Skip to content
2000
image of A Comparative Study of the Chemical Profile from Species of the Bacillus cereus Group

Abstract

The group includes eight well-characterized and established species, whose classification and identification have been arduous and intense tasks. The similarity between group species and the discovery of new strains have complicated their classification and identification. The chemical profile can be complementary, along with molecular methodologies, to classify species. With this issue in mind, we performed a comparative study on natural compounds isolated from and . We isolated compounds from and elucidating their chemical structure by spectroscopic methods. The data suggests that indolic compounds are isolated from , preferentially serving to identify this species. Moreover, macrolactin compounds are extremely specific for since these compounds are not isolated from any other species. Therefore, the chemical profile of each species can be related to a species of this group, helping to define the type of species. In addition, the data achieved suggest that although genomically and can be indistinguishable, both species should be treated differently.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786392470250630095757
2025-07-16
2025-11-14
Loading full text...

Full text loading...

References

  1. Ehling-Schulz M. Lereclus D. Koehler T.M. Microbiol. Spectr. 2019 7 3 10.1128/microbiolspec.GPP3‑0032‑2018 31111815
    [Google Scholar]
  2. Morandini L. Caulier S. Bragard C. Mahillon. J. Microbiol. Res. 2024 283 127697 10.1016/j.micres.2024.127697 38522411
    [Google Scholar]
  3. Liu Y. Lai Q. Göker M. Meier-Kolthoff J.P. Wang M. Sun Y. Wang L. Shao Z. Sci. Rep. 2015 5 1 14082 10.1038/srep14082 26373441
    [Google Scholar]
  4. Liu Y. Du J. Lai Q. Zeng R. Ye D. Xu J. Shao Z. Int. J. Syst. Evol. Microbiol. 2017 67 8 2499 2508 10.1099/ijsem.0.001821 28792367
    [Google Scholar]
  5. Tuipulotu D.E. Mathur A. Ngo C. Man S.M. Trends Microbiol. 2021 29 458 471 10.1016/j.tim.2020.09.003 33004259
    [Google Scholar]
  6. Sansinenea E. Bacillus thuringiensis Biotechnology. Netherlands Springer 2012 10.1007/978‑94‑007‑3021‑2
    [Google Scholar]
  7. Bazinet A.L. BMC Evol. Biol. 2017 17 1 176 10.1186/s12862‑017‑1020‑1 28768476
    [Google Scholar]
  8. Kolstø A.B. Lereclus D. Mock M. Curr. Top. Microbiol. Immunol. 2002 264 2 95 108 [PMID: 12012872
    [Google Scholar]
  9. Rasko D.A. Altherr M.R. Han C.S. Ravel J. FEMS Microbiol. Rev. 2005 29 2 303 329 10.1016/j.femsre.2004.12.005 15808746
    [Google Scholar]
  10. Marrollo R. In:The diverse Faces of Bacillus cereus. Elsevier 2016 1 13 10.1016/B978‑0‑12‑801474‑5.00001‑3
    [Google Scholar]
  11. Strube M.L. Bioinformatics Advances. 2021 1 1 vbab020 10.1093/bioadv/vbab020 36700109
    [Google Scholar]
  12. Salazar B. Ortiz A. Keswani C. Minkina T. Mandzhieva S. Pratap Singh S. Rekadwad B. Borriss R. Jain A. Singh H.B. Sansinenea E. Microb. Ecol. 2023 86 1 1 24 10.1007/s00248‑022‑02044‑2 35604432
    [Google Scholar]
  13. Ortiz A. Sansinenea E. Appl. Microbiol. Biotechnol. 2021 105 3 891 897 10.1007/s00253‑020‑11030‑y 33417042
    [Google Scholar]
  14. Ortiz A. Sansinenea E. Mini Rev. Med. Chem. 2019 19 5 373 380 10.2174/1389557518666180829113612 30156158
    [Google Scholar]
  15. Vaca J. Ortiz A. Sansinenea E. Arch. Microbiol. 2023 205 1 13 10.1007/s00203‑022‑03356‑0 36463345
    [Google Scholar]
  16. Castro M. Jiménez J. Ortiz A. Sansinenea E. Lett. Org. Chem. 2020 17 2 90 95 10.2174/1570178616666190718125617
    [Google Scholar]
  17. Calderon A. Rosales D. Ortiz A. Sansinenea E. Tetrahedron Lett. 2024 149 155278 10.1016/j.tetlet.2024.155278
    [Google Scholar]
  18. Salazar F. Ortiz A. Sansinenea E. Curr. Microbiol. 2020 77 11 3409 3413 10.1007/s00284‑020‑02200‑2 32944805
    [Google Scholar]
  19. Vaca J. Salazar F. Ortiz A. Sansinenea E. J. Antibiot. 2020 73 11 798 802 10.1038/s41429‑020‑0333‑2 32483303
    [Google Scholar]
  20. Sansinenea E. Salazar F. Jiménez J. Mendoza Á. Ortiz A. Tetrahedron Lett. 2016 57 24 2604 2607 10.1016/j.tetlet.2016.04.117
    [Google Scholar]
  21. Ortiz A. Sansinenea E. J. Chem. 2018 2018 1 7 10.1155/2018/6040814
    [Google Scholar]
  22. Salazar F. Ortiz A. Sansinenea E. J. Glob. Antimicrob. Resist. 2017 11 177 182 10.1016/j.jgar.2017.08.008
    [Google Scholar]
  23. Soufiane B. Côté J.C. FEMS Microbiol. Lett. 2013 341 2 127 137 10.1111/1574‑6968.12106 23413955
    [Google Scholar]
  24. Liu Y. Lai Q. Shao Z. Int. J. Syst. Evol. Microbiol. 2018 68 1 106 112 10.1099/ijsem.0.002466 29095136
    [Google Scholar]
  25. Laemmli U.K. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
/content/journals/loc/10.2174/0115701786392470250630095757
Loading
/content/journals/loc/10.2174/0115701786392470250630095757
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test