2009.01.00519374876
    [Google Scholar]
  191. WangY-Q. TanJ.J. TanC.H. JiangS.H. ZhuD.Y. Halophilols A and B, two new stilbenes from Iris halophila.Planta Med.200369877978110.1055/s‑2003‑4279214531035
    [Google Scholar]
  192. FaragS.F. TakayaY. NiwaM. Stilbene glucosides from the bulbs of Iris tingitana.Phytochem. Lett.20092414815110.1016/j.phytol.2009.05.001
    [Google Scholar]
  193. KemalM. KhalilS.K.W. RaoN.G.S. WoolseyN.F. Isolation and identification of a cannabinoid-like compound from Amorpha species.J. Nat. Prod.197942546346810.1021/np50005a004521816
    [Google Scholar]
  194. LeeW. HamJ. KwonH.C. YoonG. BaeG.U. KimY.K. KimS.N. Amorphastilbol exerts beneficial effects on glucose and lipid metabolism in mice consuming a high-fat-diet.Int. J. Mol. Med.201536252753310.3892/ijmm.2015.222726035293
    [Google Scholar]
  195. CaiJ.Z. TangR. YeG.F. QiuS.X. ZhangN.L. HuY.J. ShenX.L. A halogen-containing stilbene derivative from the leaves of cajanus cajan that induces osteogenic differentiation of human mesenchymal stem cells.Molecules2015206108391084710.3390/molecules20061083926111172
    [Google Scholar]
  196. CookseyC.J. DahiyaJ.S. GarrattP.J. StrangeR.N. Two novel stilbene-2-carboxylic acid phytoalexins from Cajanus cajan.Phytochemistry198021122935293810.1016/0031‑9422(80)85072‑2
    [Google Scholar]
  197. ErsamT. FatmawatiS. FauziaD. N. New prenylated stilbenes and antioxidant activities of cajanus cajan (L.) Millsp. (Pigeon pea)20181625
    [Google Scholar]
  198. WuG.Y. ZhangX. GuoX.Y. HuoL.Q. LiuH.X. ShenX.L. QiuS.X. HuY.J. TanH.B. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan.Chin. J. Nat. Med.201917538138610.1016/S1875‑5364(19)30044‑531171273
    [Google Scholar]
  199. LeiX. ZhouQ. LiW. QinG. ShenX. ZhangN. Stilbenoids from Leguminosae and their Bioactivities.Medicine Res.20193420000410.21127/yaoyimr20200004
    [Google Scholar]
  200. RuanC.J. SiJ.Y. ZhangL. ChenD.H. DuG.H. SunL. Protective effect of stilbenes containing extract-fraction from Cajanus cajan L. on Aβ25–35-induced cognitive deficits in mice.Neurosci. Lett.2009467215916310.1016/j.neulet.2009.10.02919833171
    [Google Scholar]
  201. WuJ. LiB. XiaoW. HuJ. XieJ. YuanJ. WangL. LongistylinA. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity.Int. J. Antimicrob. Agents202055110582110.1016/j.ijantimicag.2019.10.00231614177
    [Google Scholar]
  202. ZhangN.L. ZhuY.H. HuangR.M. FuM.Q. SuZ.W. CaiJ.Z. HuY.J. QiuS.X. Two new stilbenoids from Cajanus cajan.Z. Naturforsch. B. J. Chem. Sci.201267121314131810.5560/znb.2012‑0184
    [Google Scholar]
  203. YangG. HuC. A novel stilbenolignan from Caragana rosea Turcz.Youji Huaxue2003238873876
    [Google Scholar]
  204. YangG. ZhouJ. LiY. HuC. Anti-HIV bioactive stilbene dimers of Caragana rosea.Planta Med.200571656957110.1055/s‑2005‑86416215971132
    [Google Scholar]
  205. YangG.X. QiJ.B. ChengK.J. HuC.Q. Anti-HIV chemical constituents of aerial parts of Caragana rosea.Yao Xue Xue Bao200742217918217518047
    [Google Scholar]
  206. MaD.Y. LuoH.F. HuC.Q. Three stilbene tetramers from the roots of Caragana sinica.Chin. J. Chem.200422220721110.1002/cjoc.20040220221
    [Google Scholar]
  207. LuoH.F. ZhangL.P. HuC.Q. Five novel oligostilbenes from the roots of Caragana sinica.Tetrahedron200157234849485410.1016/S0040‑4020(01)00427‑6
    [Google Scholar]
  208. WangS.G. MaD.Y. HuC.Q. Two new oligostilbenes from Caragana sinica.J. Asian Nat. Prod. Res.20046424124810.1080/1028602031000165330915621582
    [Google Scholar]
  209. KhanM.A. NabiS.G. PrakashS. ZamanA. Pallidol, a resveratrol dimer from Cissus pallida.Phytochemistry19862581945194810.1016/S0031‑9422(00)81180‑2
    [Google Scholar]
  210. WangS. MaD. HuC. Three new compounds from the aerial parts of Caragana sinica.Helv. Chim. Acta20058882315232110.1002/hlca.200590166
    [Google Scholar]
  211. LeeS.K. LeeH.J. MinH.Y. ParkE.J. LeeK.M. AhnY.H. ChoY.J. PyeeJ.H. Antibacterial and antifungal activity of pinosylvin, a constituent of pine.Fitoterapia200576225826010.1016/j.fitote.2004.12.00415752644
    [Google Scholar]
  212. BelofskyG. FrenchA.N. WallaceD.R. DodsonS.L. New geranyl stilbenes from Dalea purpurea with in vitro opioid receptor affinity.J. Nat. Prod.2004671263010.1021/np030258d14738380
    [Google Scholar]
  213. MagalhãesA.F. TozziA.M.G.A. MagalhãesE.G. MoraesV.R.S. Prenylated flavonoids from Deguelia hatschbachii and their systematic significance in Deguelia.Phytochemistry2001571778910.1016/S0031‑9422(00)00509‑411336265
    [Google Scholar]
  214. PereiraA. ArrudaM. da SilvaE. da SilvaM. LemosV. CortesS. Inhibition of α-glucosidase and hypoglycemic effect of stilbenes from the Amazonian plant Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo (Leguminosae).Planta Med.2012781363810.1055/s‑0031‑128019921928165
    [Google Scholar]
  215. OrsiniF. PelizzoniF. VerottaL. AburjaiT. RogersC.B. Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-β-D-glucopyranoside and related compounds.J. Nat. Prod.199760111082108710.1021/np970069t9392877
    [Google Scholar]
  216. NgoupayoJ. TabopdaT.K. AliM.S. NgadjuiB.T. Lacaille-DuboisM.A. Antioxidant stilbenoid and flavanonol from stem of Erythrophleum suaveolens (Guill. & Perr.).Magn. Reson. Chem.201553861261510.1002/mrc.425326017640
    [Google Scholar]
  217. MengH.C. ZhuS. FanY.H. YeR. HattoriM. KomatsuK. MaC.M. Discovery of prenylated dihydrostilbenes in Glycyrrhiza uralensis leaves by UHPLC-MS using neutral loss scan.Ind. Crops Prod.202015211255710.1016/j.indcrop.2020.112557
    [Google Scholar]
  218. IosetJ.R. MarstonA. GuptaM.P. HostettmannK. Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus.J. Nat. Prod.200164671071510.1021/np000597w11421729
    [Google Scholar]
  219. KaouadjiM. AgbanA. MariotteA.M. TissutM. Lonchocarpene, a stilbene, and lonchocarpusone, an isoflavone: Two new pyranopolyphenols from lonchocarpus nicou roots.J. Nat. Prod.198649228128510.1021/np50044a013
    [Google Scholar]
  220. FangN. CasidaJ.E. New bioactive flavonoids and stilbenes in cubé resin insecticide.J. Nat. Prod.199962220521010.1021/np980119+10075742
    [Google Scholar]
  221. ParkW.H. LeeS.J. MoonH.I. Antimalarial activity of a new stilbene glycoside from Parthenocissus tricuspidata in mice.Antimicrob. Agents Chemother.20085293451345310.1128/AAC.00562‑0818625780
    [Google Scholar]
  222. SonI.H. ChungI.M. LeeS.J. MoonH.I. Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea.Parasitol. Res.2007101123724110.1007/s00436‑006‑0454‑y17211658
    [Google Scholar]
  223. HuY.C. MaS.G. YuS.S. WuX.F. LiY. Phenolic glycosides isolated from the bark of Lysidice brevicalyx Wei.J. Asian Nat. Prod. Res.201012651652110.1080/10286020.2010.48981820552492
    [Google Scholar]
  224. GaoS. LiuJ. FuG.M. HuY.C. YuS.S. FanL.H. YuD.Q. QuJ. Resveratrol/phloroglucinol glycosides from the roots of Lysidice rhodostegia.Planta Med.200773216316610.1055/s‑2006‑95177017415877
    [Google Scholar]
  225. MuhammadI. LiX.C. DunbarD.C. ElSohlyM.A. KhanI.A. Antimalarial (+)-trans-hexahydrodibenzopyran derivatives from Machaerium multiflorum.J. Nat. Prod.200164101322132510.1021/np010286111678659
    [Google Scholar]
  226. MaZ. LiX. LiN. WangJ. Stilbenes from Sphaerophysa salsula.Fitoterapia200273431331510.1016/S0367‑326X(02)00074‑612234574
    [Google Scholar]
  227. OhyamaM. IchiseM. TanakaT. IinumaM. BurandtC.L.Jr DavidiolD. Davidiol D, first naturally occurring resveratrol pentamer isolated from Sophora davidii.Tetrahedron Lett.199637295155515810.1016/0040‑4039(96)01078‑7
    [Google Scholar]
  228. SpeicherA. SchoenebornR. 3,4-dihydroxy-3′-methoxystilbene, the first monomeric stilbene derivative from bryophytes.Phytochemistry19974581613161510.1016/S0031‑9422(97)00241‑0
    [Google Scholar]
  229. HammerbacherA. RalphS.G. BohlmannJ. FenningT.M. GershenzonJ. SchmidtA. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.Plant Physiol.2011157287689010.1104/pp.111.18142021865488
    [Google Scholar]
  230. LikhitwitayawuidK. SritularakB. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus .J. Nat. Prod.200164111457145910.1021/np010180611720533
    [Google Scholar]
  231. BoonyaketgosonS. RukachaisirikulV. PhongpaichitS. TrisuwanK. Cytotoxic arylbenzofuran and stilbene derivatives from the twigs of Artocarpus heterophyllus.Tetrahedron Lett.201758161585158910.1016/j.tetlet.2017.03.020
    [Google Scholar]
  232. Chun-NanL. Chai-MingL. Heterophylol, a phenolic compound with novel skeleton from Artocarpus heterophyllus.Tetrahedron Lett.199334518249825010.1016/S0040‑4039(00)61402‑8
    [Google Scholar]
  233. YuM.H. ZhaoT. YanG.R. YangH.X. WangH.Y. HouA.J. New isoprenylated flavones and stilbene derivative from Artocarpus heterophyllus.Chem. Biodivers.20129239440210.1002/cbdv.20110007222344915
    [Google Scholar]
  234. ArungE. T. ShimizuK. KondoR. Artocarpus plants as a potential source of skin whitening agents.Nat. Prod. Communic.2011691610.1177/1934578X1100600943
    [Google Scholar]
  235. BoonlaksiriC. OonanantW. KongsaereeP. KittakoopP. TanticharoenM. ThebtaranonthY. An antimalarial stilbene from Artocarpus integer.Phytochemistry200054441541710.1016/S0031‑9422(00)00074‑110897483
    [Google Scholar]
  236. JayasingheU.L.B. PuvanendranS. HaraN. FujimotoY. Stilbene derivatives with antifungal and radical scavenging properties from the Stem Bark of artocarpus nobilis.Nat. Prod. Res.200418657157410.1080/1478641031000164386715595616
    [Google Scholar]
  237. KimH. SeoK.H. YokoyamaW. Chemistry of pterostilbene and its metabolic effects.J. Agric. Food Chem.20206846128361284110.1021/acs.jafc.0c0007032125846
    [Google Scholar]
  238. MaF. ShenW. ZhangX. LiM. WangY. ZouY. LiY. WangH. Anti-HSV Activity of Kuwanon X from Mulberry Leaves with Genes Expression Inhibitory and HSV-1 Induced NF-κB Deactivated Properties.Biol. Pharm. Bull.201639101667167410.1248/bpb.b16‑0040127725444
    [Google Scholar]
  239. ChabertP. FougerousseA. BrouillardR. Anti‐mitotic properties of resveratrol analog (Z)‐3,5,4′‐trimethoxystilbene.Biofactors2006271-4374610.1002/biof.552027010417012762
    [Google Scholar]
  240. De FilippisB. AmmazzalorsoA. FantacuzziM. GiampietroL. MaccalliniC. AmorosoR. Anticancer activity of stilbene‐based derivatives.ChemMedChem201712855857010.1002/cmdc.20170004528266812
    [Google Scholar]
  241. ChenC-C. HuangY-L. YehP-Y. OuJ-C. Cyclized geranyl stilbenes from the rhizomes of Helminthostachys zeylanica.Planta Med.2003691096496710.1055/s‑2003‑4511214648406
    [Google Scholar]
  242. GaroE. HuJ.F. GoeringM. HoughG. O’Neil-JohnsoM. EldridgeG. Stilbenes from the Orchid Phragmipedium sp. J. Nat. Prod.200770696897310.1021/np070014j17536858
    [Google Scholar]
  243. MajumderP.L. RoychowdhuryM. ChakrabortyS. Thunalbene, a stilbene derivative from the orchid Thunia alba.Phytochemistry19984982375237810.1016/S0031‑9422(98)00433‑6
    [Google Scholar]
  244. KimH.J. ChangE.J. BaeS.J. ShimS.M. ParkH.D. RheeC.H. ParkJ.H. ChoiS.W. Cytotoxic and antimutagenic stilbenes from seeds ofPaeonia lactiflora.Arch. Pharm. Res.200225329329910.1007/BF0297662912135100
    [Google Scholar]
  245. RyuH.W. SongH.H. ShinI.S. ChoB.O. JeongS.H. KimD.Y. AhnK.S. OhS.R. Suffruticosol A isolated from Paeonia lactiflora seedcases attenuates airway inflammation in mice induced by cigarette smoke and LPS exposure.J. Funct. Foods20151777478410.1016/j.jff.2015.06.036
    [Google Scholar]
  246. LiD.D. ZhaoL.X. MylonakisE. HuG.H. ZouY. HuangT.K. YanL. WangY. JiangY.Y. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms.Antimicrob. Agents Chemother.20145842344235510.1128/AAC.01583‑1324514088
    [Google Scholar]
  247. LiS.H. NiuX.M. ZahnS. GershenzonJ. WestonJ. SchneiderB. Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies).Phytochemistry200869377278210.1016/j.phytochem.2007.08.03318028966
    [Google Scholar]
  248. WadaS. YasuiY. TokudaH. TanakaR. Anti-tumor-initiating effects of phenolic compounds isolated from the bark of Picea jezoensis var. jezoensis.Bioorg. Med. Chem.200917176414642110.1016/j.bmc.2009.07.01619646881
    [Google Scholar]
  249. HovelstadH. LeirsetI. OyaasK. FiksdahlA. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers.Molecules200611110311410.3390/1101010317962750
    [Google Scholar]
  250. SilvaA.A. HaraguchiS.K. CelletT.S.P. SchuquelI.T.A. SarragiottoM.H. VidottiG.J. de MeloJ.O. Bersani-AmadoC.A. ZanoliK. NakamuraC.V. Resveratrol-derived stilbenoids and biological activity evaluation of seed extracts of Cenchrus echinatus L.Nat. Prod. Res.201226986586810.1080/14786419.2011.56153822292784
    [Google Scholar]
  251. LiB.J. LiuY. GuA.T. ZhangQ. ChenL. WangS.M. WangF. Two new stilbene trimers from Cynodon dactylon.Nat. Prod. Res.201731212479248310.1080/14786419.2017.131428128391706
    [Google Scholar]
  252. MiyaichiY. NunomuraN. KawataY. KizuH. TomimoriT. WatanabeT. TakanoA. MallaK.J. Studies on nepalese crude drugs. XXVIII. Chemical constituents of Bhote Khair, the underground parts of Eskemukerjea megacarpum HARA.Chem. Pharm. Bull.200654113613810.1248/cpb.54.13616394569
    [Google Scholar]
  253. PacherT. SegerC. EngelmeierD. VajrodayaS. HoferO. GregerH. Antifungal stilbenoids from Stemona collinsae.J. Nat. Prod.200265682082710.1021/np010507312088422
    [Google Scholar]
  254. XiaoK. XuanL. XuY. BaiD. Stilbene glycoside sulfates from Polygonum cuspidatum.J. Nat. Prod.200063101373137610.1021/np000086+11076555
    [Google Scholar]
  255. HuL. ChenN.N. HuQ. YangC. YangQ.S. WangF.F. An unusual piceatannol dimer from Rheum austral D. Don with antioxidant activity.Molecules2014198114531146410.3390/molecules19081145325093985
    [Google Scholar]
  256. ShikishimaY. TakaishiY. HondaG. ItoM. TakedaY. KodzhimatovO.K. AshurmetovO. Phenylbutanoids and stilbene derivatives of Rheum maximowiczii.Phytochemistry200156437738110.1016/S0031‑9422(00)00370‑811249105
    [Google Scholar]
  257. PüssaT. RaudseppP. KuzinaK. RaalA. Polyphenolic composition of roots and petioles of Rheum rhaponticum L.Phytochem. Anal.20092029810310.1002/pca.110218979462
    [Google Scholar]
  258. KeremZ. BilkisI. FlaishmanM.A. SivanL. Antioxidant activity and inhibition of α-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L.J. Agric. Food Chem.20065441243124710.1021/jf052436+16478243
    [Google Scholar]
  259. OrhanI. TosunF. ŞenerB. Coumarin, anthroquinone and stilbene derivatives with anticholinesterase activity.Z. Naturforsch. C J. Biosci.2008635-636637010.1515/znc‑2008‑5‑61018669022
    [Google Scholar]
  260. XuF. MatsudaH. HataH. SugawaraK. NakamuraS. YoshikawaM. Structures of new flavonoids and benzofuran-type stilbene and degranulation inhibitors of rat basophilic leukemia cells from the Brazilian herbal medicine Cissus sicyoides.Chem. Pharm. Bull.200957101089109510.1248/cpb.57.108919801863
    [Google Scholar]
  261. YangJ.B. WangA.G. JiT.F. SuY.L. Two new oligostilbenes from the stem of Parthenocissus quinquefolia.J. Asian Nat. Prod. Res.201416327528010.1080/10286020.2013.87745124456249
    [Google Scholar]
  262. HuangK.S. LinM. YuL.N. KongM. A new oligostilbene from the roots of vitis amurensis.Chin. Chem. Lett.1999109775776
    [Google Scholar]
  263. AndrusM.B. LiuJ. MeredithE.L. NarteyE. Synthesis of resveratrol using a direct decarbonylative Heck approach from resorcylic acid.Tetrahedron Lett.200344264819482210.1016/S0040‑4039(03)01131‑6
    [Google Scholar]
  264. BotellaL. NájeraC. Synthesis of methylated resveratrol and analogues by Heck reactions in organic and aqueous solvents.Tetrahedron200460265563557010.1016/j.tet.2004.04.076
    [Google Scholar]
  265. AndrusM.B. LiuJ. Synthesis of polyhydroxylated ester analogs of the stilbene resveratrol using decarbonylative Heck couplings.Tetrahedron Lett.200647325811581410.1016/j.tetlet.2006.05.065
    [Google Scholar]
  266. GruberM. ChouzierS. KoehlerK. DjakovitchL. Palladium on activated carbon: a valuable heterogeneous catalyst for one-pot multi-step synthesis.Appl. Catal. A Gen.2004265216116910.1016/j.apcata.2004.01.012
    [Google Scholar]
  267. RameauN. RussoB. MangematinS. PinelC. DjakovitchL. Stilbene synthesis through decarboxylative cross-coupling of substituted cinnamic acids with aryl halides.Appl. Catal. A Gen.201856013214310.1016/j.apcata.2018.04.031
    [Google Scholar]
  268. MyersA.G. TanakaD. MannionM.R. Development of a decarboxylative palladation reaction and its use in a Heck-type olefination of arene carboxylates.J. Am. Chem. Soc.200212438112501125110.1021/ja027523m12236722
    [Google Scholar]
  269. ZhangS.L. FuY. ShangR. GuoQ.X. LiuL. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins.J. Am. Chem. Soc.2010132263864610.1021/ja907448t20038103
    [Google Scholar]
  270. HuP. KanJ. SuW. HongM. Pd(O2CCF3)2/benzoquinone: A versatile catalyst system for the decarboxylative olefination of arene carboxylic acids.Org. Lett.200911112341234410.1021/ol900755319432465
    [Google Scholar]
  271. TangJ. HackenbergerD. GoossenL.J. Branched arylalkenes from cinnamates: Selectivity inversion in Heck reactions by carboxylates as deciduous directing groups.Angew. Chem. Int. Ed.20165537112961129910.1002/anie.20160574427485163
    [Google Scholar]
  272. SinhaA.K. KumarV. SharmaA. SharmaA. KumarR. An unusual, mild and convenient one-pot two-step access to (E)-stilbenes from hydroxy-substituted benzaldehydes and phenylacetic acids under microwave activation: A new facet of the classical Perkin reaction.Tetrahedron20076345110701107710.1016/j.tet.2007.08.034
    [Google Scholar]
  273. PaulS. MizunoC.S. LeeH.J. ZhengX. ChajkowiskS. RimoldiJ.M. ConneyA. SuhN. RimandoA.M. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer.Eur. J. Med. Chem.20104593702370810.1016/j.ejmech.2010.05.01920627379
    [Google Scholar]
  274. RomanB.I. De CoenL.M. Thérèse F C MortierS. De RyckT. VanhoeckeB.W. KatritzkyA.R. BrackeM.E. StevensC.V. StevensC.V. Design, synthesis and structure-activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes.Bioorg. Med. Chem.201321175054506310.1016/j.bmc.2013.06.04823867387
    [Google Scholar]
  275. YanJ. GuoY. WangY. MaoF. HuangL. LiX. Design, synthesis, and biological evaluation of benzoselenazole-stilbene hybrids as multi-target-directed anti-cancer agents.Eur. J. Med. Chem.20159522022910.1016/j.ejmech.2015.03.03025817772
    [Google Scholar]
  276. SimoniD. InvidiataF.P. EleopraM. MarchettiP. RondaninR. BaruchelloR. GrisoliaG. TripathiA. KelloggG.E. DurrantD. LeeR.M. Design, synthesis and biological evaluation of novel stilbene-based antitumor agents.Bioorg. Med. Chem.200917251252210.1016/j.bmc.2008.12.00219117761
    [Google Scholar]
  277. LiY.Q. LiZ.L. ZhaoW.J. WenR.X. MengQ.W. ZengY. Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication.Eur. J. Med. Chem.20064191084108910.1016/j.ejmech.2006.03.02416875760
    [Google Scholar]
  278. JungM. LeeY. ParkM. KimH. KimH. LimE. TakJ. SimM. LeeD. ParkN. OhW.K. HurK.Y. KangE.S. LeeH.C. Design, synthesis, and discovery of stilbene derivatives based on lithospermic acid B as potent protein tyrosine phosphatase 1B inhibitors.Bioorg. Med. Chem. Lett.200717164481448610.1016/j.bmcl.2007.06.01617596944
    [Google Scholar]
  279. JungJ.C. LimE. LeeY. KangJ.M. KimH. JangS. OhS. JungM. Synthesis of novel trans-stilbene derivatives and evaluation of their potent antioxidant and neuroprotective effects.Eur. J. Med. Chem.20094483166317410.1016/j.ejmech.2009.03.01119375195
    [Google Scholar]
  280. HahmS.G. LeeS.W. LeeT.J. ChoS.A. ChaeB. JungY.M. KimS.B. ReeM. UV-driven switching of chain orientation and liquid crystal alignment in nanoscale thin films of a novel polyimide bearing stilbene moieties in the backbone.J. Phys. Chem. B2008112164900491210.1021/jp710186818386867
    [Google Scholar]
  281. McNultyJ. McLeodD. A scalable process for the synthesis of (E)-pterostilbene involving aqueous Wittig olefination chemistry.Tetrahedron Lett.201354476303630610.1016/j.tetlet.2013.09.019
    [Google Scholar]
  282. HallsC. YuO. Potential for metabolic engineering of resveratrol biosynthesis.Trends Biotechnol.2008262778110.1016/j.tibtech.2007.11.00218191264
    [Google Scholar]
  283. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  284. QuirkR.P. YooT. LeeY. KimJ. LeeB. Applications of 1,1-diphenylethylene chemistry in anionic synthesis of polymers with controlled structures.Adv. Polym. Sci.20001536716210.1007/3‑540‑46414‑X_3
    [Google Scholar]
  285. HatadaK. KitayamaT. SasakiS. OkamotoY. MasudaE. KobayashiY. NakajimaA. AritomeH. NambaS. Effect of 1,1-diphenylethylene on the radical polymerization of di-n-butyl itaconate in benzene.Europ. Polym. J.1986252141147
    [Google Scholar]
  286. LikhtenshteinG.I. Stilbenes synthesis and applications.Kirk-Othmer Encyclopedia of Chemical TechnologyJohn Wiley & Sons200012410.1002/0471238961
    [Google Scholar]
  287. RaymondE. OthmerD. KroschwitzJ.I. Howe-GrantM. Kirk-Othmer encyclopedia of chemical technology, 3rd ed.; Wiley-Interscience: New York,1978I
    [Google Scholar]
  288. BeckerK.B. Synthesis of Stilbenes.Synthesis19831983534136810.1055/s‑1983‑30334
    [Google Scholar]
  289. HădărugăN.-G. HădărugăD.-I. Stilbenes and Its Derivatives and Glycosides.Handbook of Food Bioactive IngredientsSpringerCham2023158
    [Google Scholar]
  290. SharafanM. MalinowskaM.A. EkiertH. KwaśniakB. SikoraE. SzopaA. Vitis vinifera (Vine Grape) as a valuable cosmetic raw material.Pharmaceutics20231551372140010.3390/pharmaceutics1505137237242614
    [Google Scholar]
  291. SinghD. MendonsaR. KoliM. SubramanianM. NayakS.K. Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship.Toxicol. Appl. Pharmacol.2019367233210.1016/j.taap.2019.01.02530711533
    [Google Scholar]
  292. PauloL. FerreiraS. GallardoE. QueirozJ.A. DominguesF. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria.World J. Microbiol. Biotechnol.20102681533153810.1007/s11274‑010‑0325‑7
    [Google Scholar]
  293. AlmstrupK. FernándezM.F. PetersenJ.H. OleaN. SkakkebaekN.E. LeffersH. Dual effects of phytoestrogens result in u-shaped dose-response curves.Environ. Health Perspect.2002110874374810.1289/ehp.0211074312153753
    [Google Scholar]
  294. TremlJ. LelákováV. ŠmejkalK. PaulíčkováT. LabudaŠ. GranicaS. HavlíkJ. JankovskáD. PadrtováT. HošekJ. Antioxidant activity of selected stilbenoid derivatives in a cellular model system.Biomolecules20199946810.3390/biom909046831505897
    [Google Scholar]
  295. KhanZ.A. IqbalA. ShahzadS.A. Synthetic approaches toward stilbenes and their related structures.Mol. Divers.201721248350910.1007/s11030‑017‑9736‑928429182
    [Google Scholar]
  296. ScarlattiF. SalaG. SomenziG. SignorelliP. SacchiN. GhidoniR. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling.FASEB J.200317152339234110.1096/fj.03‑0292fje14563682
    [Google Scholar]
  297. González-SarríasA. GromekS. NiesenD. SeeramN.P. HenryG.E. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest.J. Agric. Food Chem.201159168632863810.1021/jf201561e21761862
    [Google Scholar]
  298. TessitoreL. DavitA. SarottoI. CaderniG. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21CIP expression.Carcinogenesis20002181619162210.1093/carcin/21.5.61910910967
    [Google Scholar]
  299. LiZ.G. HongT. ShimadaY. KomotoI. KawabeA. DingY. KaganoiJ. HashimotoY. ImamuraM. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol.Carcinogenesis20022391531153610.1093/carcin/23.9.153112189197
    [Google Scholar]
  300. BanerjeeS. Bueso-RamosC. AggarwalB.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9.Cancer Res.200262174945495412208745
    [Google Scholar]
  301. Dali-YoucefN. LagougeM. FroelichS. KoehlC. SchoonjansK. AuwerxJ. Sirtuins: The ‘ magnificent seven ’, function, metabolism and longevity.Ann. Med.200739533534510.1080/0785389070140819417701476
    [Google Scholar]
  302. HalliwellB. Free Radicals in Biology and Medicine. HalliwellB. GutteridgeJ.M.C. 3rdOxford University PressOxford1999125
    [Google Scholar]
  303. PackerL. Interactions among antioxidants in health and disease: Vitamin E and its redox cycle.Exp. Biol. Med.1992200227127610.3181/00379727‑200‑434331579593
    [Google Scholar]
  304. EsterbauerH. GebickiJ. PuhlH. JürgensG. The role of lipid peroxidation and antioxidants in oxidative modification of LDL.Free Radic. Biol. Med.199213434139010.1016/0891‑5849(92)90181‑F1398217
    [Google Scholar]
  305. SteinbergD. ParthasarathyS. CarewT.E. KhooJ.C. WitztumJ.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity.N. Engl. J. Med.1989320149159242648148
    [Google Scholar]
  306. WhiteheadT.P. RobinsonD. AllawayS. SymsJ. HaleA. Effect of red wine ingestion on the antioxidant capacity of serum.Clin. Chem.1995411323510.1093/clinchem/41.1.327813078
    [Google Scholar]
  307. PontV. PezetR. Relation between the chemical structure and the biological activity of hydroxystilbenes against Botrytis cinerea.J. Phytopathol.199013011810.1111/j.1439‑0434.1990.tb01147.x
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298307930240531072440
Loading
/content/journals/mroc/10.2174/0118756298307930240531072440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biosynthesis; natural sources; pharmacology; phytochemistry; resveratrol; Stilbenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test