Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Heterocyclic moiety is a key part of some enzymes and vitamins and plays a vital role in various biochemical and enzymatic processes. Piperazine ring is a heterocyclic moiety present in various well-known drugs and is effective against different types of diseases by acting on a variety of receptors. Various piperazine analogs possess diverse biological activities, especially in central nervous system disorders, which involve the activation of neurotransmitter receptors and targeting various enzymes and act as antianxiety, antipsychotic, antidepressant, This review is focused on the piperazine derivatives and their diverse therapeutic potential against different types of diseases particularly against neuronal disorders.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298277743231213065544
2024-01-16
2025-10-08
Loading full text...

Full text loading...

References

  1. DuarteC. BarreiroE. FragaC. Privileged structures: A useful concept for the rational design of new lead drug candidates.Mini Rev. Med. Chem.20077111108111910.2174/13895570778233172218045214
    [Google Scholar]
  2. JalageriM.D. NagarajaA. PuttaiahgowdaY.M. Piperazine based antimicrobial polymers: A review.RSC Advances20211125152131523010.1039/D1RA00341K35424074
    [Google Scholar]
  3. SajadikhahS.S. NassiriM. Recent developments in the synthesis of piperazines (microreview).Chem. Heterocycl. Compd.202157990590710.1007/s10593‑021‑02998‑0
    [Google Scholar]
  4. AlghamdiS. AlshehriM.M. AsifM. The neuropharmacological potential of piperazine derivatives: A mini- review.Mini Rev. Org. Chem.202219779881010.2174/1570193X19666220119120211
    [Google Scholar]
  5. ArboM.D. BastosM.L. CarmoH.F. Piperazine compounds as drugs of abuse.Drug Alcohol Depend.2012122317418510.1016/j.drugalcdep.2011.10.00722071119
    [Google Scholar]
  6. AsifM. Piperazine and Pyrazine containing molecules and their diverse pharmacological activities.Int. J. Adv. Sci. Res.2015110510.7439/ijasr.v1i1.1766
    [Google Scholar]
  7. MekkyA.E.M. SanadS.M.H. Synthesis of novel bis(chromenes) and bis(chromeno[3,4- C ]pyridine) incorporating piperazine moiety.Synth. Commun.201949111385139510.1080/00397911.2019.1595658
    [Google Scholar]
  8. ChauhanN. PradhanS. GhoraiM.K. Stereospecific synthesis of highly substituted piperazines via a one-pot three component ring-opening cyclization from N-activated aziridines, anilines, and propargyl carbonates.J. Org. Chem.20198441757176510.1021/acs.joc.8b0225930362348
    [Google Scholar]
  9. RathiA.K. SyedR. ShinH.S. PatelR.V. Piperazine derivatives for therapeutic use: A patent review (2010-present).Expert Opin. Ther. Pat.201626777779710.1080/13543776.2016.118990227177234
    [Google Scholar]
  10. KharbR. BansalK. SharmaA.K. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives.Pharma Chem.20124624702488
    [Google Scholar]
  11. SinghK. SiddiquiH.H. ShakyaP. KumarA. KhalidM. ArifM. AlokS. Piperazine-a biologically active scaffold.Int. J. Pharm. Sci. Res.201564145
    [Google Scholar]
  12. StephensonF.A. HawkinsL.M. Neurotransmitter receptors in the postsynpaptic neuron.Encycloped. Life Sci.2001200117
    [Google Scholar]
  13. BritoA.F. BragaP.C.C.S. MoreiraL.K.S. SilvaD.M. SilvaD.P.B. SanzG. VazB.G. de CarvalhoF.S. LiãoL.M. SilvaR.R. NoëlF. NeriH.F.S. GhediniP.C. de CarvalhoM.F. de S GilE. CostaE.A. MenegattiR. A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity.Naunyn Schmiedebergs Arch. Pharmacol.2018391325526910.1007/s00210‑017‑1451‑729260264
    [Google Scholar]
  14. BritoA.F. FajemiroyeJ.O. NeriH.F.S. SilvaD.M. SilvaD.P.B. SanzG. VazB.G. de CarvalhoF.S. GhediniP.C. LiãoL.M. MenegattiR. CostaE.A. Anxiolytic‐like effect of 2‐(4‐((1‐phenyl‐1 H ‐pyrazol‐4‐yl)methyl)piperazin‐1‐yl)ethan‐1‐ol is mediated through the benzodiazepine and nicotinic pathways.Chem. Biol. Drug Des.201790343244210.1111/cbdd.1296128160425
    [Google Scholar]
  15. de BritoA.F. MartinsJ.L.R. FajemiroyeJ.O. GaldinoP.M. De LimaT.C.M. MenegattiR. CostaE.A. Central pharmacological activity of a new piperazine derivative: 4-(1-Phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester.Life Sci.20129023-2491091610.1016/j.lfs.2012.04.03722564406
    [Google Scholar]
  16. GaldinoP.M. de OliveiraD.R. FlorentinoI.F. FajemiroyeJ.O. ValadaresM.C. de MouraS.S. da RochaF.F. de LimaT.C.M. CostaE.A. MenegattiR. Involvement of the monoamine system in antidepressant-like properties of 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester.Life Sci.201514318719310.1016/j.lfs.2015.11.00926569034
    [Google Scholar]
  17. MalawskaK. RakA. GryzłoB. SałatK. MichałowskaM. ŻmudzkaE. LodarskiK. MalawskaB. KuligK. Search for new potential anticonvulsants with anxiolytic and antidepressant properties among derivatives of 4,4-diphenylpyrrolidin-2-one.Pharmacol. Rep.201769110511110.1016/j.pharep.2016.09.02027915183
    [Google Scholar]
  18. MishraC.B. KumariS. TiwariM. Design and synthesis of some new 1-phenyl-3/4-[4-(aryl/heteroaryl/alkyl-piperazine1-yl)-phenyl-ureas as potent anticonvulsant and antidepressant agents.Arch. Pharm. Res.201639560361710.1007/s12272‑016‑0720‑126891908
    [Google Scholar]
  19. KavraiskyiD.P. ShtrygolS.Y. GorbachT.V. ShtrygolD.V. The effect of 1-(4-metoxyphenyl)-5-{2-[4-(4-metoxyphenyl)piperazine-1-yl]-2-oxoethyl}-1,5-dihydro-4H-pyrazole [3,4-d]pyrydine-4-one and sodium valproate on the level of inhibitory and excitatory neurotransmitters in the brain in the hemispheric asymmetry.Clin. Pharm.2017211303910.24959/cphj.17.1412
    [Google Scholar]
  20. RybkaS. ObniskaJ. ŻmudzkiP. KoczurkiewiczP. Wójcik-PszczołaK. PękalaE. BryłaA. RapaczA. Synthesis and determination of lipophilicity, anticonvulsant activity, and preliminary safety of 3‐substituted and 3‐unsubstituted N‐[(4‐aryl piperazin‐1‐yl) alkyl] pyrrolidine‐2,5‐dione derivatives.ChemMedChem201712221848185610.1002/cmdc.20170053929045762
    [Google Scholar]
  21. Athar AbbasiM. HussainG. RehmanA. Zahra SiddiquiS. Ali ShahS.A. Arif LodhiM. Ali KhanF. AshrafM. AinQ. AhmadI. MalikR. ShahidM. MushtaqZ. Synthesis of some unique carbamate derivatives bearing 2-Furoyl-1-piperazine as valuable therapeutic agents.Acta Chim. Slov.201764115916910.17344/acsi.2016.298628380217
    [Google Scholar]
  22. KumarJ. MeenaP. SinghA. JameelE. MaqboolM. MobashirM. ShandilyaA. TiwariM. HodaN. JayaramB. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies.Eur. J. Med. Chem.201611926027710.1016/j.ejmech.2016.04.05327227482
    [Google Scholar]
  23. YurttaşL. Abu MohsenU. OzkanY. CobanogluS. LeventS. KaplancikliZ.A. Synthesis and biological evaluation of some dibenzofuran-piperazine derivatives.J. Enzyme Inhib. Med. Chem.20163161177118310.3109/14756366.2015.110897126581445
    [Google Scholar]
  24. ZhangJ. JiangC.S. Synthesis and evaluation of coumarin/piperazine hybrids as acetylcholinesterase inhibitors.Med. Chem. Res.20182761717172710.1007/s00044‑018‑2185‑x
    [Google Scholar]
  25. CanN.Ö. Investigation of monoamine oxidase inhibitory activities of new chalcone derivatives.Cukurova Med. J.201843237138010.17826/cumj.341883
    [Google Scholar]
  26. SłoczyńskaK. PańczykK. WaszkielewiczA.M. MaronaH. PękalaE. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4‐substituted 1‐(2‐methoxyphenyl)piperazine derivatives.J. Biochem. Mol. Toxicol.2016301259360110.1002/jbt.2182627450225
    [Google Scholar]
  27. ZagórskaA. BuckiA. KołaczkowskiM. SiwekA. Głuch-LutwinM. StarowiczG. KazekG. PartykaA. WesołowskaA. SłoczyńskaK. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1 H-imidazo [2, 1-f] purine-2, 4 (3H,8H)-dione as potential antidepressant agents.J. Enz. Inhib. Med Chem.201631S3102410.1080/14756366.2016.1198902
    [Google Scholar]
  28. ZagórskaA. PartykaA. BuckiA. KołaczkowskiM. Jastrzębska-WięsekM. CzopekA. SiwekA. Głuch-LutwinM. BednarskiM. BajdaM. JończykJ. PiskaK. KoczurkiewiczP. WesołowskaA. PawłowskiM. Characteristics of metabolic stability and the cell permeability of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1 ‐f ]purine‐2,4(3 H, 8 H )‐dione with antidepressant‐ and anxiolytic‐like activities.Chem. Biol. Drug Des.201993451152110.1111/cbdd.1344230422400
    [Google Scholar]
  29. da SilvaD.M. SanzG. VazB.G. de CarvalhoF.S. LiãoL.M. de OliveiraD.R. MoreiraL.K.S. CardosoC.S. de BritoA.F. da SilvaD.P.B. da RochaF.F. SantanaI.G.C. GaldinoP.M. CostaE.A. MenegattiR. Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)– New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system.Biomed. Pharmacother.201810354655210.1016/j.biopha.2018.04.07729677541
    [Google Scholar]
  30. GuZ.S. XiaoY. ZhangQ.W. LiJ.Q. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT 1A /5-HT 7.Bioorg. Med. Chem. Lett.201727245420542310.1016/j.bmcl.2017.11.00729138029
    [Google Scholar]
  31. RheinC. LöberS. GmeinerP. GulbinsE. TripalP. KornhuberJ. Derivatization of common antidepressant drugs increases inhibition of acid sphingomyelinase and reduces induction of phospholipidosis.J. Neural Transm.2018125121837184510.1007/s00702‑018‑1923‑z30191367
    [Google Scholar]
  32. KhanI. TantrayM.A. HamidH. AlamM.S. KalamA. ShaikhF. ShahA. HussainF. Synthesis of novel pyrimidin‐4‐one bearing piperazine ring‐based amides as glycogen synthase kinase‐3 β inhibitors with antidepressant activity.Chem. Biol. Drug Des.201687576477210.1111/cbdd.1271026714831
    [Google Scholar]
  33. KubackaM. MogilskiS. BednarskiM. NowińskiL. DudekM. ŻmudzkaE. SiwekA. WaszkielewiczA.M. MaronaH. SatałaG. BojarskiA. FilipekB. PytkaK. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.Pharmacol. Biochem. Behav.2016141284110.1016/j.pbb.2015.11.01326647362
    [Google Scholar]
  34. Kucwaj-BryszK. KurczabR. Jastrzębska-WięsekM. ŻesławskaE. SatałaG. NitekW. PartykaA. SiwekA. JankowskaA. WesołowskaA. Kieć-KononowiczK. HandzlikJ. Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity.Eur. J. Med. Chem.201814710211410.1016/j.ejmech.2018.01.09329425815
    [Google Scholar]
  35. KumarJ. ChawlaG. AkhtarM. SahuK. RathoreV. SahuS. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-[3-(furan-2-yl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl-4-methyl piperazine.Arab. J. Chem.201710114114910.1016/j.arabjc.2013.04.027
    [Google Scholar]
  36. KumarB. Sheetal ManthaA.K. KumarV. Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors.Bioorg. Chem.20187725226210.1016/j.bioorg.2018.01.02029421700
    [Google Scholar]
  37. KumariS. MishraC.B. TiwariM. Pharmacological evaluation of novel 1-[4-(4-benzo[1,3]dioxol-5-ylmethyl-piperazin-1-yl)-phenyl]-3-phenyl-urea as potent anticonvulsant and antidepressant agent.Pharmacol. Rep.201668225025810.1016/j.pharep.2015.08.01326922524
    [Google Scholar]
  38. Demir ÖzkayÜ. KayaC. Acar ÇevikU. CanÖ. Synthesis and antidepressant activity profile of some novel benzothiazole derivatives.Molecules2017229149010.3390/molecules2209149028880242
    [Google Scholar]
  39. KayaB. YurttaşL. SağlikB.N. LeventS. ÖzkayY. KaplancikliZ.A. Novel 1-(2-pyrimidin-2-yl)piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors.J. Enzyme Inhib. Med. Chem.201732119320210.1080/14756366.2016.124705428097890
    [Google Scholar]
  40. OstrowskaK. MłodzikowskaK. Głuch-LutwinM. GrybośA. SiwekA. Synthesis of a new series of aryl/heteroarylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin with low nanomolar 5-HT 1A affinities.Eur. J. Med. Chem.201713710811610.1016/j.ejmech.2017.05.04728575721
    [Google Scholar]
  41. KędzierskaE. FiorinoF. GibułaE. CorvinoA. GiordanoF. HerbetM. DudkaJ. PoleszakE. WlaźP. KotlińskaJ.H. Anxiolytic‐like effects of the new arylpiperazine derivatives containing isonicotinic and picolinic nuclei: behavioral and biochemical studies.Fundam. Clin. Pharmacol.201933325426610.1111/fcp.1244330506804
    [Google Scholar]
  42. PańczykK. PytkaK. JakubczykM. RapaczA. SałatK. FurgałaA. SiwekA. Głuch-LutwinM. GrybośA. SłoczyńskaK. PękalaE. ŻmudzkiP. BuckiA. KołaczkowskiM. ŻelaszczykD. MaronaH. WaszkielewiczA.M. Synthesis and activity of di- or trisubstituted N -(phenoxyalkyl)- or N -2-[2-(phenoxy)ethoxy]ethylpiperazine derivatives on the central nervous system.Bioorg. Med. Chem. Lett.201828112039204910.1016/j.bmcl.2018.04.05929730027
    [Google Scholar]
  43. JohnstoneA.C. LeaR.A. BrennanK.A. SchenkS. KennedyM.A. FitzmauriceP.S. Review: Benzylpiperazine: A drug of abuse?J. Psychopharmacol.200721888889410.1177/026988110707726017606471
    [Google Scholar]
  44. MonteiroM.S. BastosM.L. Guedes de PinhoP. CarvalhoM. Update on 1-benzylpiperazine (BZP) party pills.Arch. Toxicol.201387692994710.1007/s00204‑013‑1057‑x23685794
    [Google Scholar]
  45. HerbertC.E. HughesR.N. A comparison of 1-benzylpiperazine and methamphetamine in their acute effects on anxiety-related behavior of hooded rats.Pharmacol. Biochem. Behav.200992224325010.1016/j.pbb.2008.12.00319111568
    [Google Scholar]
  46. BineyR.P. BennehC.K. AmeyawE.O. Boakye-GyasiE. WoodeE. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice.J. Ethnopharmacol.2016184495710.1016/j.jep.2016.02.02326902831
    [Google Scholar]
  47. NIMH-National Institute of Mental Health. Anxiety Disorders.2016Available from: https://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml#part_145338
    [Google Scholar]
  48. GilhotraN. DhingraD. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice.Brain Res.2010135216717510.1016/j.brainres.2010.07.00720633542
    [Google Scholar]
  49. BockaertJ. DumuisA. BouhelalR. SebbenM. CoryR. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons.Naunyn Schmiedebergs Arch. Pharmacol.1987335558859210.1007/BF001691292886925
    [Google Scholar]
  50. MokroszJ.L. PietrasiewiczM. DuszyńskaB. CegłaM.T. Structure-activity relationship studies of central nervous system (CNS) agents. 5. Effect of the hydrocarbon chain on the affinity of 4-substituted 1-(3-chlorophenyl)piperazines for 5-HT1A receptor sites.J. Med. Chem.199235132369237410.1021/jm00091a0041535661
    [Google Scholar]
  51. HaslerG. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians?World Psychiatry20109315516110.1002/j.2051‑5545.2010.tb00298.x20975857
    [Google Scholar]
  52. VillanuevaR. Neurobiology of major depressive disorder.Neural Plast.201320131710.1155/2013/87327824222865
    [Google Scholar]
  53. LockeA.B. KirstN. ShultzC.G. Diagnosis and management of generalized anxiety disorder and panic disorder in adults.Am. Fam. Physician201591961762425955736
    [Google Scholar]
  54. YevichJ.P. NewJ.S. SmithD.W. LobeckW.G. CattJ.D. MinielliJ.L. EisonM.S. TaylorD.P. RibletL.A. TempleD.L.Jr Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl)- and (1,2-benzisoxazol-3-yl)piperazine derivatives as potential antipsychotic agents.J. Med. Chem.198629335936910.1021/jm00153a0102869146
    [Google Scholar]
  55. WarnezS. Alessi-SeveriniS. Clozapine: A review of clinical practice guidelines and prescribing trends.BMC Psychiatry201414110210.1186/1471‑244X‑14‑10224708834
    [Google Scholar]
  56. KimuraM. MasudaT. YamadaK. KawakatsuN. KubotaN. MitaniM. KishiiK. InazuM. KiuchiY. OguchiK. NamikiT. Antioxidative activities of novel diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter.Bioorg. Med. Chem. Lett.200414164287429010.1016/j.bmcl.2004.05.09115261288
    [Google Scholar]
  57. GomesT.F. PompeuT.E.T. RodriguesD.A. NoëlF. MenegattiR. AndradeC.H. SabinoJ.R. GilE.S. Dalla CostaT. BettiA.H. AntonioC.B. RatesS.M.K. FragaC.A.M. BarreiroE.J. de OliveiraV. Biotransformation of LASSBio-579 and pharmacological evaluation of p -hydroxylated metabolite a N -phenylpiperazine antipsychotic lead compound.Eur. J. Med. Chem.20136221422110.1016/j.ejmech.2012.08.01123353740
    [Google Scholar]
  58. NevesG. AntonioC.B. BettiA.H. PrankeM.A. FragaC.A.M. BarreiroE.J. NoëlF. RatesS.M.K. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia.Behav. Brain Res.2013237869510.1016/j.bbr.2012.09.01623000351
    [Google Scholar]
  59. NIHCurrent Medication Information for Clozapine (clozapine tablet)2015Available from: http://dailymed.nlm.nih.gov/ dailymed/drugInfo.cfm?setid=d5c8a456-6f3c-4963-b321-4ed746f690e4
    [Google Scholar]
  60. SiskindD. McCartneyL. GoldschlagerR. KiselyS. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: Systematic review and meta-analysis.Br. J. Psychiatry2016209538539210.1192/bjp.bp.115.17726127388573
    [Google Scholar]
  61. MontastrucF. BeneventJ. TouafchiaA. ChebaneL. AraujoM. Guitton-BondonE. DurrieuG. ArbusC. SchmittL. BegaudB. MontastrucJ.L. Atropinic (anticholinergic) burden in antipsychotic‐treated patients.Fundam. Clin. Pharmacol.201832111411910.1111/fcp.1232128887902
    [Google Scholar]
  62. SebaM.C. SandhyaS.M. PrasobhG.R. Piperazine derivatives: A review of activity on neurotransmitter receptors.Inter. J. Res. & Rev.2019611570580
    [Google Scholar]
  63. ClarkR.B. LamppuD. LibertineL. McDonoughA. KumarA. LaRosaG. RushR. ElbaumD. Discovery of novel 2-((pyridin-3-yloxy)methyl)piperazines as α7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders.J. Med. Chem.201457103966398310.1021/jm500459924814197
    [Google Scholar]
  64. HeY. LiY. WangX. HeX. JunL. ChuaiM. LeeK.K.H. WangJ. WangL. YangX. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis.Exp. Cell Res.2014320235436410.1016/j.yexcr.2013.10.00924162003
    [Google Scholar]
  65. ChenJ. NorrholmS. DwoskinL.P. CrooksP.A. BaiD. N,N-Disubstituted piperazines: synthesis and affinities at α4β2∗ and α7∗ neuronal nicotinic acetylcholine receptors.Bioorg. Med. Chem. Lett.20031319710010.1016/S0960‑894X(02)00849‑112467625
    [Google Scholar]
  66. Post-MunsonD.J. PieschlR.L. MolskiT.F. GraefJ.D. HendricsonA.W. KnoxR.J. McDonaldI.M. OlsonR.E. MacorJ.E. WeedM.R. BristowL.J. KissL. AhlijanianM.K. HerringtonJ. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor.Eur. J. Pharmacol.2017799162510.1016/j.ejphar.2017.01.03728132910
    [Google Scholar]
  67. McCrearyA.C. GlennonJ.C. AshbyC.R. HerbertY.M. ZhuL. Jan-HendrikR. MaykeB.H. StephenK.L. ArnoudH.H. Herman vanS. RolfW.F. ChrisG.K. SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): A novel dopamine d2 receptor antagonist and 5-ht1a receptor agonist potential antipsychotic.Neuropsychopharmacol200732789410.1038/sj.npp.130109816710314
    [Google Scholar]
  68. SzalaiG.B. CsongorE.A. DomanyG. GyertyanI. KissB. LaszyJ. SaghyK. SchmidtE. FarkasS. KomlodiZ. Pyrimidnyl-piperazines useful as D3/D2 receptor ligands. United States Patent No. US7,875,610B22011
  69. SquiresR.F. SaederupE. Mono N-Aryl ethylenediamine and piperazine derivatives are GABAA receptor blockers: Implications for psychiatry.Neurochem. Res.199318778779310.1007/BF009667748103578
    [Google Scholar]
  70. NicolayF. HarderA. von Samson-HimmelstjernaG. MehlhornH. Synergistic action of a cyclic depsipeptide and piperazine on nematodes.Parasitol. Res.2000861298299210.1007/PL0000853011133114
    [Google Scholar]
  71. FengB. TseH.W. SkifterD.A. MorleyR. JaneD.E. MonaghanD.T. Structure–activity analysis of a novel NR2C/NR2D‐preferring NMDA receptor antagonist: 1‐(phenanthrene‐2‐carbonyl) piperazine‐2,3‐dicarboxylic acid.Br. J. Pharmacol.2004141350851610.1038/sj.bjp.070564414718249
    [Google Scholar]
  72. IrvineM.W. CostaB.M. DlabogaD. CulleyG.R. HulseR. ScholefieldC.L. AtlasonP. FangG. EavesR. MorleyR. Mayo-MartinM.B. AmiciM. BortolottoZ.A. DonaldsonL. CollingridgeG.L. MolnárE. MonaghanD.T. JaneD.E. Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors.J. Med. Chem.201255132734110.1021/jm201230z22111545
    [Google Scholar]
  73. GregoryK.J. HermanE.J. RamseyA.J. HammondA.S. ByunN.E. StaufferS.R. MankaJ.T. JadhavS. BridgesT.M. WeaverC.D. NiswenderC.M. StecklerT. DrinkenburgW.H. AhnaouA. LavreysenH. MacdonaldG.J. BartoloméJ.M. MackieC. HrupkaB.J. CaronM.G. DaigleT.L. LindsleyC.W. ConnP.J. JonesC.K. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement.J. Pharmacol. Exp. Ther.2013347243845710.1124/jpet.113.20662323965381
    [Google Scholar]
  74. HarveyR.J. YeeB.K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain.Nat. Rev. Drug Discov.2013121186688510.1038/nrd389324172334
    [Google Scholar]
  75. OrjalesA. Gil-SánchezJ.C. Alonso-CiresL. LabeagaL. MosqueraR. BerisaA. UcelayM. InnerárityA. CorcósteguiR. Synthesis and histamine H1-receptor antagonist activity of 4-(diphenylmethyl)-1-piperazine derivatives with a terminal heteroaryl or cycloalkyl amide fragment.Eur. J. Med. Chem.1996311081381810.1016/0223‑5234(96)83975‑422026937
    [Google Scholar]
  76. TerziogluN. van RijnR.M. BakkerR.A. De EschI.J.P. LeursR. Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists.Bioorg. Med. Chem. Lett.200414215251525610.1016/j.bmcl.2004.08.03515454206
    [Google Scholar]
  77. VenableJ.D. CaiH. ChaiW. DvorakC.A. GriceC.A. JablonowskiJ.A. ShahC.R. KwokA.K. LyK.S. PioB. WeiJ. DesaiP.J. JiangW. NguyenS. LingP. WilsonS.J. DunfordP.J. ThurmondR.L. LovenbergT.W. KarlssonL. CarruthersN.I. EdwardsJ.P. Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine h(4) antagonists.J. Med. Chem.200548268289829810.1021/jm050208116366610
    [Google Scholar]
  78. ArletteJ.P. Cetirizine: A piperazine antihistamine.Clin. Dermatol.19919451151310.1016/0738‑081X(91)90080‑51688018
    [Google Scholar]
  79. PlobeckN. DelormeD. WeiZ.Y. YangH. ZhouF. SchwarzP. GawellL. GagnonH. PelcmanB. SchmidtR. YueS.Y. WalpoleC. BrownW. ZhouE. LabarreM. PayzaK. St-OngeS. KamassahA. MorinP.E. ProjeanD. DucharmeJ. RobertsE. New diarylmethylpiperazines as potent and selective nonpeptidic δ opioid receptor agonists with increased In vitro metabolic stability.J. Med. Chem.200043213878389410.1021/jm000228x11052793
    [Google Scholar]
  80. BenderA.M. ClarkM.J. AgiusM.P. TraynorJ.R. MosbergH.I. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands.Bioorg. Med. Chem. Lett.201424254855110.1016/j.bmcl.2013.12.02124365161
    [Google Scholar]
  81. McCauleyJ.P.Jr DantzmanC.L. KingM.M. ErnstG.E. WangX. BrushK. PalmerW.E. FrietzeW. AndisikD.W. HoeschV. DoringK. HulsizerJ. BuiK.H. LiuJ. HudzikT.J. WesolowskiS.S. Multiparameter exploration of piperazine derivatives as δ-opioid receptor agonists for CNS indications.Bioorg. Med. Chem. Lett.20122221169117310.1016/j.bmcl.2011.11.08822197139
    [Google Scholar]
  82. CarrollF.I. CuevaJ.P. ThomasJ.B. MascarellaS.W. RunyonS.P. NavarroH.A. 1-substituted 4-(3-hydroxyphenyl)piperazines are pure opioid receptor antagonists.ACS Med. Chem. Lett.20101736536910.1021/ml100126b21116435
    [Google Scholar]
  83. McMillenB.A. ScottS.M. WilliamsH.L. SangheraM.K. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission.Naunyn Schmiedebergs Arch. Pharmacol.1987335445446410.1007/BF001655632439924
    [Google Scholar]
  84. OrjalesA. Alonso-CiresL. LabeagaL. CorcósteguiR. New (2-methoxyphenyl)piperazine derivatives as 5-HT1A receptor ligands with reduced α 1-adrenergic activity. Synthesis and structure-affinity relationships.J. Med. Chem.19953881273127710.1021/jm00008a0057731013
    [Google Scholar]
  85. FrancesH. Psychopharmacological profile of 1-(m-(trifluoromethyl) phenyl) piperazine (TFMPP).Pharmacol. Biochem. Behav.1988311374110.1016/0091‑3057(88)90308‑53252258
    [Google Scholar]
  86. SimmlerL.D. RickliA. SchrammY. HoenerM.C. LiechtiM.E. Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives.Biochem. Pharmacol.201488223724410.1016/j.bcp.2014.01.02424486525
    [Google Scholar]
  87. SongL. LiuY. LiuF. ZhangR. JiH. JiaY. Vilazodone for major depressive disorder in adults.Cochrane Libr.201620169CD01235010.1002/14651858.CD012350
    [Google Scholar]
  88. NishitsujiK. ToH. MurakamiY. KodamaK. Kob́ayashiD. YamadaT. KuboC. MineK. Tandospirone in the treatment of generalised anxiety disorder and mixed anxiety-depression : Results of a comparatively high dosage trial.Clin. Drug Investig.200424212112610.2165/00044011‑200424020‑0000717516698
    [Google Scholar]
  89. SchepL.J. SlaughterR.J. ValeJ.A. BeasleyD.M.G. GeeP. The clinical toxicology of the designer “party pills” benzylpiperazine and trifluoromethylphenylpiperazine.Clin. Toxicol.201149313114110.3109/15563650.2011.57207621495881
    [Google Scholar]
  90. Prochlorperazine monograph for professionals.American Society of Health-System Pharmacists2019
    [Google Scholar]
  91. BawaR. ScarffJ.R. Lurasidone: A new treatment option for bipolar depression-a review.Innov. Clin. Neurosci.2015121-2212325852975
    [Google Scholar]
  92. BritoA.F. MoreiraL.K.S. MenegattiR. CostaE.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools.Fundam. Clin. Pharmacol.2019331132410.1111/fcp.1240830151922
    [Google Scholar]
  93. AmitaT. MridulaM. ManjuV. Piperazine: The molecule of diverse pharmacological importance.Int. J. Res. Ayurveda Pharm.2011215471548
    [Google Scholar]
  94. RathoreA. AsatiV. KashawS.K. AgarwalS. ParwaniD. BhattacharyaS. MallickC. The recent development of piperazine and piperidine derivatives as antipsychotic agents.Mini Rev. Med. Chem.202121336237910.2174/138955752066620091009232732912125
    [Google Scholar]
  95. LinH.H. WuW.Y. CaoS.L. LiaoJ. MaL. GaoM. LiZ.F. XuX. Synthesis and antiproliferative evaluation of piperazine-1-carbothiohydrazide derivatives of indolin-2-one.Bioorg. Med. Chem. Lett.201323113304330710.1016/j.bmcl.2013.03.09923602441
    [Google Scholar]
  96. ChenH. LiangX. SunT. QiaoX. ZhanZ. LiZ. HeC. YaH. YuanM. Synthesis and biological evaluation of estrone 3- O -ether derivatives containing the piperazine moiety.Steroids201813410110910.1016/j.steroids.2018.02.00229476759
    [Google Scholar]
  97. MistryB. PatelR.V. KeumY.S. KimD.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects.Saudi J. Biol. Sci.2017241364410.1016/j.sjbs.2015.09.00528053569
    [Google Scholar]
  98. MistryB. KeumY.S. PanduranganM. PatelR.V. KimD.H. Synthesis of berberine-piperazine conjugates as potential antioxidant and cytotoxic agents.Med. Chem. Res.201625112461247010.1007/s00044‑016‑1662‑3
    [Google Scholar]
  99. DileepK. KatikiM.R. RaoB.R. VardhanV.P.S.V. SistlaR. NanuboluB. MurtyM.S.R. Regioselective synthesis and preliminary cytotoxic activity properties of tetrazole appendage N-substituted piperazine derivatives.Org. Comm.201710317818910.25135/acg.oc.20.17.04.018
    [Google Scholar]
  100. ZhangY. YangC.R. TangX. CaoS.L. RenT.T. GaoM. LiaoJ. XuX. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position.Bioorg. Med. Chem. Lett.201626194666467010.1016/j.bmcl.2016.08.06027575478
    [Google Scholar]
  101. XuF. YangZ. JiangJ. PanW. YangX. WuJ. ZhuY. WangJ. ShouQ.Y. WuH. Synthesis, antitumor evaluation and molecular docking studies of [1,2,4]triazolo[4,3- b ][1,2,4,5]tetrazine derivatives.Bioorg. Med. Chem. Lett.201626133042304710.1016/j.bmcl.2016.05.00727184766
    [Google Scholar]
  102. VenkateshR. KasaboinaS. JainN. JanardhanS. HolagundaU.D. NagarapuL. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents.J. Mol. Struct.2019118140341110.1016/j.molstruc.2018.12.098
    [Google Scholar]
  103. SunW.X. JiY.J. WanY. HanH.W. LinH.Y. LuG.H. QiJ.L. WangX.M. YangY.H. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents.Bioorg. Med. Chem. Lett.201727174066407410.1016/j.bmcl.2017.07.04728757065
    [Google Scholar]
  104. PavaseL.S. ManeD.V. Synthesis and anticancer activities of novel (tetrahydrobenzo [4,5] thieno [2,3-d] pyrimidine-4-yl)-pyrolidine-2-carboxylic acid derivatives.Med. Chem. Res.201625102380239110.1007/s00044‑016‑1692‑x
    [Google Scholar]
  105. MaoZ.W. ZhengX. LinY.P. HuC.Y. WangX.L. WanC.P. RaoG.X. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine.Bioorg. Med. Chem. Lett.201626153421342410.1016/j.bmcl.2016.06.05527371110
    [Google Scholar]
  106. BhatiS. KaushikV. SinghJ. In silico identification of piperazine linked thiohydantoin derivatives as novel androgen antagonist in prostate cancer treatment.Int. J. Pept. Res. Ther.201925384586010.1007/s10989‑018‑9734‑5
    [Google Scholar]
  107. BaoX. PengY. LuX. YangJ. ZhaoW. TanW. DongX. Synthesis and evaluation of novel benzylphthalazine derivatives as hedgehog signaling pathway inhibitors.Bioorg. Med. Chem. Lett.201626133048305110.1016/j.bmcl.2016.05.00927180012
    [Google Scholar]
  108. JiangB. WangE.S. DonovanK.A. LiangY. FischerE.S. ZhangT. GrayN.S. Development of dual and selective degraders of cyclin‐dependent kinases 4 and 6.Angew. Chem. Int. Ed.201958196321632610.1002/anie.20190133630802347
    [Google Scholar]
  109. WuJ. WangA. LiX. ChenC. QiZ. HuC. WangW. WuH. HuangT. ZhaoM. WangW. HuZ. LiuQ. WangB. WangL. LiL. GeJ. RenT. XiaR. LiuJ. LiuQ. Discovery and characterization of a novel highly potent and selective type II native and drug-resistant V299L mutant BCR-ABL inhibitor (CHMFL-ABL-039) for Chronic Myeloid Leukemia (CML).Cancer Biol. Ther.201920687788510.1080/15384047.2019.157995830894066
    [Google Scholar]
  110. HuG. WangC. XinX. LiS. LiZ. ZhaoY. GongP. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine derivatives as potent antitumor agents.New J. Chem.20194325101901020210.1039/C9NJ02154J
    [Google Scholar]
  111. CaiG. YuW. SongD. ZhangW. GuoJ. ZhuJ. RenY. KongL. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors.Eur. J. Med. Chem.201917423625110.1016/j.ejmech.2019.04.02431048139
    [Google Scholar]
  112. YuJ.Y. LiX.Q. WeiM.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives.Eur. J. Med. Chem.2019169212810.1016/j.ejmech.2019.02.07130852384
    [Google Scholar]
  113. ZeidanM.A. MostafaA.S. GomaaR.M. Abou-zeidL.A. El-MeseryM. El-SayedM.A.A. SelimK.B. Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors.Eur. J. Med. Chem.201916831532910.1016/j.ejmech.2019.02.05030826508
    [Google Scholar]
  114. BorisovaM.S. YarovayaO.I. SemenovaM.D. TolstikovaT.G. SalakhutdinovN.F. Antiulcerogenic activity of borneol derivatives.Russ. Chem. Bull.201867355856110.1007/s11172‑018‑2110‑y
    [Google Scholar]
  115. CorrêaM.F. BarbosaÁ.J.R. TeixeiraL.B. DuarteD.A. SimõesS.C. Parreiras-e-SilvaL.T. BalbinoA.M. LandgrafR.G. BouvierM. Costa-NetoC.M. FernandesJ.P.S. Pharmacological characterization of 5-substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel antagonists for the histamine H3 and H4 receptors with anti-inflammatory potential.Front. Pharmacol.2017882510.3389/fphar.2017.0082529184503
    [Google Scholar]
  116. SzczepańskaK. KarczT. MogilskiS. SiwekA. KuderK.J. LataczG. KubackaM. HagenowS. LubelskaA. OlejarzA. KotańskaM. SadekB. StarkH. Kieć-KononowiczK. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands.Eur. J. Med. Chem.201815222323410.1016/j.ejmech.2018.04.04329723785
    [Google Scholar]
  117. TahirS. MahmoodT. DastgirF. HaqI. WaseemA. RashidU. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria.Eur. J. Med. Chem.201916622423110.1016/j.ejmech.2019.01.06230711832
    [Google Scholar]
  118. WangL.L. BattiniN. BheemanaboinaR.R.Y. ZhangS.L. ZhouC.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation.Eur. J. Med. Chem.201916710512310.1016/j.ejmech.2019.01.07230769240
    [Google Scholar]
  119. BorysK.M. MatuszewskaA. WieczorekD. KopczyńskaK. LipokJ. MaduraI.D. Adamczyk-WoźniakA. Synthesis and structural elucidation of novel antifungal N-(fluorophenyl)piperazinyl benzoxaboroles and their analogues.J. Mol. Struct.2019118158759810.1016/j.molstruc.2019.01.018
    [Google Scholar]
  120. MermerA. BayrakH. ŞirinY. EmirikM. DemirbaşN. Synthesis of novel Azol-β-lactam derivatives starting from phenyl piperazine and investigation of their antiurease activity and antioxidant capacity comparing with their molecular docking studies.J. Mol. Struct.2019118927928710.1016/j.molstruc.2019.04.039
    [Google Scholar]
  121. BhatiS. KumarV. SinghS. SinghJ. Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives.J. Mol. Struct.2019119119720510.1016/j.molstruc.2019.04.106
    [Google Scholar]
  122. BhattJ.J. DhakhdaS.K. TrivediM.H. Synthesis, characterization and anti-microbial activity of pyrazole capped 2-azitidinone derivatives.Res. J. Life Sci. Bioinform. Pharm. Chem. Sci.20195647662
    [Google Scholar]
  123. BhattA. KantR. SinghR. Synthesis of some bioactive sulfonamide and amide derivatives of piperazine incorporating imidazo[1,2-B] pyridazine moiety.Med. Chem.20166257263
    [Google Scholar]
  124. NaiduK.M. SrinivasaraoS. AgnieszkaN. EwaA.K. KumarM.M.K. Chandra SekharK.V.G. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives.Bioorg. Med. Chem. Lett.20162692245225010.1016/j.bmcl.2016.03.05927020525
    [Google Scholar]
  125. SunJ. HeW. LiuH.Y. QinJ. YeC.L. Design, synthesis and molecular docking of 1,4-benzodioxane thiazolidinedione piperazine derivatives as FabH inhibitors.Bioorg. Chem.20198810295810.1016/j.bioorg.2019.10295831054434
    [Google Scholar]
  126. PankajM. AnilM. VikasS. AbhishekS. Synthesis, biological evaluation and comparative study of some cinnoline derivatives. UK. J. Pharm. Biosci.20164748010.20510/ukjpb/4/i3/108391
    [Google Scholar]
  127. ZhangL.Y. WangB.L. ZhanY.Z. ZhangY. ZhangX. LiZ.M. Synthesis and biological activities of some fluorine- and piperazine-containing 1,2,4-triazole thione derivatives.Chin. Chem. Lett.201627116316710.1016/j.cclet.2015.09.015
    [Google Scholar]
  128. AouadM.R. Click Synthesis and antimicrobial screening of novel isatin-1,2,3-triazoles with piperidine, morpholine, or piperazine moieties.Org. Prep. Proced. Int.201749321622710.1080/00304948.2017.1320515
    [Google Scholar]
  129. El FaydyM. DahaiefN. RbaaM. OunineK. LakhrissiB. Synthesis, characterization and biological activity of some novel 5-((4-alkyl piperazin-1-yl) methyl) quinolin-8-ol derivatives.Chem20161718
    [Google Scholar]
  130. VekariyaM.K. PatelD.B. PandyaP.A. VekariyaR.H. ShahP.U. RajaniD.P. ShahN.K. Novel N-thioamide analogues of pyrazolylpyrimidine based piperazine: Design, synthesis, characterization, in-silico molecular docking study and biological evaluation.J. Mol. Struct.2019117555156510.1016/j.molstruc.2018.08.018
    [Google Scholar]
  131. KonoM. MatsumotoT. ImaedaT. KawamuraT. FujimotoS. KosugiY. OdaniT. ShimizuY. MatsuiH. ShimojoM. KoriM. Design, synthesis, and biological evaluation of a series of piperazine ureas as fatty acid amide hydrolase inhibitors.Bioorg. Med. Chem.20142241468147810.1016/j.bmc.2013.12.02324440478
    [Google Scholar]
  132. PudukulathamZ. ZhangF.X. GadottiV.M. M’DahomaS. SwamiP. TamboliY. ZamponiG.W. Synthesis and characterization of a disubstituted piperazine derivative with T-type channel blocking action and analgesic properties.Mol. Pain201612174480691664167810.1177/174480691664167827053601
    [Google Scholar]
  133. ShankarB. JalapathiP. ValeruA. Kishor KumarA. SaikrishnaB. KudleK. Synthesis and biological evaluation of new 2-(6-alkyl-pyrazin-2-yl)-1H-benz[d]imidazoles as potent anti-inflammatory and antioxidant agents.Med. Chem. Res.20172691835184610.1007/s00044‑017‑1897‑7
    [Google Scholar]
  134. LiuZ.P. GongC.D. XieL.Y. DuX.L. LiY. QinJ. Synthesis and in vivo anti-inflammatory evaluation of piperazine derivatives containing 1,4-benzodioxan moiety.Acta Chim. Slov.201966242142610.17344/acsi.2018.488733855503
    [Google Scholar]
  135. TahaM. IrshadM. ImranS. ChigurupatiS. SelvarajM. RahimF. IsmailN.H. NawazF. KhanK.M. Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study.Eur. J. Med. Chem.201714153053710.1016/j.ejmech.2017.10.02829102178
    [Google Scholar]
  136. Suyoga VardhanD.M. ShantharamC.S. SuhasR. GowdaD.C. Synthesis and evaluation of novel ureido/thioureido derivatives of amino acid conjugated 2,3-dichlorophenyl piperazine as highly potent antiglycating agents.J. Saudi Chem. Soc.201721S248S25710.1016/j.jscs.2014.02.006
    [Google Scholar]
  137. KumarC.A. VeereshB. RameshaK. RajC.A. MahadevaiahK. PrasadS.B. NaveenS. MadaiahM. RangappaK. Antidiabetic studies of 1-benzhydryl-piperazine sulfonamide and carboxamide derivatives.J Applic Chem201762232240
    [Google Scholar]
  138. ÖzilM. ParlakC. BaltaşN. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity.Bioorg. Chem.20187646847710.1016/j.bioorg.2017.12.01929287256
    [Google Scholar]
  139. AshokP. ChanderS. SmithT.K. SankaranarayananM. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents.Eur. J. Med. Chem.201815055956610.1016/j.ejmech.2018.03.02229549840
    [Google Scholar]
  140. ShresthaB. BanerjeeJ. YadavP.K. GuptaA.K. KhanalH. Comparison of antihelminthic activity between bisaryl benzyl piperazine and benzimidazole linked piperazine derivatives.Int. J. Pharm. Sci. Res.2016741547
    [Google Scholar]
  141. AnanthanS. SainiS.K. ZhouG. HobrathJ.V. PadmalayamI. ZhaiL. BostwickJ.R. AntonioT. ReithM.E.A. McDowellS. ChoE. McAleerL. TaylorM. LuedtkeR.R. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: Insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity.J. Med. Chem.201457167042706010.1021/jm500801r25126833
    [Google Scholar]
  142. AbateC. NisoM. ContinoM. ColabufoN.A. FerorelliS. PerroneR. BerardiF. 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: Mixed σ and human Δ(8)-Δ(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity.ChemMedChem201161738010.1002/cmdc.20100037121069657
    [Google Scholar]
  143. WaszkielewiczA.M. KubackaM. PańczykK. MogilskiS. SiwekA. Głuch-LutwinM. GrybośA. FilipekB. Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems.Bioorg. Med. Chem. Lett.201626215315532110.1016/j.bmcl.2016.09.03727692547
    [Google Scholar]
  144. ŁażewskaD. MogilskiS. HagenowS. KuderK. Głuch-LutwinM. SiwekA. WięcekM. KaletaM. SeibelU. BuschauerA. FilipekB. StarkH. Kieć-KononowiczK. Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands.Bioorg. Med. Chem.20192771254126210.1016/j.bmc.2019.02.02030792106
    [Google Scholar]
  145. SzczepańskaK. KarczT. KotańskaM. SiwekA. KuderK.J. LataczG. MogilskiS. HagenowS. LubelskaA. SobolewskiM. StarkH. Kieć-KononowiczK. Optimization and preclinical evaluation of novel histamine H3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives.Bioorg. Med. Chem.20182623-246056606610.1016/j.bmc.2018.11.01030448256
    [Google Scholar]
  146. MartinezJ.A. XiaoQ. ZakarianA. MillerB.G. Antidiabetic disruptors of the glucokinase−glucokinase regulatory protein complex reorganize a coulombic interface.Biochemistry201756243150315710.1021/acs.biochem.7b0037728516783
    [Google Scholar]
  147. KawaleL. SonaliL. YadavS. AhireK. Design, synthesis & evaluation of antihypertensive activity of 2-{4-(subsituted aryl) piperazine-1-yl}-3-(4-hydroxy phenyl) quinazoline-(3H)-one derivative.World J. Pharm. Res.2016591188119510.20959/wjpr20169‑6951
    [Google Scholar]
  148. AngeliA. ChiaramonteN. ManettiD. RomanelliM.N. SupuranC.T. Investigation of piperazines as human carbonic anhydrase I, II, IV and VII activators.J. Enzyme Inhib. Med. Chem.201833130330810.1080/14756366.2017.141727729280407
    [Google Scholar]
  149. MartinM.W. LanciaD.R.Jr LiH. SchillerS.E.R. TomsA.V. WangZ. BairK.W. CastroJ. FesslerS. GoturD. HubbsS.E. KauffmanG.S. KershawM. LukeG.P. McKinnonC. YaoL. LuW. MillanD.S. Discovery and optimization of novel piperazines as potent inhibitors of fatty acid synthase (FASN).Bioorg. Med. Chem. Lett.20192981001100610.1016/j.bmcl.2019.02.01230803804
    [Google Scholar]
  150. PatelR.V. MistryB.M. SyedR. ParekhN.M. ShinH.S. Phenylsulfonyl piperazine bridged [1,3]dioxolo[4,5-g]chromenones as promising antiproliferative and antioxidant agents.Bioorg. Chem.201987233010.1016/j.bioorg.2019.03.00230852234
    [Google Scholar]
  151. KumaraK. HarishK.P. ShivalingegowdaN. TandonH.C. MohanaK.N. LokanathN.K. Crystal structure studies, Hirshfeld surface analysis and DFT calculations of novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives.Chem. Data Coll.201711-12405810.1016/j.cdc.2017.07.007
    [Google Scholar]
  152. GulH.I. TugrakM. GulM. MazlumogluS. SakagamiH. GulcinI. SupuranC.T. New phenolic Mannich bases with piperazines and their bioactivities.Bioorg. Chem.20199010305710.1016/j.bioorg.2019.10305731226471
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298277743231213065544
Loading
/content/journals/mroc/10.2174/0118756298277743231213065544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test