Skip to content
2000
Volume 22, Issue 12
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The study aims to work on Computational Studies to Optimize Pyrazole Derivatives for Antibacterial Activity. A dataset of 28 Pyrazole derivatives having antibacterial activities was used to generate a pharmacophore hypothesis and a 3D-QSAR model. The established pharmacophore model (DHRRR_1) features three hydrogen bond donors (D), hydrophobic (H), and aromatic ring (R) features, exhibiting favorable parameters ( = 0.9031; Q2 = 0.9004). Hypothesis validation, enrichment analysis, and contour plot analysis were conducted, followed by virtual screening of the ChEMBL database using the optimized pharmacophore model and filtering based on the Lipinski rule of five. Docking was done with PDB ID 3G75 targeting DNA gyrase using Schrodinger software, further Desmond module of Schrodinger 2024-2 was used for MD simulations. The QSAR model was validated along with standard parameters. A library of NCE’s was designed with hypothesis DHRRR_1. Compounds that showed no violations in ADMET studies were further analysed for their interactions in the docking study. Eight compounds have shown zero violations in ADMET and have shown greater binding affinity in comparison to the standard Metronidazole. Further in the MD simulation results, instability of the complex 3G75-Comp D1 was analysed for 100 ns. This study provides a comprehensive approach for identifying novel Pyrazole-based antibacterial agents, highlighting compound D1 as a promising lead. Most promising compound D1 has indicated the role of the Hydroxy group, Pyrazole, and pyrrole ring for good antibacterial activity.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786360412250709155912
2025-07-18
2025-12-17
Loading full text...

Full text loading...

References

  1. PrestinaciF. PezzottiP. PantostiA. Pathog. Glob. Health2015109730931810.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  2. ResistanceA. Global Report on Surveillance.GenevaWorld Health Organization2014
    [Google Scholar]
  3. ChinK.W. HuiL.M.T. Environ. Adv.202211100331Dec;10.1016/j.envadv.2022.100331
    [Google Scholar]
  4. HettaH.F. RamadanY.N. Al-HarbiA.I. A AhmedE. Battah, B.; Abd Ellah, N.H.; Zanetti, S.; Donadu, M.G.Biomedicines202311241310.3390/biomedicines11020413 36830949
    [Google Scholar]
  5. CDC. 2019 Antibiotic Resistance Threats Report2022Available from: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html
  6. Medical New TodayWhat to know about antibiotics?2025Available from: https://www.medicalnewstoday.com/articles/10278
    [Google Scholar]
  7. SaadonK.E. TahaN.M.H. MahmoudN.A. ElhagaliG.A.M. RagabA. J. Indian Chem. Soc.20221993899391710.1007/s13738‑022‑02575‑y
    [Google Scholar]
  8. HasanR. AcharjeeM. NoorR. Tzu-Chi Med. J.2016282495310.1016/j.tcmj.2016.03.002 28757721
    [Google Scholar]
  9. KhanH.A. BaigF.K. MehboobR. Asian Pac. J. Trop. Biomed.20177547848210.1016/j.apjtb.2017.01.019
    [Google Scholar]
  10. PezhmanB. FatemehR. AmirR. MahboobehR. MohammadF. BMC Infect. Dis.2021211125610.1186/s12879‑021‑06948‑1 34911472
    [Google Scholar]
  11. GajdácsM. Antibiotics2019825210.3390/antibiotics8020052 31052511
    [Google Scholar]
  12. El ShehryM.F. GhorabM.M. AbbasS.Y. FayedE.A. ShedidS.A. AmmarY.A. Eur. J. Med. Chem.20181431463147310.1016/j.ejmech.2017.10.046 29113746
    [Google Scholar]
  13. VermaR. VermaS.K. RakeshK.P. GirishY.R. AshrafizadehM. Sharath KumarK.S. RangappaK.S. Chem2021212113134 33395624
    [Google Scholar]
  14. NegiB. KumarD. KumbukgollaW. JayaweeraS. PonnanP. SinghR. AgarwalS. RawatD.S. Eur. J. Med. Chem.201611542643710.1016/j.ejmech.2016.03.041 27046397
    [Google Scholar]
  15. BenvengaV. CuénodA. PurushothamanS. DasenG. WeisserM. BassettiS. RoloffT. SiegemundM. HeiningerU. BielickiJ. WehrliM. FriderichP. FreiR. WidmerA. HerzogK. FankhauserH. NolteO. BodmerT. RischM. DubuisO. PranghoferS. Calligaris-MaibachR. GrafS. PerretenV. Seth-SmithH.M.B. EgliA. Genome Med.20241612310.1186/s13073‑024‑01292‑w 38317199
    [Google Scholar]
  16. TongS.Y.C. VarroneL. ChatfieldM.D. BeamanM. GiffardP.M. Epidemiol. Infect.201514371519152310.1017/S0950268814002611 25302939
    [Google Scholar]
  17. DavidM.Z. DaumR.S. Clin. Microbiol. Rev.201023361668710.1128/CMR.00081‑09 20610826
    [Google Scholar]
  18. FoudraineD.E. StrepisN. StinglC. ten KateM.T. VerbonA. KlaassenC.H.W. GoessensW.H.F. LuiderT.M. DekkerL.J.M. Sci. Rep.20211111247210.1038/s41598‑021‑91905‑w 34127720
    [Google Scholar]
  19. AgyemanW.Y. BishtA. GopinathA. CheemaA.H. ChaludiyaK. KhalidM. NwosuM. KonkaS. KhanS. Cureus202214102995610.7759/cureus.29956 36381838
    [Google Scholar]
  20. Hernández CeruelosA. Romero-QuezadaL.C. Ruvalcaba LedezmaJ.C. López ContrerasL. Eur. Rev. Med. Pharmacol. Sci.2019231397401 30657582
    [Google Scholar]
  21. LöfmarkS. EdlundC. NordC.E. Clin. Infect. Dis.201050s1S16S2310.1086/647939 20067388
    [Google Scholar]
  22. CuiS.F. PengL.P. ZhangH.Z. RasheedS. Vijaya KumarK. ZhouC-H. Chem201486318334 25173851
    [Google Scholar]
  23. SutorminD.A. GalivondzhyanA.K. PolkhovskiyA.V. KamalyanS.O. SeverinovK.V. DubileyS.A. Acta. Nat.2021131597510.32607/actanaturae.11058 33959387
    [Google Scholar]
  24. SissonG. JeongJ.Y. GoodwinA. BrydenL. RosslerN. Lim-MorrisonS. RaudonikieneA. BergD.E. HoffmanP.S. J. Bacteriol.2000182185091509610.1128/JB.182.18.5091‑5096.2000 10960092
    [Google Scholar]
  25. SpencerA.C. PandaS.S. Biomedicines202311237110.3390/biomedicines11020371 36830908
    [Google Scholar]
  26. MehmoodT. IqbalM. RafiqueB. Sci. Rep.20211111929510.1038/s41598‑021‑97897‑x 34588489
    [Google Scholar]
  27. JuanS. Peng-ChengL. YongY. Rong-JuY. JianM. Hai-LiangZ. PLoS One201387e6975110.1371/journal.pone.0069751
    [Google Scholar]
  28. LiuH. ChuZ.W. XiaD.G. CaoH.Q. LvX.H. Bioorg. Chem.20209910380710.1016/j.bioorg.2020.103807 32272364
    [Google Scholar]
  29. Athar AbbasiM. RazaH.; Aziz-ur-Rehman, ; Zahra Siddiqui, S.; Adnan Ali Shah, S.; Hassan, M.; Seo, S.Y.Bioorg Chem.201983637510.1016/j.bioorg.2018.10.018 30342387
    [Google Scholar]
  30. ZhangT.Y. ZhengC.J. WuJ. SunL.P. PiaoH.R. Bioorg. Med. Chem. Lett.20192991079108410.1016/j.bmcl.2019.02.033 30842033
    [Google Scholar]
  31. Schrodinger. LigPrep.2021Available from: https://www.schrodinger.com/platform/products/LigPrep
  32. KhanM.F. VermaG. AkhtarW. ShaquiquzzamanM. AkhterM. RizviM.A. AlamM.M. Arab. J. Chem.20191285000501810.1016/j.arabjc.2016.11.004
    [Google Scholar]
  33. MorS. SindhuS. KhatriM. PuniaR. SandhuH. SindhuJ. JakharK. EurJ. Med. Chem. Rep.2022510005010.1016/j.ejmcr.2022.100050
    [Google Scholar]
  34. LiC.Y. LiQ.S. YanL. SunX.G. WeiR. GongH.B. ZhuH.L. Bioorg. Med. Chem.201220123746375510.1016/j.bmc.2012.04.047 22583669
    [Google Scholar]
  35. HajalsiddigT.T.H. OsmanA.B.M. SaeedA.E.M. ACS Omega2020530186621867410.1021/acsomega.0c01323 32775868
    [Google Scholar]
  36. MishraP. NandiS. ChatterjeeA. NayekT. BasakS. HalderK. MukherjeeA. J. Serb. Chem. Soc.2024897-898199510.2298/JSC230221039M
    [Google Scholar]
  37. PourbasheerE. AalizadehR. ShiriH. BanaeiA. GanjaliM. Curr. Comput. Aided Drug Des201511429230310.2174/1573409912666151106120058
    [Google Scholar]
  38. LiuS. ZhouJ. FengZ. ZhangJ. LiS. JinZ. ZhangC. LiS. HeG. LiH. Bioinformatics202238214953495510.1093/bioinformatics/btac615 36073903
    [Google Scholar]
  39. Identify novel hits with pharmacophore screening.2023Available from: https://www.schrodinger.com/platform/products/Phase
  40. AliA. AbdellattifM.H. AliA. AbuAliO. ShahbaazM. AhsanM.J. HussienM.A. Molecules20212619593210.3390/molecules26195932
    [Google Scholar]
  41. LeemansE. Bioorg. Med. Chem. Lett.20162631011101510.1016/j.bmcl.2015.12.041
    [Google Scholar]
  42. ShakourN. HadizadehF. KesharwaniP. SahebkarA. BioMed Res. Int.202120211638033610.1155/2021/6380336 34912894
    [Google Scholar]
  43. MitkuM.L. SimegnW. ChanieG.S. Mohammed SeidA. BeynaA.T. Kebad MengeshaA. MeleseM. EsubalewD. GelaY.Y. AyenewW. LimenhL.W. SAGE Open Med.2024122050312124127181010.1177/20503121241271810 39206230
    [Google Scholar]
  44. MabkhotY. KaalN. AlteraryS. Al-ShowimanS. BarakatA. GhabbourH. FreyW. Molecules20152058712872910.3390/molecules20058712 26007175
    [Google Scholar]
  45. DixonS.L. SmondyrevA.M. RaoS.N. Chem. Biol. Drug Des.200667537037210.1111/j.1747‑0285.2006.00384.x 16784462
    [Google Scholar]
  46. SanapalliB.K.R. YeleV. JupudiS. KarriV.V.S.R. RSC Advances20211143268202683110.1039/D1RA03891E 35480006
    [Google Scholar]
  47. MarondedzeE.F. GovenderK.K. GovenderP.P. J. Mol. Graph. Model.202010110771110.1016/j.jmgm.2020.107711 32898834
    [Google Scholar]
  48. ChalkhaM. AkhazzaneM. MoussaidF.Z. DaouiO. NakkabiA. BakhouchM. ChtitaS. ElkhattabiS. HousseiniA.I. El YazidiM. New J. Chem.20224662747276010.1039/D1NJ05621B
    [Google Scholar]
  49. RajeswariM. SanthiN. BhuvaneswariV. Bioinformation201410315716310.6026/97320630010157 24748756
    [Google Scholar]
  50. MattaR. PochampallyJ. DhoddiB.N. BhookyaS. BitlaS. AkkirajuA.G. BMC Chem.20231716110.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  51. HassanA.S. MoustafaG.O. AskarA.A. NaglahA.M. Al-OmarM.A. Synth. Commun.201848212761277210.1080/00397911.2018.1524492
    [Google Scholar]
  52. AlthagafiI. Abdel-LatifE. Polycycl. Aromat. Compd.20224274487450010.1080/10406638.2021.1894185
    [Google Scholar]
  53. MuhammadZ.A. AlshehreiF. ZayedM.E.M. FarghalyT.A. AbdallahM.A. Mini Rev. Med. Chem.201919151276129010.2174/1389557519666190313095545 30864524
    [Google Scholar]
  54. GangurdeK.B. MoreR.A. AdoleV.A. GhotekarD.S. J. Mol. Struct.2024129913676010.1016/j.molstruc.2023.136760
    [Google Scholar]
  55. KohlbacherS.M. LangerT. SeidelT. J. Cheminform.20211315710.1186/s13321‑021‑00537‑9 34372940
    [Google Scholar]
  56. BarakatA. Al-MajidA.M. Al-QahtanyB.M. AliM. TelebM. Al-AgamyM.H. NazS.; Ul-Haq,Z. Chem. Cent J.20181212910.1186/s13065‑018‑0399‑0 29541952
    [Google Scholar]
  57. Explore ChEMBL2024Available from: https://www.ebi.ac.uk/chembl/
  58. Enhancing drug development with ADME properties prediction.2022Available from: https://www.schrodinger.com/platform/products/qikprop/
  59. TitiA. MessaliM. AlqurashyB.A. TouzaniR. ShigaT. OshioH. FettouhiM. RajabiM. AlmalkiF.A. Ben HaddaT. J. Mol. Struct.2020120512762510.1016/j.molstruc.2019.127625
    [Google Scholar]
  60. LiuH. RenZ-L. WangW. GongJ-X. ChuM-J. MaQ-W. WangJ-C. LvX-H. Chem20181578187 30075404
    [Google Scholar]
  61. HeL.L. QiQ. WangX. LiY. ZhuY. WangX.F. XuL. Bioorg. Chem.20209910383310.1016/j.bioorg.2020.103833 32305694
    [Google Scholar]
  62. HafezH.N. El-GazzarA.R.B.A. Acta Pharm.201565321523310.1515/acph‑2015‑0022 26431102
    [Google Scholar]
  63. YallappaG.N. NanoBioSci20211134413448
    [Google Scholar]
  64. QiJ.D. MengY.Q. SunJ. LiW.X. ZhaiH.X. ZhangC. QuanJ. JinC.H. Arch. Pharm.20233568230011010.1002/ardp.202300110 37328442
    [Google Scholar]
  65. KhloyaP. KumarP. MittalA. AggarwalN.K. SharmaP.K. Org. Med. Chem. Lett.201331910.1186/2191‑2858‑3‑9 23981685
    [Google Scholar]
  66. Abdel-AziemA. BaaiuB.S. ElbazzarA.W. ElabbarF. Synth. Commun.202050162522253010.1080/00397911.2020.1782431
    [Google Scholar]
  67. FaisalM. SaeedA. HussainS. DarP. LarikF.A. J. Chem. Sci.201913187010.1007/s12039‑019‑1646‑1
    [Google Scholar]
  68. RahimizadehM. PordelM. BakavoliM. RezaeianS. SadeghianA. World J. Microbiol. Biotechnol.201026231732110.1007/s11274‑009‑0178‑0
    [Google Scholar]
  69. MohsR.C. GreigN.H. Alzheimers Dement.20173465165710.1016/j.trci.2017.10.005 29255791
    [Google Scholar]
  70. BernardiA. BennettW.F.D. HeS. JonesD. KirshnerD. BennionB.J. CarpenterT.S. Membranes2023131185110.3390/membranes13110851 37999336
    [Google Scholar]
  71. LeirosH.K.S. Kozielski-StuhrmannS. KappU. TerradotL. LeonardG.A. McSweeneyS.M. J. Biol. Chem.200427953558405584910.1074/jbc.M408044200 15492014
    [Google Scholar]
  72. Amplify your ligand discovery with an accurate, versatile docking program.2021Available from: https://www.schrodinger.com/platform/products/glide/
  73. Docking and scoring.2019Available from: https://www.schrodinger. com/life-science/learn/white-papers/docking-and-scoring/
  74. DesaiN.C. JoshiS.B. KhedkarV.M. Anal. Chem. Lett.202010330732010.1080/22297928.2020.1785325
    [Google Scholar]
  75. CetinA. KurtH. Lett. Drug Des. Discov.202017674575610.2174/1570180816666190905155510
    [Google Scholar]
  76. ReleaseS. 2024-2: Prime.New York, NYSchrödinger, LLC2024
    [Google Scholar]
  77. ModiP. PatelS. ChhabriaM. Mol. Divers.20232741547156610.1007/s11030‑022‑10511‑8 35969333
    [Google Scholar]
  78. ShawD.E. Maestro-Desmond Interoperability Tools.New YorkSchrödinger2024
    [Google Scholar]
  79. BowersK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06)200610.1109/SC.2006.54
    [Google Scholar]
  80. AsgaonkarK.D. PatilS.M. ChitreT.S. PrabhuA. ShevateK.S. SagarA.K. NaikA.P. J. Chem. Inf. Model.202422311510.2174/0122113525279683231228130206
    [Google Scholar]
  81. CaiW. WuJ. SunY. LiuA. WangR. MaY. Wang, Shuqing; Dong, W.J. Biomol. Struct. Dyn.20213962176218810.1080/07391102.2020.1745284
    [Google Scholar]
/content/journals/loc/10.2174/0115701786360412250709155912
Loading
/content/journals/loc/10.2174/0115701786360412250709155912
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): DNA gyrase; hypothesis; Molecular docking; Nosocomial infections; QSAR; Virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test