Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Transition metal-free annulation/cascade reactions have been embraced as a powerful synthetic tool to access carbo/heterocyclic molecules. Among them, benzyne chemistry gained significant interest due to the formation of diverse functionalized arenes unusual carbon-carbon (C-C) or carbon-heteroatom (C-O, C-N, C-S) bond-formation under different reaction conditions. In this review, few dynamic methods have been documented to construct the synthetically and pharmaceutically valuable indazole scaffolds using benzyne precursor and various other coupling partners. In this mini-review, we have described the recent progress on metal-free cascade strategies, highlighting the contribution from several synthetic chemists, including our research work. Specific attention has been paid to offer the detailed mechanistic pathway to explain the developed methodologies.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298321262240719103850
2024-07-31
2025-09-13
Loading full text...

Full text loading...

References

  1. (a BijuA.T. Modern Aryne Chemistry.Wiley-VCH: Weinheim, Germany202110.1002/9783527823086
    [Google Scholar]
  2. (b DhanajiJ.R. SamathaP. RajuS. MainkarP.S. AdepuR. ChandrasekharS. Substitution controlled aryne insertion: synthesis of diarylmethane/chromones.Chem. Commun. (Camb.)202359182648265110.1039/D2CC05992D36779483
    [Google Scholar]
  3. (c ShiJ. LiL. LiY. o -Silylaryl Triflates: A Journey of Kobayashi aryne precursors.Chem. Rev.202112173892404410.1021/acs.chemrev.0c0101133599472
    [Google Scholar]
  4. (a MesgarM. Nguyen-LeJ. DaugulisO. 1,2-Bis(arylthio)arene synthesis via aryne intermediates.Chem. Commun.201955649467947010.1039/C9CC03863A31328188
    [Google Scholar]
  5. (b BunnettJ.F. KatoT. FlynnR.R. SkorczJ.A. Studies of ring closure via aryne intermediates.J. Org. Chem.19632811610.1021/jo01036a001
    [Google Scholar]
  6. (c ChariJ.V. SpenceK.A. SusickR.B. GargN.K. A platform for on-the-complex annulation reactions with transient aryne intermediates.Nat. Commun.20211213706371610.1038/s41467‑021‑23970‑834140488
    [Google Scholar]
  7. (a TadrossP.M. StoltzB.M. BrianM. A comprehensive history of arynes in natural product total synthesis.Chem. Rev.201211263550357710.1021/cr200478h22443517
    [Google Scholar]
  8. (b ReddyG.S. BhattM.V. Cycloaddition of arynes with oxazoles1 : A convenient synthesis of variously substituted polycyclic hydrocarbons.Tetrahedron Lett.198021373627362810.1016/0040‑4039(80)80254‑1
    [Google Scholar]
  9. (c WerzD.B. BijuA.T. Uncovering the neglected similarities of arynes and donor–acceptor cyclopropanes.Angew. Chem. Int. Ed.20205993385339810.1002/anie.20190921331529661
    [Google Scholar]
  10. (a LiuB. LiJ. HuP. ZhouX. BaiD. LiX. Divergent annulative C–C coupling of indoles initiated by manganese-catalyzed C–H activation.ACS Catal.20188109463947010.1021/acscatal.8b02560
    [Google Scholar]
  11. (b UchidaK. MinamiY. YoshidaS. HosoyaT. Synthesis of diverse γ-Aryl-β-ketoesters via aryne intermediates generated by C–C bond cleavage.Org. Lett.201921229019902310.1021/acs.orglett.9b03418
    [Google Scholar]
  12. (c KevorkianP.V. SneddonD.S. RittsC.B. HoyeT.R. Phosphorane‐promoted C−C coupling during aryne annulations.Angew. Chem. Int. Ed.20246314e20231877410.1002/anie.20231877438324736
    [Google Scholar]
  13. (a DongY. LipschutzM.I. TilleyT.D. Regioselective, transition metal-free c–o coupling reactions involving aryne intermediates.Org. Lett.20161871530153310.1021/acs.orglett.6b0018327010921
    [Google Scholar]
  14. (b TanH. YuS. YuanX. ChenL. ShanC. ShiJ. LiY. Switchable chemoselective aryne reactions between nucleophiles and pericyclic reaction partners using either 3-methoxybenzyne or 3-silylbenzyne.Nat. Commun.2024151366510.1038/s41467‑024‑47952‑838693115
    [Google Scholar]
  15. MikiT. KoriM. MabuchiH. TozawaR. NishimotoT. SugiyamaY. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis.J. Med. Chem.20024545714580
    [Google Scholar]
  16. (b LevaiA. Synthesis and chemical transformations of benzoxazepines.Heterocycles20087521552185
    [Google Scholar]
  17. (c DolsP.P.M.A. FolmerB.J.B. HamersmaH. KuilC.W. SAR study of 2,3,4,14b-tetrahydro-1H-dibenzo[b,f]pyrido[1,2-d][1,4] oxaze- pines as progesterone receptor agonists.Bioorg. Med. Chem. Lett.2008181414611467
    [Google Scholar]
  18. (d WongY.C. WoS. K. ZuoZ. Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC–MS/MS.J. Pharm. Biomed. Anal.2012588393
    [Google Scholar]
  19. (a FoxB.M. BeckH.P. RovetoP.M. KayserF. ChengQ. DouH. WilliamsonT. TreanorJ. LiuH. JinL. XuG. MaJ. WangS. OlsonS.H. A selective prostaglandin E2 receptor subtype 2 (EP2) antagonist increases the macrophage-mediated clearance of amyloid-beta plaques.J. Med. Chem.201558135256527310.1021/acs.jmedchem.5b0056726061158
    [Google Scholar]
  20. (b PoppT.A. TallantC. RogersC. FedorovO. BrennanP.E. MüllerS. KnappS. BracherF. Development of selective cbp/p300 benzoxazepine bromodomain inhibitors.J. Med. Chem.201659198889891210.1021/acs.jmedchem.6b0077427673482
    [Google Scholar]
  21. KlugD.M. TschieggL. Rojas-BarrosD. Perez-MorenoG. CeballosG. García-HernándezR. Martinez-Martinez M. S. ManzanoP. Hit-to-lead optimization of benzoxazepino- indazoles as human african trypanosomiasis therapeutics.J. Med. Chem.20206352527254631670951
    [Google Scholar]
  22. (a ThansandoteP. ChongE. FeldmannK.O. LautensM. Palladium-catalyzed domino C-C/C-N coupling using a norbornene template: synthesis of substituted benzomorpholines, phenoxazines, and dihydrodibenzoxazepines.J. Org. Chem.201075103495349810.1021/jo100408p20423091
    [Google Scholar]
  23. (b GhandiM. MomeniT. NazeriM.T. ZarezadehN. KubickiM. A one-pot three-component reaction providing tricyclic 1,4-benzoxazepine derivatives.Tetrahedron Lett.201354232983298510.1016/j.tetlet.2013.03.131
    [Google Scholar]
  24. (a JiF. LvM. YiW. CaiC. Synthesis of 1,4‐benzoxazepine derivatives via a novel domino aziridine ring‐opening and isocyanide‐insertion reaction.Adv. Synth. Catal.2013355173401340610.1002/adsc.201300650
    [Google Scholar]
  25. (b ZhaoH. MengX. HuangY. One step synthesis of benzoxazepine derivatives via a PPh3 catalyzed aza-MBH domino reaction between salicyl N-tosylimines and allenoates.Chem. Commun. (Camb.)20134989105131051510.1039/c3cc46379f24089025
    [Google Scholar]
  26. ShenJ. XueL. LinX. ChengG. CuiX. The base-promoted synthesis of multisubstituted benzo[b][1,4]oxazepines.Chem. Commun. (Camb.)201652163292329510.1039/C5CC09877G26776745
    [Google Scholar]
  27. RamakrishnaI. ReddyM.K. BaidyaM. Organocatalyzed annulation cascade toward asymmetric functionalization of dibenzoxazepines and dibenzothiazepines with vicinal tertiary stereogenic centers.ChemistrySelect20194288207821110.1002/slct.201902496
    [Google Scholar]
  28. OshimotoK. ZhouB. TsujiH. KawatsuraM. Synthesis of substituted benzo[ b ][1,4]oxazepine derivatives by the reaction of 2-aminophenols with alkynones.Org. Biomol. Chem.202018341541910.1039/C9OB02450F31894810
    [Google Scholar]
  29. (a) HimeshimaY. SonodaT. KobayashiH. Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions.Chem. Lett.1983198312111214
    [Google Scholar]
  30. (b) WenkH.H. WinklerM. SanderW. One century of aryne chemistryAngew. Chem., Int. Ed2003425502528
    [Google Scholar]
  31. (c SanzR. Recent applications of aryne chemistry to organic synthesis. a review.Org. Prep. Proced. Int.2008403215291
    [Google Scholar]
  32. (d BhuniaA. YetraS.R. BijuA.T. Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes. Chem. Soc. Rev20124131403152
    [Google Scholar]
  33. (e PérezD. PeñaD. GuitiánE. Aryne Cycloaddition Reactions in the Synthesis of Large Polycyclic Aromatic Compounds. Eur. J. Org. Chem201320132759816013
    [Google Scholar]
  34. (f DubrovskiyA.V. MarkinaN.A. LarockR.C. Use of benzynes for the synthesis of heterocycles.Org. Biomol. Chem.201311191218
    [Google Scholar]
  35. (g HsiehJ.C. ChengC.H. O-Dihaloarenes as aryne precursors for nickel-catalyzed [2 + 2 + 2] cycloaddition with alkynes and nitriles. Chem. Commun2008591929922994
    [Google Scholar]
  36. (h FriedmanL. LogulloF.M. Benzynes via Aprotic Diazotization of Anthranilic Acids: A Convenient Synthesis of Triptycene and Derivatives.J. Am. Chem. Soc196385101549
    [Google Scholar]
  37. (i CampbellC.D. ReesC.W. Reactive intermediates. Part I. Synthesis and oxidation of 1- and 2-aminobenzotriazole.J. Chem. Soc. C19691969742747
    [Google Scholar]
  38. GaikwadD.D. ChapolikarA.D. DevkateC.G. WaradK.D. TayadeA.P. PawarR.P. DombA.J. Synthesis of indazole motifs and their medicinal importance: An overview.Eur. J. Med. Chem.20159070773110.1016/j.ejmech.2014.11.02925506810
    [Google Scholar]
  39. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: an overview.RSC Advances20201072442474431110.1039/D0RA09198G35557843
    [Google Scholar]
  40. ZhangJ. YangQ. RomeroJ.A.C. CrossJ. WangB. PoutsiakaK.M. EpieF. BevanD. WuY. MoyT. DanielA. ChamberlainB. CarterN. ShotwellJ. AryaA. KumarV. SilvermanJ. NguyenK. MetcalfC.A.III RyanD. LippaB. DolleR.E. Discovery of Indazole Derivatives as a Novel Class of Bacterial Gyrase B Inhibitors.ACS Med. Chem. Lett.20156101080108510.1021/acsmedchemlett.5b0026626487916
    [Google Scholar]
  41. DenyaI. MalanS.F. JoubertJ. Indazole derivatives and their therapeutic applications: a patent review (2013-2017).Expert Opin. Ther. Pat.201828644145310.1080/13543776.2018.147224029718740
    [Google Scholar]
  42. (a AdrioJ. CarreteroJ.C. Recent advances in the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides.Chem. Commun. (Camb.)20145083124341244610.1039/C4CC04381B25034665
    [Google Scholar]
  43. (b BdiriB. ZhaoB-J. ZhouZ.M. Recent advances in the enantioselective 1,3-dipolar cycloaddition of azomethine ylides and dipolarophiles.Tetrahedron Asymmetry201728787689910.1016/j.tetasy.2017.05.010
    [Google Scholar]
  44. (c WeiL. ChangX. WangC.J. Catalytic Asymmetric Reactions with N -Metallated Azomethine Ylides.Acc. Chem. Res.20205351084110010.1021/acs.accounts.0c0011332320206
    [Google Scholar]
  45. IpsonB.R. FisherA.L. Roles of the tyrosine isomers meta- tyrosine and ortho- tyrosine in oxidative stress.Ageing Res. Rev.2016279310710.1016/j.arr.2016.03.00527039887
    [Google Scholar]
  46. Al-BogamiA.S. Mechanochemical synthesis of cyclohexenones and indazoles as potential antimicrobial agents.Res. Chem. Intermed.20164265457547710.1007/s11164‑015‑2379‑5
    [Google Scholar]
  47. WanY. HeS. LiW. TangZ. Indazole Derivatives: Promising Anti-tumor Agents.Anticancer. Agents Med. Chem.20191891228123410.2174/187152061866618051011382229745343
    [Google Scholar]
  48. (a BermudezJ. FakeC.S. JoinerG.F. JoinerK.A. KingF.D. MinerW.D. SangerG.J. 5-Hydroxytryptamine (5-HT3) receptor antagonists. 1. Indazole and indolizine-3-carboxylic acid derivatives.J. Med. Chem.19903371924192910.1021/jm00169a0162362270
    [Google Scholar]
  49. (b BermudezJ. KingF.D. SangerG.J. Indazole and indoline as aromatic bioisosteres in the imidazole class of serotonin 5-HT3 receptor antagonists.Bioorg. Med. Chem. Lett.19922121509151210.1016/S0960‑894X(00)80418‑7
    [Google Scholar]
  50. SniecikowskaJ. Gluch-LutwinM. BuckiA. WięckowskaA. SiwekA. Jastrzebska-WiesekM. PartykaA. WilczyńskaD. PytkaK. LataczG. Przejczowska-PomiernyK. WyskaE. WesołowskaA. PawłowskiM. Newman-TancrediA. KolaczkowskiM. Discovery of Novel pERK1/2- or β-Arrestin-Preferring 5-HT 1A Receptor-Biased Agonists: Diversified Therapeutic-like versus Side Effect Profile.J. Med. Chem.20206319109461097110.1021/acs.jmedchem.0c0081432883072
    [Google Scholar]
  51. JayakodiarachchiN. MaurerM.A. SchultzD.C. DoddC.J. Thompson GrayA. ChoH.P. BoutaudO. JonesC.K. LindsleyC.W. BenderA.M. Evaluation of the Indazole Analogs of 5-MeO-DMT and Related Tryptamines as Serotonin Receptor 2 Agonists.ACS Med. Chem. Lett.202415210.1021/acsmedchemlett.3c0056638352850
    [Google Scholar]
  52. StępnickiP. Wronikowska-DenysiukO. ZiębaA. Targowska-DudaK.M. BartyzelA. WróbelM.Z. WróbelT.M. SzałajK. ChodkowskiA. MireckaK. BudzyńskaB. FornalE. TurłoJ. CastroM. KaczorA.A. Novel multi-target ligands of dopamine and serotonin receptors for the treatment of schizophrenia based on indazole and piperazine scaffolds–synthesis, biological activity, and structural evaluation.J. Enzyme Inhib. Med. Chem.2023381220982810.1080/14756366.2023.220982837184096
    [Google Scholar]
  53. GhoshS. MondalS. HajraA. Direct Catalytic Functionalization of Indazole Derivatives.Adv. Synth. Catal.2020362183768379410.1002/adsc.202000423
    [Google Scholar]
  54. GopiB. VijayakumarV. Synthesis molecular docking and DFT studies on novel indazole derivatives.RSC Advances20241419132181322610.1039/D4RA02151G38655475
    [Google Scholar]
  55. KarA. RanaG. SahooR. GhoshS. JanaU. Design and Synthesis of Indazole–Indole Hybrid via tert -Butyl Nitrite Mediated Cascade Diazotization/Isomerization/Cyclization.J. Org. Chem.202489107295730210.1021/acs.joc.4c0037738662442
    [Google Scholar]
  56. DubostE. StiebingS. FerraryT. CaillyT. FabisF. CollotV. A general synthesis of diversely substituted indazoles and hetero-aromatic derivatives from o-halo-(het)arylaldehydes or -phenones.Tetrahedron201470448413841810.1016/j.tet.2014.07.092
    [Google Scholar]
  57. (a ZhangS.G. LiangC.G. ZhangW.H. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives.Molecules20182311278310.3390/molecules2311278330373212
    [Google Scholar]
  58. (b CaronS. VazquezE. A Versatile and Efficient Synthesis of Substituted 1H-Indazoles.Synthesis19991999458859210.1055/s‑1999‑3431
    [Google Scholar]
  59. (c LukinK. HsuM.C. FernandoD. LeannaM.R. New practical synthesis of indazoles via condensation of o-fluorobenzaldehydes and their O-methyloximes with hydrazine.J. Org. Chem.200671218166817210.1021/jo061378417025307
    [Google Scholar]
  60. (a CouncellerC.M. EichmanC.C. WrayB.C. StambuliJ.P. A practical, metal-free synthesis of 1H-indazoles.Org. Lett.20081051021102310.1021/ol800053f18229936
    [Google Scholar]
  61. (b SatherA.C. BerrymanO.B. RebekJ.Jr Synthesis of fused indazole ring systems and application to nigeglanine hydrobromide.Org. Lett.20121461600160310.1021/ol300303s22385299
    [Google Scholar]
  62. (c ThoméI. BessonC. KleineT. BolmC. Base-catalyzed synthesis of substituted indazoles under mild, transition-metal-free conditions.Angew. Chem. Int. Ed.201352297509751310.1002/anie.20130091723740864
    [Google Scholar]
  63. (d LiuZ. ShiF. MartinezP.D.G. RaminelliC. LarockR.C. Synthesis of indazoles by the [3+2] cycloaddition of diazo compounds with arynes and subsequent acyl migration.J. Org. Chem.200873121922610.1021/jo702062n18067316
    [Google Scholar]
  64. (e JinT. YangF. YamamotoY. Facile and efficient synthesis of indazole derivatives by 1,3-cycloaddition of arynes with diazo compounds and azomethine imides.Collect. Czech. Chem. Commun.200974695797210.1135/cccc2009014
    [Google Scholar]
  65. (f SpiteriC. KeelingS. MosesJ.E. New synthesis of 1-substituted-1H-indazoles via 1,3-dipolar cycloaddition of in situ generated nitrile imines and benzyne.Org. Lett.201012153368337110.1021/ol101150t20608661
    [Google Scholar]
  66. (a MarkinaN.A. DubrovskiyA.V. LarockR.C. One-pot synthesis of 1-alkyl-1H-indazoles from 1,1-dialkylhydrazones via aryne annulation.Org. Biomol. Chem.201210122409241210.1039/c2ob07117g22337070
    [Google Scholar]
  67. (b SongJ.J. YeeN.K. Synthesis of 1-aryl-1 H -indazoles via the palladium-catalyzed cyclization of N -aryl- N ′-( o -bromobenzyl)hydrazines and [ N -aryl- N ′-( o -bromobenzyl)-hydrazinato- N ′]-triphenylphosphonium bromides.Tetrahedron Lett.200142162937294010.1016/S0040‑4039(01)00273‑8
    [Google Scholar]
  68. (c ChoC.S. LimD.K. HeoN.H. KimT.J. ShimS.C. Facile palladium-catalysed synthesis of 1-aryl-1H-indazoles from 2-bromobenzaldehydes and arylhydrazines.Chem. Commun.2004110410510.1039/b312154m14737353
    [Google Scholar]
  69. (d InamotoK. SaitoT. KatsunoM. SakamotoT. HiroyaK. Palladium-catalyzed C-H activation/intramolecular amination reaction: a new route to 3-aryl/alkylindazoles.Org. Lett.20079152931293410.1021/ol071111717595097
    [Google Scholar]
  70. (e ViñaD. del OlmoE. López-PérezJ.L. San FelicianoA. Regioselective synthesis of 1-alkyl- or 1-aryl-1H-indazoles via copper-catalyzed cyclizations of 2-haloarylcarbonylic compounds.Org. Lett.20079352552810.1021/ol062890e17249803
    [Google Scholar]
  71. (f XiongX. JiangY. MaD. Assembly of N,N-disubstituted hydrazines and 1-aryl-1H-indazoles via copper-catalyzed coupling reactions.Org. Lett.201214102552255510.1021/ol300847v22545771
    [Google Scholar]
  72. (a YoshimuraA. SaitoA. ZhdankinV.V. Iodonium salts as benzyne precursors.Chemistry20182457151561516610.1002/chem.20180211129797627
    [Google Scholar]
  73. (b YuH. XuF. Advances in the synthesis of nitrogen-containing heterocyclic compounds by in situ benzyne cycloaddition.RSC Advances202313128238825310.1039/D3RA00400G36922948
    [Google Scholar]
  74. (a BellottiP. KoyM. HopkinsonM.N. GloriusF. Recent advances in the chemistry and applications of N-heterocyclic carbenes.Nat. Rev. Chem.202151071172510.1038/s41570‑021‑00321‑137118184
    [Google Scholar]
  75. (b KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications.Molecules2020258190910.3390/molecules2508190932326131
    [Google Scholar]
  76. BeutickS.E. VermeerenP. HamlinT.A. The 1,3‐Dipolar Cycloaddition: From Conception to Quantum Chemical Design.Chem. Asian J.20221717e20220055310.1002/asia.20220055335822651
    [Google Scholar]
  77. JinT. YamamotoY. An efficient, facile, and general synthesis of 1h-indazoles by 1,3-dipolar cycloaddition of arynes with diazomethane derivatives.Angew. Chem. Int. Ed.200746183323332510.1002/anie.20070010117385767
    [Google Scholar]
  78. (a GhoshalA. YadavA. SrivastavaA.K. [3 + 2]-Dipolar Cycloaddition of Aldehyde-Tethered Alkynamides and Trimethylsilyl Amino Esters: A Gateway to Uniquely Functionalized Polycyclic N-Heterocycles via Post-Ugi Functionalization.J. Org. Chem.20208523148901490410.1021/acs.joc.0c0153933136409
    [Google Scholar]
  79. (b LeS. LiJ. FengJ. ZhangZ. BaiY. YuanZ. ZhuG. [3+2] Cycloaddition of alkyl aldehydes and alkynes enabled by photoinduced hydrogen atom transfer.Nat. Commun.2022131473410.1038/s41467‑022‑32467‑x35961987
    [Google Scholar]
  80. (a StewartF.H.C. The Chemistry of the Sydnones.Chem. Rev.196464212914710.1021/cr60228a004
    [Google Scholar]
  81. (b MummelS. LederleF. HübnerE.G. NamysloJ.C. NiegerM. SchmidtA. Sydnone Methides: Intermediates between Mesoionic Compounds and Mesoionic N‐Heterocyclic Olefins.Eur. J. Org. Chem.20232618e20230021610.1002/ejoc.202300216
    [Google Scholar]
  82. WuC. FangY. LarockR.C. ShiF. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones.Org. Lett.201012102234223710.1021/ol100586r20394430
    [Google Scholar]
  83. (a KowalskaT. SajewiczM. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications.Molecules20222719660710.3390/molecules2719660736235143
    [Google Scholar]
  84. (b Mac FhionnlaoichN. IbsenS. SerranoL.A. TaylorA. QiR. GuldinS. A Toolkit to Quantify Target Compounds in Thin-Layer-Chromatography Experiments.J. Chem. Educ.201895122191219610.1021/acs.jchemed.8b00144
    [Google Scholar]
  85. SoaresM.I.L. NunesC.M. GomesC.S.B. Pinho e MeloT.M.V.D. Thiazolo[3,4-b]indazole-2,2-dioxides as masked extended dipoles: pericyclic reactions of benzodiazafulvenium methides.J. Org. Chem.201378262863710.1021/jo302463q23215255
    [Google Scholar]
  86. (a NesterovD.S. NesterovaO.V. Catalytic Oxidations with Meta-Chloroperoxybenzoic Acid (m-CPBA) and Mono- and Polynuclear Complexes of Nickel: A Mechanistic Outlook.Catalysts20211110114810.3390/catal11101148
    [Google Scholar]
  87. (b HussainH. Al-HarrasiA. GreenI.R. AhmedI. AbbasG. RehmanN.U. meta-Chloroperbenzoic acid (mCPBA): a versatile reagent in organic synthesis.RSC Advances2014425128821291710.1039/C3RA45702H
    [Google Scholar]
  88. WentrupC. Flash Vacuum Pyrolysis: Techniques and Reactions.Angew. Chem. Int. Ed.20175647148081483510.1002/anie.20170511828675675
    [Google Scholar]
  89. (a TiwariG. KhannaA. MishraV.K. SagarR. Recent developments on microwave-assisted organic synthesis of nitrogen- and oxygen-containing preferred heterocyclic scaffolds.RSC Advances20231347328583289210.1039/D3RA05986C37942237
    [Google Scholar]
  90. (b MartinaK. CravottoG. VarmaR.S. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up.J. Org. Chem.20218620138571387210.1021/acs.joc.1c0086534125541
    [Google Scholar]
  91. (a StasiakN. Kukuła-KochW. GłowniakK. Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.Acta Pol. Pharm.201471221522125272640
    [Google Scholar]
  92. (b HornbrookL.F. ReedC.D. LamarA.A. Bromination of indazoles enhanced by organic-dye, visible-light photoredox catalysis.Tetrahedron202314213352310.1016/j.tet.2023.133523
    [Google Scholar]
  93. (a SladeD.J. PelzN.F. BodnarW. LampeJ.W. WatsonP.S. Indazoles: regioselective protection and subsequent amine coupling reactions.J. Org. Chem.200974166331633410.1021/jo900665619618957
    [Google Scholar]
  94. (b GavaraL. SauguesE. AnizonF. MoreauP. Regioselective synthesis of novel substituted indazole-5,6-diamine derivatives.Tetrahedron20116791633163910.1016/j.tet.2011.01.010
    [Google Scholar]
  95. (a AertsH.A.J. SelsB.F.E. JacobsP.A. The use of 1 H NMR for yield determination in the regioselective epoxidation of squalene.J. Am. Oil Chem. Soc.200582640941310.1007/s11746‑005‑1085‑2
    [Google Scholar]
  96. (b ConnorM.C. GlassB.H. Finkenstaedt-QuinnS.A. ShultzG.V. Developing Expertise in 1 H NMR Spectral Interpretation.J. Org. Chem.20218621385139510.1021/acs.joc.0c0139833356251
    [Google Scholar]
  97. LiP. ZhaoJ. WuC. LarockR.C. ShiF. Synthesis of 3-substituted indazoles from arynes and N-tosylhydrazones.Org. Lett.201113133340334310.1021/ol201086g21630698
    [Google Scholar]
  98. LiP. WuC. ZhaoJ. RognessD.C. ShiF. Synthesis of substituted 1H-indazoles from arynes and hydrazones.J. Org. Chem.20127773149315810.1021/jo202598e22414117
    [Google Scholar]
  99. WangC.D. LiuR.S. Silver-catalyzed [3+2]-cycloaddition of benzynes with diazocarbonyl species via a postulated (1H-indazol-1-yl)silver intermediate.Org. Biomol. Chem.201210458948895210.1039/c2ob26760h23076121
    [Google Scholar]
  100. WangQ. LiuA. WangY. NiC. HuJ. Copper-Mediated Cross-Coupling of Diazo Compounds with Sulfinates.Org. Lett.202123176919692410.1021/acs.orglett.1c0248134410732
    [Google Scholar]
  101. DubrovskiyA.V. LarockR.C. Synthesis of Pyrido[1,2-a]indole Malonates and Amines through Aryne Annulation.J. Org. Chem.2012776112321125610.1021/jo302378w23206164
    [Google Scholar]
  102. GeJ. DingQ. WangX. PengY. Three-Component Cascade Synthesis of Fully Substituted Trifluoromethyl Pyrroles via a Cu(II)/Rh(III)-Promoted Aza-Michael Addition/Trifluoromethylation Cyclization/Oxidation Reaction.J. Org. Chem.202085127658766510.1021/acs.joc.9b0347032426980
    [Google Scholar]
  103. KnochelP. KetelsM. Dephosphonylation of α-diazo-β-carbonyl phosphonates.Synfacts2017133302
    [Google Scholar]
  104. PhatakeR.S. MullapudiV. WakchaureV.C. RamanaC.V. Fluoride-Mediated Dephosphonylation of α-Diazo-β-carbonyl Phosphonates.Org. Lett.201719237237510.1021/acs.orglett.6b0357328035831
    [Google Scholar]
  105. ChenG. HuM. PengY. Switchable Synthesis of 3-Substituted 1 H -Indazoles and 3,3-Disubstituted 3 H -Indazole-3-phosphonates Tuned by Phosphoryl Groups.J. Org. Chem.20188331591159710.1021/acs.joc.7b0285729283256
    [Google Scholar]
  106. OvermanL.E. Molecular rearrangements in the construction of complex molecules.Tetrahedron200965336432644610.1016/j.tet.2009.05.06720640042
    [Google Scholar]
  107. ShamsabadiA. ChudasamaV. A facile route to 1 H - and 2 H -indazoles from readily accessible acyl hydrazides by exploiting a novel aryne-based molecular rearrangement.Chem. Commun. (Camb.)20185479111801118310.1039/C8CC06556J30229253
    [Google Scholar]
  108. (a GhoshA.K. BrindisiM. Organic carbamates in drug design and medicinal chemistry.J. Med. Chem.20155872895294010.1021/jm501371s25565044
    [Google Scholar]
  109. (b BeraS.S. MajiM.S. Carbamates: A Directing Group for Selective C–H Amidation and Alkylation under Cp*Co(III) Catalysis.Org. Lett.20202272615262010.1021/acs.orglett.0c0058932207626
    [Google Scholar]
  110. KowalczykA. Utecht-JarzyńskaG. MlostońG. JasińskiM. A straightforward access to 3-trifluoromethyl-1H-indazoles via (3+2)-cycloaddition of arynes with nitrile imines derived from trifluoroacetonitrile.J. Fluor. Chem.202124110969110969510.1016/j.jfluchem.2020.109691
    [Google Scholar]
  111. AlamR.M. KeatingJ.J. Regioselective N -alkylation of the 1 H -indazole scaffold; ring substituent and N -alkylating reagent effects on regioisomeric distribution.Beilstein J. Org. Chem.2021171939195110.3762/bjoc.17.12734386104
    [Google Scholar]
  112. MeadorR.I.L. MateN.A. ChisholmJ.D. Acid Catalyzed N-Alkylation of Pyrazoles with Trichloroacetimidates.Organics20223211112110.3390/org3020009
    [Google Scholar]
  113. (a UnnavaR. SaikiaA.K. Synthesis of Substituted Pyrazole N ‐Oxide and Pyrazole from Propargyl Amine.ChemistrySelect2016181816182310.1002/slct.201600528
    [Google Scholar]
  114. (b TangY. HeC. ShreeveJ.M. A furazan-fused pyrazole N-oxide via unusual cyclization.J. Mater. Chem. A Mater. Energy Sustain.2017594314431910.1039/C7TA00846E
    [Google Scholar]
  115. O’SullivanL. PatelK.V. RowleyB.C. BrownseyD.K. GorobetsE. GelfandB.S. Van HumbeckJ.F. DerksenD.J. Regioselective Synthesis of C3-Hydroxyarylated Pyrazoles.J. Org. Chem.202287184685410.1021/acs.joc.1c0251834905376
    [Google Scholar]
  116. (a ZhangY. ZhangT. DasS. Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules.Chem20228123175320110.1016/j.chempr.2022.10.005
    [Google Scholar]
  117. (b DasJ. AliW. MaitiD. The evolution of directing group strategies for C(sp)–H activation.Trends Chem.20235755156010.1016/j.trechm.2023.05.003
    [Google Scholar]
  118. (a ZhangG. ZhangY. LiP. ZhouC. WangM. WangL. Metal-Free Synthesis of 2 H -Indazole Skeletons by Photochemistry or Thermochemistry.J. Org. Chem.20238817123411235610.1021/acs.joc.3c0109137582245
    [Google Scholar]
  119. SureshbabuP. BhajammanavarV. ChoutipalliV.S.K. SubramanianV. BaidyaM. Unorthodox cascade reaction of arynes and N -nitrosamides leading to indazole scaffolds.Chem. Commun. (Camb.)20225881187119010.1039/D1CC05655G34981799
    [Google Scholar]
  120. (a WuC.C. HuangS.W. HwangT.L. KuoS.C. LeeF.Y. TengC.M. YD‐3, a novel inhibitor of protease‐induced platelet activation.Br. J. Pharmacol.200013061289129610.1038/sj.bjp.070343710903968
    [Google Scholar]
  121. (b PengC.Y. PanS.L. PaiH.C. TsaiA.C. GuhJ.H. ChangY.L. KuoS.C. LeeF.Y. TengC.M. The indazole derivative YD-3 specifically inhibits thrombin-induced angiogenesis in vitro and in vivo.Shock201034658058510.1097/SHK.0b013e3181df00a320351626
    [Google Scholar]
  122. MakkarP. GhoshN.N. A review on the use of DFT for the prediction of the properties of nanomaterials.RSC Advances20211145278972792410.1039/D1RA04876G35480718
    [Google Scholar]
  123. DonnellyK. BaumannM. Continuous Flow Technology as an Enabler for Innovative Transformations Exploiting Carbenes, Nitrenes, and Benzynes.J. Org. Chem.202287138279828810.1021/acs.joc.2c0096335700424
    [Google Scholar]
  124. BaumannM. BrackenC. BatsanovA.S. Development of a Continuous Photochemical Benzyne-Forming Process.SynOpen202151293510.1055/s‑0040‑1706016
    [Google Scholar]
  125. García-LacunaJ. BaumannM. Modular photochemical flow synthesis of structurally diverse benzyne and triazine precursors.Adv. Synth. Catal.2023365152628263510.1002/adsc.202300414
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298321262240719103850
Loading
/content/journals/mroc/10.2174/0118756298321262240719103850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test