Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Cucurbiturils are a class of macrocyclic compounds with highly polar carbonyl portals and a hydrophobic cavity. They are usually utilized as efficient host molecules in supramolecular chemistry applications due to their high binding affinity for positively charged or cationic compounds. This review investigates the application of CB[n] immobilization at semi-conductive interfaces to produce electrochemical sensors. Critical to the production of thin film electrode preparations is the solubility of the CB[n] to produce homogeneous thin films when deposited. The solubility of CB[n] molecules in organic and inorganic solvents is limited; however, CB[7] has been applied successfully in the production of a wide range of electrochemical sensors. Furthermore, we introduce simple drop-casting of efficiently solubilized CB[7] as a simple yet effective method for producing CB[7] modified electrochemical sensors for the sensitive reporting of dopamine in aqueous solutions in the concentration range of 3.33×10-9 to 1.16×10-8 M with a sensitivity of 0.315 µA/M, (n=3).

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298232086231203163938
2024-01-04
2025-09-04
Loading full text...

Full text loading...

References

  1. LehnJ.M. Supramolecular chemistry: Where from? Where to?Chem. Soc. Rev.20174692378237910.1039/C7CS00115K
    [Google Scholar]
  2. SavyasachiA.J. KotovaO. ShanmugarajuS. BradberryS.J. MailleG.M. GunnlaugssonT. Supramolecular chemistry: A toolkit for soft functional materials and organic particles.Chem20173576481110.1016/j.chempr.2017.10.006
    [Google Scholar]
  3. MengerF.M. Supramolecular chemistry and self-assembly.Proc. Natl. Acad. Sci. USA20029984818482210.1073/pnas.062524299 11959932
    [Google Scholar]
  4. HurM.Y. HwangI. KimK. Chapter 1: Introduction: History and develoρment.Monogr. Supramol. Chem.202020202811410.1039/9781788015967‑00001
    [Google Scholar]
  5. LouX.Y. SongN. YangY.W. Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry.Molecules20172210164010.3390/molecules22101640
    [Google Scholar]
  6. ChenY. Handbook of Macrocyclic Supramolecular Assembly,202010.1007/978‑981‑15‑2686‑2
    [Google Scholar]
  7. MaX. ZhaoY. Biomedical applications of supramolecular systems based on host–guest interactions.Chem. Rev.2015115157794783910.1021/cr500392w 25415447
    [Google Scholar]
  8. YudinA.K. Macrocycles: Lessons from the distant past, recent developments, and future directions.Chem. Sci.201561304910.1039/C4SC03089C 28553456
    [Google Scholar]
  9. BraegelmanA.S. WebberM.J. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems.Theranostics20199113017304010.7150/thno.31913 31244940
    [Google Scholar]
  10. WangB. ChenH. LiuT. ShiS. RussellT.P. Host–guest molecular recognition at liquid–liquid interfaces.Engineering20217560361410.1016/j.eng.2021.02.004
    [Google Scholar]
  11. DasD. AssafK.I. NauW.M. Applications of Cucurbiturils in medicinal chemistry and chemical biology.Front. Chem.2019761910.3389/fchem.2019.00619 31572710
    [Google Scholar]
  12. CrumlingM.A. KingK.A. DuncanR.K. Cyclodextrins and iatrogenic hearing loss: new drugs with significant risk.Front. Cell. Neurosci.20171135510.3389/fncel.2017.00355 29163061
    [Google Scholar]
  13. BarrowS.J. KaseraS. RowlandM.J. del BarrioJ. SchermanO.A. Cucurbituril-based molecular recognition.Chem. Rev.201511522123201240610.1021/acs.chemrev.5b00341 26566008
    [Google Scholar]
  14. BlancoE. QuintanaC. HernándezL. HernándezP. Atomic force microscopy study of new sensing platforms: Cucurbit[ n]uril (n =6, 7) on gold.Electroanalysis201325126326810.1002/elan.201200379
    [Google Scholar]
  15. YanS. WuZ. YuH. GongY. TanY. DuR. ChenW. XingX. MoG. ChenZ. CaiQ. SunD. Time-resolved small-angle X-ray scattering study on the growth behavior of silver nanoparticles.J. Phys. Chem. C.201411821114541146310.1021/jp502482c
    [Google Scholar]
  16. KimJ. JungI. KimS. LeeE. KangJ. SakamotoS. YamaguchiK. KimK. HyojadongS. KoreaR. SeptemberR.V. New Cucurbituril Homologues: Syntheses, isolation, characterization, and X-ray crystal structures of Cucurbit[n]uril (n = 5, 7, and 8).J. Am. Chem. Soc.20001223540541
    [Google Scholar]
  17. LeeJ.W. HeoS.W. LeeS.J.C. KoJ.Y. KimH. KimH.I. Probing conformational changes of ubiquitin by host-guest chemistry using electrospray ionization mass spectrometry.J. Am. Soc. Mass Spectrom.2013241212910.1007/s13361‑012‑0496‑6 23247966
    [Google Scholar]
  18. FunkS. SchatzJ. Cucurbiturils in supramolecular catalysis.J. Incl. Phenom. Macrocycl. Chem.2020961-212710.1007/s10847‑019‑00956‑0
    [Google Scholar]
  19. AktanovaA. AbramovaT. PashkinaE. BoevaO. GrishinaL. KovalenkoE. KozlovV. Assessment of the biocompatibility of cucurbiturils in blood cells.Nanomaterials2021116135610.3390/nano11061356 34063763
    [Google Scholar]
  20. BaiH. WangJ. LiZ. TangG. Macrocyclic compounds for drug and gene delivery in immune-modulating therapy.Int. J. Mol. Sci.2019209209710.3390/ijms20092097 31035393
    [Google Scholar]
  21. ZhengN. ShabekN. Ubiquitin ligases: Structure, function, and regulation.Annu. Rev. Biochem.201786112915710.1146/annurev‑biochem‑060815‑014922 28375744
    [Google Scholar]
  22. KirchevaN. DobrevS. DashevaL. KolevaI. NikolovaV. AngelovaS. DudevT. Complexation of biologically essential (mono- and divalent) metal cations to cucurbiturils: A DFT/SMD evaluation of the key factors governing the host–guest recognition.RSC Advances20201047281392814710.1039/D0RA04387G 35519129
    [Google Scholar]
  23. YahiaouiK. SeridiL. MansouriK. Temozolomide binding to Cucurbit[7]uril: QTAIM, NCI-RDG and NBO analyses.J. Incl. Phenom. Macrocycl. Chem.2021991-2617710.1007/s10847‑020‑01027‑5
    [Google Scholar]
  24. KaabelS. AdamsonJ. TopićF. KiesiläA. KaleniusE. ÖerenM. ReimundM. PrigorchenkoE. LõokeneA. ReichH.J. RissanenK. AavR. Chiral hemicucurbit[8]uril as an anion receptor: Selectivity to size, shape and charge distribution.Chem. Sci.2017832184219010.1039/C6SC05058A 28694954
    [Google Scholar]
  25. CicolaniR.S. SouzaL.R.R. de Santana DiasG.B. GonçalvesJ.M.R. AbrahãoI.S. SilvaV.M. DemetsG.J-F. Cucurbiturils for environmental and analytical chemistry.J. Incl. Phenom. Macrocycl. Chem.2021991-211210.1007/s10847‑020‑00999‑8 34785985
    [Google Scholar]
  26. GuchhaitT. RoyS. DasM. JenaS.P. Diversity in synthetic perchlorate anion receptors: Challenges and opportunities.J. Mol. Struct.2023129213619510.1016/j.molstruc.2023.136195
    [Google Scholar]
  27. AssafK.I. NauW.M. Large anion binding in water.Org. Biomol. Chem.202321336636665110.1039/D3OB00975K 37548417
    [Google Scholar]
  28. SankuR.K.K. KarakusO.O. IliesM. IliesM.A. Inclusion complexes in drug delivery and drug targeting: Formation, characterization, and biological applications.ACS Symp. Ser.2019130918722110.1021/bk‑2019‑1309.ch009
    [Google Scholar]
  29. SigwaltD. ŠekutorM. CaoL. ZavalijP.Y. HostašJ. AjaniH. HobzaP. Mlinarić-MajerskiK. GlaserR. IsaacsL. Unraveling the structure–affinity relationship between Cucurbit[ n]urils (n = 7, 8) and cationic diamondoids.J. Am. Chem. Soc.201713983249325810.1021/jacs.7b00056 28182422
    [Google Scholar]
  30. BlancoE. QuintanaC. HernándezP. An electrochemical study of Cucurbit[6]uril–Cadmium(II) interactions and the effect of electrolyte cations and guest molecules.Anal. Lett.201548578379510.1080/00032719.2014.961604
    [Google Scholar]
  31. MitkinaT.V. ZakharchukN.F. NaumovD.Y. GeraskoO.A. FenskeD. FedinV.P. Syntheses, structures, and electrochemical properties of inclusion compounds of cucurbit[8]uril with cobalt(III) and nickel(II) complexes.Inorg. Chem.200847156748675510.1021/ic8003036 18588285
    [Google Scholar]
  32. ShiX. GuW. ZhangC. ZhaoL. LiL. PengW. XianY. Construction of a Graphene/Au‐Nanoparticles/Cucurbit[7]uril‐based sensor for Pb 2+ sensing.Chemistry201622165643564810.1002/chem.201505034 26948157
    [Google Scholar]
  33. MurkliS. KlemmJ. BrockettA.T. ShusterM. BrikenV. RoeschM.R. IsaacsL. In vitro and in vivo sequestration of phencyclidine by Me4Cucurbit[8]uril.Chemistry - A Eur. J.20212793098310510.1002/chem.202004380
    [Google Scholar]
  34. ParkK.M. KimJ. KoY.H. AhnY. MurrayJ. LiM. ShrinidhiA. KimK. Dye-Cucurbit[ n]uril Complexes as sensor elements for reliable pattern recognition of biogenic polyamines.Bull. Chem. Soc. Jpn.2018911959910.1246/bcsj.20170302
    [Google Scholar]
  35. BlancoE. RochaL. PozoM. VázquezL. Petit-DomínguezM.D. CaseroE. QuintanaC. A supramolecular hybrid sensor based on cucurbit[8]uril, 2D-molibdenum disulphide and diamond nanoparticles towards methyl viologen analysis.Anal. Chim. Acta2021118233894010.1016/j.aca.2021.338940 34602204
    [Google Scholar]
  36. KoY.H. KimE. HwangI. KimK. Supramolecular assemblies built with host-stabilized charge-transfer interactions.Chem. Commun.2007131305131510.1039/B615103E 17377666
    [Google Scholar]
  37. OgoshiT. YamagishiT. Historical background of macrocyclic compounds. The Royal Society of Chemistry. OgoshiT. 201510.1039/9781782622321‑00001
    [Google Scholar]
  38. VinciguerraB. CaoL. CannonJ.R. ZavalijP.Y. FenselauC. IsaacsL. Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril.J. Am. Chem. Soc.201213431131331314010.1021/ja3058502 22799491
    [Google Scholar]
  39. SarrauteS. Biesse-MartinA.S. DevemyJ. DequidtA. BonalC. MalfreytP. Investigation of the complexation between 4-Aminoazobenzene and Cucurbit[7]uril through a combined spectroscopic, nuclear magnetic resonance, and molecular simulation studies.ACS Omega2022729250132502110.1021/acsomega.2c00499 35910107
    [Google Scholar]
  40. ChenM.C. AndersonJ.R. SohnM.H. What can a mouse cursor tell us more?: correlation of eye/mouse movements on web browsing.CHI EA '01: CHI '01 Extended Abstracts on Human Factors in Computing Systems200128128210.1145/634067.634234
    [Google Scholar]
  41. JansenK. BuschmannH.J. WegoA. DöppD. MayerC. DrexlerH.J. HoldtH.J. SchollmeyerE. Cucurbit[5]Uril, Decamethylcucurbit[5]Uril and Cucurbit[6]Uril. Synthesis, solubility, and amine complex formation.J. Incl. Phenom. Macrocycl. Chem.2001393/435736310.1023/A:1011184725796
    [Google Scholar]
  42. LucasD. MinamiT. IannuzziG. CaoL. WittenbergJ.B. AnzenbacherP.Jr IsaacsL. Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives.J. Am. Chem. Soc.201113344179661797610.1021/ja208229d 21970313
    [Google Scholar]
  43. FlinnA. HoughG.C. StoddartJ.F. WilliamsD.J. Decamethylcucurbit[5]uril.Angew. Chem. Int. Ed. Engl.199231111475147710.1002/anie.199214751
    [Google Scholar]
  44. SinnS. BiedermannF. Chemical sensors based on Cucurbit[n]uril macrocycles.Isr. J. Chem.2018583-4357412[n].10.1002/ijch.201700118
    [Google Scholar]
  45. LazarA.I. BiedermannF. MustafinaK.R. AssafK.I. HennigA. NauW.M. Nanomolar binding of steroids to Cucurbit[ n]urils: Selectivity and applications.J. Am. Chem. Soc.201613839130221302910.1021/jacs.6b07655 27673427
    [Google Scholar]
  46. CaoL. ŠekutorM. ZavalijP.Y. Mlinarić-MajerskiK. GlaserR. IsaacsL. Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant.Angew. Chem. Int. Ed.201453498899310.1002/anie.201309635 24382654
    [Google Scholar]
  47. UzunovaV.D. CullinaneC. BrixK. NauW.M. DayA.I. Toxicity of cucurbit[7]uril and cucurbit[8]uril: An exploratory in vitro and in vivo study.Org. Biomol. Chem.2010892037204210.1039/b925555a 20401379
    [Google Scholar]
  48. BaranwalJ. BarseB. GattoG. BroncovaG. KumarA. Electrochemical sensors and their applications: A review.Chemosensors202210936310.3390/chemosensors10090363
    [Google Scholar]
  49. FaridbodF. GuptaV.K. ZamaniH.A. Electrochemical sensors and biosensors.Int. J. Electrochem.201120111210.4061/2011/352546 21963095
    [Google Scholar]
  50. LiuL. LiuF. JiangD. XiangG. LiuC. YangJ. PuX. Hybridization chain reaction and target recycling enhanced tumor necrosis factor alpha aptasensor with host-guest interaction for signal probe collection.Sens. Actuators B Chem.201623168068710.1016/j.snb.2016.03.098
    [Google Scholar]
  51. WasserbergD. JonkheijmP. Supramolecular wearable sensors.Chem20173453153310.1016/j.chempr.2017.09.019
    [Google Scholar]
  52. JangY. JangM. KimH. LeeS.J. JinE. KooJ.Y. HwangI.C. KimY. KoY.H. HwangI. OhJ.H. KimK. Point-of-use detection of amphetamine-type stimulants with host-molecule-functionalized organic transistors.Chem20173464165110.1016/j.chempr.2017.08.015
    [Google Scholar]
  53. LvY. TaoC.A. HuangJ. LiY. WangF. CaiF. WangJ. Self-assembly of cucurbit[7]uril on the surface of graphene/gold modified electrode.Nanomat. Nanotech.2016610.1177/1847980416682443
    [Google Scholar]
  54. ZhangJ. LiB. WangQ. WeiX. FengW. ChenY. HuangP. WangZ. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.Sci. Rep.2017711801310.1038/s41598‑017‑18228‑7 29269843
    [Google Scholar]
  55. LiH. HuX. ZhaoJ. KohK. ChenH. A label-free impedimetric sensor for the detection of an amphetamine-type derivative based on cucurbit[7]uril-mediated three-dimensional AuNPs.Electrochem. Commun.201910012613310.1016/j.elecom.2019.02.002
    [Google Scholar]
  56. Herráez-HernándezR. Campíns-FalcóP. Automated trace enrichment for screening and/or determination of primary, secondary and tertiary amphetamines in biological samples by liquid chromatography.Analyst1999124323924410.1039/a809825e 10605885
    [Google Scholar]
  57. Gallardo-GonzálezJ. BaraketA. BonhommeA. ZineN. SigaudM. BausellsJ. ErrachidA. Sensitive potentiometric determination of amphetamine with an all-solid-state micro ion-selective electrode.Anal. Lett.201851334835810.1080/00032719.2017.1326053
    [Google Scholar]
  58. ChengG. LuoJ. LiuY. ChenX. WuZ. ChenT. Cucurbituril-oriented nanoplatforms in biomedical applications.ACS Appl. Bio Mater.20203128211824010.1021/acsabm.0c01061 35019600
    [Google Scholar]
  59. YangM.X. TangQ. YangM. WangQ. TaoZ. XiaoX. HuangY. pH-stimulus response dye-cucurbituril sensor for amino acids in aqueous solution.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023011807610.1016/j.saa.2020.118076 31982654
    [Google Scholar]
  60. CommitteeA.D. Cucurbituril Complexes and Their Spectral Characterization by Mohammad A.Alnajjar Doctor of Philosophy in Chemistry2021
    [Google Scholar]
  61. ChioW.I.K. XieH. ZhangY. LanY. LeeT.C. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology.Trends Analyt. Chem.202214611648510.1016/j.trac.2021.116485
    [Google Scholar]
  62. Ahmed ElbashirA. Moutasim MerghaniS. Development of chemically modified electrode using cucurbit(6)uril to detect ranitidine hydrochloride in pharmaceutical formulation by voltammetry.J. Anal. Pharm. Res.20187663463910.15406/japlr.2018.07.00294
    [Google Scholar]
  63. del PozoM. MejíasJ. HernándezP. QuintanaC. Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples.Sens. Actuators B Chem.2014193626910.1016/j.snb.2013.11.074
    [Google Scholar]
  64. ChandraF. DuttaT. KonerA.L. Supramolecular encapsulation of a neurotransmitter serotonin by cucurbit[7]uril’.Front. Chem.2020811110.3389/fchem.2020.582757
    [Google Scholar]
  65. TrivediM.U. GreczynskiG. KanthP. Study of Cucurbit[7]Uril nanocoating on epitaxial graphene to design a versatile sensing platform.Appl. Surf. Sci.202156315009610.1016/j.apsusc.2021.150096
    [Google Scholar]
  66. Kaliyaraj Selva KumarA. ZhangY. LiD. ComptonR.G. A mini-review: How reliable is the drop casting technique?Electrochem. Commun.202012110686710.1016/j.elecom.2020.106867
    [Google Scholar]
  67. de AzevedoL.A. da LuzL.L. de FerroJ.N.S. BarretoE. SilvaR.O. JuniorS.A. AlvesI.B.V. The new supra molecular nano-aggregate curcumin-cucurbit[7]uril: Synthesis, photophysical properties and biocompatibility evaluation.Photochem. Photobiol. Sci.201716566367110.1039/c6pp00408c 28225114
    [Google Scholar]
  68. SalehN. BufarooshaM. S. MoussaZ. BojesomoR. Al-amodiH. Al-ahdalA. For Enhancing Photoisomerization.,2020111
    [Google Scholar]
  69. KimK.O. KimG.J. KimJ.H. A cellulose/β-cyclodextrin nanofiber patch as a wearable epidermal glucose sensor.RSC Advances2019940227902279410.1039/C9RA03887F 35514507
    [Google Scholar]
  70. PandeyS. MewadaA. ThakurM. TankA. SharonM. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol.RSC Advances2013348262902629610.1039/c3ra42139b
    [Google Scholar]
  71. PriyaT.J. RebeccaJ. SugumarR.W. Study on the complexation of macromolecule cucurbituril with metals and acetamide.Int. J. Chem. Appl.201243219226
    [Google Scholar]
  72. XuH. WangL. LuoJ. SongY. LiuJ. ZhangS. CaiX. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array.Sensors20151511008102110.3390/s150101008 25580900
    [Google Scholar]
  73. Buaki-SogoM. del PozoM. HernándezP. GarcíaH. QuintanaC. Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing.Talanta201210113514010.1016/j.talanta.2012.09.016 23158302
    [Google Scholar]
  74. Martínez-MoroR. del PozoM. VázquezL. Martín-GagoJ.A. Petit-DomínguezM.D. CaseroE. QuintanaC. Electrochemical sensor based on the synergy between Cucurbit[8]uril and 2D-MoS2 for enhanced melatonin quantification.Sci. Rep.20231311037810.1038/s41598‑023‑37401‑9 36593249
    [Google Scholar]
  75. ZhangS. ZhouC. GaoC. YangJ. LiaoX. YangB. Fluorescent probe based on acyclic cucurbituril to detect Fe3+ ions in living cells.J. Mol. Liq.202339012294210.1016/j.molliq.2023.122942
    [Google Scholar]
  76. ZhangX. JiaY. FengR. WuT. ZhangN. DuY. JuH. Cucurbituril enhanced electrochemiluminescence of gold nanoclusters via host–guest recognition for sensitive D-Dimer sensing.Anal. Chem.202295210.1021/acs.analchem.2c04463 36575586
    [Google Scholar]
  77. GengQ.X. CongH. TaoZ. LindoyL.F. WeiG. Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations.Supramol. Chem.2016289-1078479110.1080/10610278.2015.1117614
    [Google Scholar]
  78. WangY. DingL. YuH. LiangF. Cucurbit[6]uril functionalized gold nanoparticles and electrode for the detection of metformin drug.Chin. Chem. Lett.202233128328710.1016/j.cclet.2021.06.044
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298232086231203163938
Loading
/content/journals/mroc/10.2174/0118756298232086231203163938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test