Skip to content
2000
Volume 22, Issue 12
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

This study aimed to carry out highly efficient and simple cross-coupling reactions of arylboronic acid with methyl dithiocarbamates for the synthesis of thioamide derivatives using Ni(acac)(5 mol%)/TFP(5 mol%) as a catalyst. Under the optimized reaction conditions, the coupling reaction between arylboronic acid with methyl dithiocarbamates was carried out smoothly, and thioamides were obtained with 27-85% isolated yields. Furthermore, dithiocarbamate methyl esters with allyl, cyano, and acid-sensitive ketal functional groups were successfully coupled with phenylboronic acid to produce the desired product, thioamides, with a yield of 27-69%. Aromatic boronic acids with methoxy or formyl groups on the benzene ring were found to be compatible in this reaction system, and the corresponding thioamides were obtained with an isolated yield of 31-43%. A thioamide with 1-(bis(4-fluorophenyl)methyl)piperazine structural units was prepared with a yield of 65%, which has the potential biological activity. However, this reaction system did not achieve satisfactory results for methyl 1-imidazole-1-carbodithioate. The structures of all the target compounds were confirmed by melting point determination, HMRS, 1H NMR, and 13-CNMR. The broad functional group tolerance and consistent high efficiency at gram-scale synthesis make this protocol a potentially practical approach for producing thioamide derivatives. The method avoids the use of expensive transition metals, such as Pd, Ir, or Rh, and has the advantage of simple operation.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786318561250619115451
2025-06-27
2025-12-13
Loading full text...

Full text loading...

References

  1. MahantaN. Szantai-KisD.M. PeterssonE.J. MitchellD.A. ACS Chem. Biol.201914214216310.1021/acschembio.8b01022 30698414
    [Google Scholar]
  2. GoldbergJ.M. ChenX. MeinhardtN. GreenbaumD.C. PeterssonE.J. J. Am. Chem. Soc.201413652086209310.1021/ja412297x 24472041
    [Google Scholar]
  3. CzepaW. WitomskaS. SamorìP. CiesielskiA. Small Sci.202335230001310.1002/smsc.202300013 40213318
    [Google Scholar]
  4. WatanabeH. KamigaitoM. J. Am. Chem. Soc.202314520109481095310.1021/jacs.3c01796 37079587
    [Google Scholar]
  5. KapandaC.N. MuccioliG.G. LabarG. DraouiN. LambertD.M. PoupaertJ.H. Med. Chem. Res.200918424325410.1007/s00044‑008‑9123‑2
    [Google Scholar]
  6. YazakiR. KumagaiN. ShibasakiM. Org. Lett.201113595295510.1021/ol102998w 21291204
    [Google Scholar]
  7. SimonettiS.O. LarghiE.L. BraccaA.B.J. KaufmanT.S. Nat. Prod. Rep.201330794196910.1039/c3np70014c 23719995
    [Google Scholar]
  8. JagodzińskiT.S. Chem. Rev.2003103119722810.1021/cr0200015 12517184
    [Google Scholar]
  9. HurdR.N. DeLaMaterG. Chem. Rev.1961611458610.1021/cr60209a003
    [Google Scholar]
  10. Wahab KhanM. Jahangir AlamM. RashidM.A. ChowdhuryR. Bioorg. Med. Chem.200513164796480510.1016/j.bmc.2005.05.009 15964760
    [Google Scholar]
  11. BanigéM. PolakM. LutonD. BenachiA. BiranV. MokhtariM. BoithiasC. ChampionV. DesfrereL. VilleY. JarreauP-H. DommerguesM. BrioudeF. MandelbrotL. MitanchezD. J. Pediatr.2018197249254.e110.1016/j.jpeds.2018.01.071 29605392
    [Google Scholar]
  12. PhanH.A.T. ChangY. EatonS.A. PeterssonE. J. Chem. Commun (Camb)20246089130751307810.1039/D4CC03309D 39439401
    [Google Scholar]
  13. BayramK. KiskanB. YagciY. Polym. Chem.202112453454410.1039/D0PY01381A
    [Google Scholar]
  14. IlkinV.G. FilimonovV.O. UtepovaI.A. BeryozkinaT.V. SlepukhinP.A. TumashovA.A. DehaenW. BakulevV.A. Org. Chem. Front.202411133537354510.1039/D3QO02025H
    [Google Scholar]
  15. PriebbenowD.L. BolmC. Chem. Soc. Rev.201342197870788010.1039/c3cs60154d 23793793
    [Google Scholar]
  16. LiuJ. ZhaoS. YanX. ZhangY. ZhaoS. ZhuoK. YueY. Asian J. Org. Chem.20176121764176810.1002/ajoc.201700532
    [Google Scholar]
  17. JinH. ChenX. QianC. GeX. ZhouS. Eur. J. Org. Chem.20212021233403340610.1002/ejoc.202100588
    [Google Scholar]
  18. ZhanZ. LuoN. MaH. HeJ. LuG. CuiX. HuangG. ChemistrySelect2019445133881339110.1002/slct.201903512
    [Google Scholar]
  19. ShibaharaF. SugiuraR. MuraiT. Org. Lett.200911143064306710.1021/ol9010882 19534478
    [Google Scholar]
  20. LiG. XingY. ZhaoH. ZhangJ. HongX. SzostakM. Angew. Chem. Int. Ed.20226116e20220014410.1002/anie.202200144 35122374
    [Google Scholar]
  21. WeiJ. LiY. JiangX. Org. Lett.201618234034310.1021/acs.orglett.5b03541 26734786
    [Google Scholar]
  22. GuptaA. VankarJ.K. JadavJ.P. GururajaG.N. J. Org. Chem.20228752410242010.1021/acs.joc.1c02307 35133151
    [Google Scholar]
  23. XuK. LiZ. ChengF. ZuoZ. WangT. WangM. LiuL. Org. Lett.20182082228223110.1021/acs.orglett.8b00573 29600861
    [Google Scholar]
  24. GuntreddiT. VanjariR. SinghK.N. Org. Lett.201416143624362710.1021/ol501482g 24978059
    [Google Scholar]
  25. SaitoM. MurakamiS. NanjoT. KobayashiY. TakemotoY. J. Am. Chem. Soc.2020142188130813510.1021/jacs.0c03256 32315161
    [Google Scholar]
  26. DoT.H. PhaenokS. SoorukramD. ModjinouT. GrandeD. NguyenT.T.T. NguyenT.B. Org. Lett.202325346322632710.1021/acs.orglett.3c02247 37606344
    [Google Scholar]
  27. MandalS. JainA. PandaT.K. RSC Sustainability2024282249225510.1039/D4SU00206G
    [Google Scholar]
  28. PengL. MaL. RanY. ChenY. ZengZ. Tetrahedron Lett.20217415309210.1016/j.tetlet.2021.153092
    [Google Scholar]
  29. WangX. XuS. TangY. LearM.J. HeW. LiJ. Nat. Commun.2023141462610.1038/s41467‑023‑40334‑6 37532721
    [Google Scholar]
  30. WuJ.W. WuY.D. DaiJ.J. XuH.J. Adv. Synth. Catal.201435611-122429243610.1002/adsc.201400068
    [Google Scholar]
  31. ZhangJ. ZhaoH. LiG. ZhuX. ShangL. HeY. LiuX. MaY. SzostakM. Org. Biomol. Chem.202220305981598810.1039/D2OB00412G 35441645
    [Google Scholar]
  32. GaoY. ChaiF. LiuC. New J. Chem.20244846194961950010.1039/D4NJ03032J
    [Google Scholar]
  33. PatraD. SahaA. Org. Chem. Front.20231071686169310.1039/D3QO00032J
    [Google Scholar]
  34. PatraD. SahaA. Org. Chem. Front.20241141150115610.1039/D3QO01921G
    [Google Scholar]
  35. XuX. QiuR. ChenS. LiY. ChenJ. SuL. TangZ. AuC.T. Synlett201627162339234410.1055/s‑0035‑1562509
    [Google Scholar]
  36. WangX. JiM. LimS. JangH.Y. J. Org. Chem.201479157256726010.1021/jo501378v 24993111
    [Google Scholar]
  37. DeviP.S. SaranyaS. AnilkumarG. Catal. Sci. Technol.20241492320235110.1039/D4CY00034J
    [Google Scholar]
  38. BehmaghamF. MustafaM.A. SaraswatS.K. KhalafK.A. KaurM. GhildiyalP. VessallyE. RSC Advances202414139184919910.1039/D4RA00487F 38505389
    [Google Scholar]
  39. KaduB.S. Catal. Sci. Technol.20211141186122110.1039/D0CY02059A
    [Google Scholar]
  40. KommojuA. SnehitaK. SowjanyaK. MukkamalaS.B. PadalaK. Chem. Commun. (Camb.)202460688946897710.1039/D4CC02914C 39086201
    [Google Scholar]
  41. HanF.S. Chem. Soc. Rev.201342125270529810.1039/c3cs35521g 23460083
    [Google Scholar]
  42. DuttaS. SahaA. Tetrahedron Lett.2020614115238210.1016/j.tetlet.2020.152382
    [Google Scholar]
  43. MondalM. SahaA. Org. Biomol. Chem.202220173491349410.1039/D2OB00315E 35411902
    [Google Scholar]
  44. JiangX. XiaoH. JiaX. PuJ. HanL. LiQ. New J. Chem.20234729140781409410.1039/D3NJ02026F
    [Google Scholar]
  45. LiangM. PuJ. JiaX. HanL. LiQ. Lett. Org. Chem.202421211612310.2174/1570178620666230821142342
    [Google Scholar]
  46. XiaoH.L. ZhangG. LuoR.Q. LiQ.H. Tetrahedron202210313254910.1016/j.tet.2021.132549
    [Google Scholar]
  47. WuK. WuC. JiaX.Y. ZhouL. LiQ.H. RSC Advances20221221133141331810.1039/D2RA02127G 35520111
    [Google Scholar]
  48. ZhangZ. JiaX. PuJ. HanL. HouJ. LiQ. Lett. Org. Chem.202421121055106310.2174/0115701786298931240408083720
    [Google Scholar]
  49. ZhangZ.H. PuJ.X. JiaX.Y. HouJ.S. HanL.R. WuC. LiQ.H. J. Organomet. Chem.2024101412319210.1016/j.jorganchem.2024.123192
    [Google Scholar]
  50. LiQ. LuoR. WuC. XiaoH. GuoS. ZhangZ. HuangZ. ZhouL. Youji Huaxue20214141489149710.6023/cjoc202009029
    [Google Scholar]
  51. PuJ.X. HouJ.S. HanL.R. JiaX.Y. LiQ.H. Tetrahedron202416213408910.1016/j.tet.2024.134089
    [Google Scholar]
  52. MeiQ. LiQ. Youji Huaxue202444239840810.6023/cjoc202308008
    [Google Scholar]
  53. JiaX. PuJ. HanL. LiQ. Youji Huaxue2024441184010.6023/cjoc202306003
    [Google Scholar]
  54. PuJ. JiaX. HanL. LiQ. Youji Huaxue20234382591261310.6023/cjoc202302002
    [Google Scholar]
  55. DingY. LiQ. ZhaoZ. YangX. ChenF. Youji Huaxue201737123282328810.6023/cjoc201707001
    [Google Scholar]
  56. MonteithJ.J. ScotchburnK. MillsL.R. RousseauxS.A.L. Org. Lett.202224261962410.1021/acs.orglett.1c04074 34978834
    [Google Scholar]
  57. KaleA.D. TayadeY.A. MahaleS.D. PatilR.D. DalalD.S. Tetrahedron2019754113057510.1016/j.tet.2019.130575
    [Google Scholar]
  58. JinH. GeX. ZhouS. Eur. J. Org. Chem.20212021446015602110.1002/ejoc.202101013
    [Google Scholar]
  59. MuraiT. MutohY. OhtaY. MurakamiM. J. Am. Chem. Soc.2004126195968596910.1021/ja048627v 15137753
    [Google Scholar]
  60. KhatriC.K. MaliA.S. ChaturbhujG.U. Monatsh. Chem.201714881463146810.1007/s00706‑017‑1944‑6
    [Google Scholar]
/content/journals/loc/10.2174/0115701786318561250619115451
Loading
/content/journals/loc/10.2174/0115701786318561250619115451
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test