Skip to content
2000
image of Synthesis and In-Vitro Antioxidant Activity of Novel Trihydroxychromen: Apigenin Derivatives

Abstract

Antioxidants are vital molecules that play a crucial role in maintaining optimal health by neutralizing reactive oxygen species (ROS) and mitigating oxidative stress, which is implicated in various chronic diseases, such as cancer and heart diseases. Apigenin, a naturally occurring flavonoid, has demonstrated significant antioxidant properties through free radical scavenging, metal ion chelation, and modulation of redox signaling pathways. We synthesized a series of novel apigenin derivatives the Mannich reaction and evaluated their antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. New derivatives of trihydroxychromen were synthesized and evaluated for their antioxidant activity. The target compounds were prepared by bonding pharmacophoric moieties possessing antioxidant activity, including amino substituents, simple and efficient synthetic strategies. Physical and spectral data confirmed the structures of the newly synthesized compounds. The synthesized compounds 4e (IC50 = 0.09 µg/ml), 4i (IC50 = 2.74 µg/ml), and 4j (IC50 = 2.90 µg/ml) showed potential antioxidant activity than gallic acid (IC50 = 4.39 µg/ml) and exhibited moderate to excellent activities, with some derivatives surpassing the standard gallic acid. Molecular docking studies further elucidated the presence of an amino substituent at position 8 in compounds 4i, 4j, and 4e, resulting in good interactions with the receptor molecule's TYR662, ASN710, and GLN553. This study highlights the potential of apigenin derivatives as effective antioxidants with possible therapeutic applications.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786376153250623075207
2025-07-25
2025-08-24
Loading full text...

Full text loading...

References

  1. Bondet V. Brand-Williams W. Berset C. Lebensm. Wiss. Technol. 1997 30 6 609 615 10.1006/fstl.1997.0240
    [Google Scholar]
  2. Mulla Al. DPC 2017 9 13 141 147
    [Google Scholar]
  3. Alam M.N. Bristi N.J. Rafiquzzaman M. Saudi Pharm. J. 2013 21 2 143 152 10.1016/j.jsps.2012.05.002 24936134
    [Google Scholar]
  4. Shalaby M.A. Fahim A.M. Rizk S.A. Sci. Rep. 2023 13 1 4999 10.1038/s41598‑023‑31995‑w 36973332
    [Google Scholar]
  5. Mathew S. Abraham T.E. Food Chem. Toxicol. 2006 44 2 198 206 10.1016/j.fct.2005.06.013 16087283
    [Google Scholar]
  6. Kizilkaya H. Dag B. Aral T. Genc N. Erenler R. J. Chin. Chem. Soc. 2020 67 9 1696 1701 10.1002/jccs.202000161
    [Google Scholar]
  7. Hu Q. Wang T. Zhou M. Xue J. Luo Y. J. Agric. Food Chem. 2016 64 29 5893 5900 10.1021/acs.jafc.6b02255 27379913
    [Google Scholar]
  8. Zhao Y. Zhang X. Zhang N. Zhou Q. Fan D. Wang M. Food Chem. 2022 379 132178 10.1016/j.foodchem.2022.132178 35066359
    [Google Scholar]
  9. Tsolaki E. Nobelos P. Geronikaki A. Rekka E.A. Curr. Top. Med. Chem. 2014 14 22 2462 2477 10.2174/1568026614666141203120425 25478888
    [Google Scholar]
  10. Kashyap P. Shikha D. Thakur M. Aneja A. J. Food Biochem. 2022 46 4 e13950 10.1111/jfbc.13950 34569073
    [Google Scholar]
  11. Kładna A. Berczyński P. Dündar O.B. Ünlüsoy M.C. Sarı E. Bakinowska B. Kruk I. Aboul-Enein H.Y. Future Med. Chem. 2018 10 19 2293 2308 10.4155/fmc‑2018‑0206 30273015
    [Google Scholar]
  12. El Bialy S.A.A. Gouda M.A. J. Heterocycl. Chem. 2011 48 6 1280 1286 10.1002/jhet.634
    [Google Scholar]
  13. Gupta A.K. Kalpana S. Malik J.K. Indian J. Pharm. Sci. 2012 74 5 481 486 10.4103/0250‑474X.108445 23716882
    [Google Scholar]
  14. Liu R. Zhao B. Wang D.E. Yao T. Pang L. Tu Q. Ahmed S. Liu J.J. Wang J. Molecules 2012 17 12 14748 14764 10.3390/molecules171214748 23519250
    [Google Scholar]
  15. Bayoumi W.A. Elsayed M.A. Med. Chem. Res. 2012 21 8 1633 1640 10.1007/s00044‑011‑9677‑2
    [Google Scholar]
  16. Milardović S. Iveković D. Grabarić B.S. Bioelectrochemistry 2006 68 2 175 180 10.1016/j.bioelechem.2005.06.005 16139574
    [Google Scholar]
  17. Takao T. Kitatani F. Watanabe N. Yagi A. Sakata K. Biosci. Biotechnol. Biochem. 1994 58 10 1780 1783 10.1271/bbb.58.1780
    [Google Scholar]
  18. Li Z. Xia A. Li S. Yang G. Jin W. Zhang M. Wang S. Curr. Pharmacol. Rep. 2020 6 3 103 109 10.1007/s40495‑020‑00219‑4
    [Google Scholar]
  19. Abadi A.H. Abou-Seri S.M. Abdel-Rahman D.E. Klein C. Lozach O. Meijer L. Eur. J. Med. Chem. 2006 41 3 296 305 10.1016/j.ejmech.2005.12.004 16494969
    [Google Scholar]
  20. Patel V.K. Rajak H. Lett. Drug Des. Discov. 2018 15 2 143 153 10.2174/1570180814666170823161751
    [Google Scholar]
  21. Patel V.K. Rajak H. Lett. Drug Des. Discov. 2021 18 2 131 142 10.2174/1570180817999200905092444
    [Google Scholar]
  22. Misra A. Gopalan H. Jayawardena R. Hills A. J. Diabetes 2019 11 7 522 539 10.2174/1570180817999200905092444 30864190
    [Google Scholar]
  23. Popp F.D. Donigan B.E. J. Pharm. Sci. 1979 68 4 519 520 10.1002/jps.2600680437 438986
    [Google Scholar]
  24. Badhani B. Sharma N. Kakkar R. RSC Advances 2015 5 35 27540 27557
    [Google Scholar]
  25. Papatheodorou K. Banach M. Bekiari E. Rizzo M. Edmonds M. Diabetes Res. 2017 2018 3086167 10.1155/2018/3086167 29713648
    [Google Scholar]
  26. Gout-Zwart J.J. de Jong L.A. Saptenno L. Postma M.J. PharmacoEconom. Open 2020 4 2 321 330 10.1007/s41669‑019‑00179‑6 31535305
    [Google Scholar]
  27. Houtkooper R.H. Auwerx J. Nature 2010 466 7305 443 444 10.1038/466443a 20651677
    [Google Scholar]
  28. LeRoith D. Biessels G.J. Braithwaite S.S. Casanueva F.F. Draznin B. Halter J.B. Hirsch I.B. McDonnell M.E. Molitch M.E. Murad M.H. Sinclair A.J. J. Clin. Endocrinol. Metab. 2019 104 5 1520 1574 10.1210/jc.2019‑00198 30903688
    [Google Scholar]
  29. Shirbhate E. Patel P. Patel V.K. Veerasamy R. Sharma P.C. Rajak H. Lett. Drug Des. Discov. 2020 15 143 153 10.2174/1570180817666200103125701
    [Google Scholar]
  30. Rajagopal K. Arumugasamy P. Raman K. Jupudi S. Byran G. Gupta J.K. Prema S. Kankate R.S. Elansari L. Hossain N. Hassan M.A. Rab S.O. Alshehri M.A. Emran T.B. ChemistrySelect 2024 9 32 e202401099 10.1002/slct.202401099
    [Google Scholar]
  31. Hollingsworth S.A. Dror R.O. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  32. Lyne P.D. Lamb M.L. Saeh J.C. J. Med. Chem. 2006 49 16 4805 4808 10.1021/jm060522a 16884290
    [Google Scholar]
/content/journals/loc/10.2174/0115701786376153250623075207
Loading
/content/journals/loc/10.2174/0115701786376153250623075207
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: apigenin ; gallic acid ; Mannich reactions ; DPPH ; Antioxidant ; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test