Skip to content
2000
image of Green Synthesis of Gold Nanomaterials: Recent Studies and Scopes

Abstract

A growing number of applications in the fields of biotechnology, biomedicine, catalysis, and energy storage have resulted from the development of gold nanoparticles (AuNPs), which have garnered considerable attention in recent years due to their unique biochemical, optical, electronic, and catalytic properties. However, the traditional approaches to creating AuNPs, like chemical reduction and physical procedures, frequently call for the use of toxic solvents, dangerous compounds, and large energy inputs, raising questions about environmental sustainability and public health. In recent years, there has been a growing interest in the development of environmentally friendly and sustainable approaches to synthesize AuNPs, often referred to as “green synthesis” or “biogenic synthesis”. Green synthesis of AuNPs involves the use of biocompatible agents, such as plants, microorganisms, and biomolecules, to reduce gold ions and form AuNPs in a single step. Compared to conventional approaches, this strategy has a number of benefits, such as a reduced adverse effect on the environment, cheaper production costs, and better scalability. In this review, we will provide an overview of the current state of green synthesis of AuNPs, highlighting the various biogenic agents and characterization methods that have been employed to date. Furthermore, we shed light on the role of plant-derived biomolecules in the reduction mechanism and stabilization processes. Our review provides researchers with a standard reference for future studies.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786395012250721014326
2025-07-29
2025-09-17
Loading full text...

Full text loading...

References

  1. Prasad P.N. Introduction to Biophotonics. 1st ed Wiley 2003 10.1002/0471465380
    [Google Scholar]
  2. Prasad P.N. Nanophotonics. 1st ed Wiley 2004 10.1002/0471670251
    [Google Scholar]
  3. Prasad P.N. In:Biomedical engineering and multidisciplinary integrated systems. Wiley 2012
    [Google Scholar]
  4. Joudeh N. Linke D. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  5. Edwards P.P. Johnston R.L. Rao C.N.R. In:Metal Clusters in Chemistry. Wiley 1999 10.1002/9783527618316.ch4h
    [Google Scholar]
  6. Ghosh C.K. In:Introduction to Nano. Springer 2015 73 111 10.1007/978‑3‑662‑47314‑6_5
    [Google Scholar]
  7. Roduner E. Nanoscopic Materials. The Royal Society of Chemistry 2006
    [Google Scholar]
  8. Kreibig U. Vollmer M. In: Materials Science. SPRINGER 1995 10.1007/978‑3‑662‑09109‑8
    [Google Scholar]
  9. Roduner E. Chem. Soc. Rev. 2006 35 7 583 592 10.1039/b502142c 16791330
    [Google Scholar]
  10. Poole C.P. Owens F.J. Introduction to nanotechnology. John Wiley and Sons 2003
    [Google Scholar]
  11. Kong F.Y. Zhang J.W. Li R.F. Wang Z.X. Wang W.J. Wang W. Molecules 2017 22 9 1445 10.3390/molecules22091445 28858253
    [Google Scholar]
  12. Yafout M. Ousaid A. Khayati Y. El Otmani I.S. Sci. Am. 2021 11 e00685
    [Google Scholar]
  13. Kus-Liśkiewicz M. Fickers P. Ben Tahar I. Int. J. Mol. Sci. 2021 22 20 10952 10.3390/ijms222010952 34681612
    [Google Scholar]
  14. Rajan A. Rajan A.R. Philip D. OpenNano 2017 2 1 8 10.1016/j.onano.2016.11.002
    [Google Scholar]
  15. Opris R. Tatomir C. Olteanu D. Moldovan R. Moldovan B. David L. Nagy A. Decea N. Kiss M.L. Filip G.A. Colloids Surf. B Biointerfaces 2017 150 192 200 10.1016/j.colsurfb.2016.11.033 27914256
    [Google Scholar]
  16. Kim H.S. Lee D.Y. Polymers 2018 10 9 961 10.3390/polym10090961 30960886
    [Google Scholar]
  17. Alharbi N.S. Bhakyaraj K. Gopinath K. Govindarajan M. Kumuraguru S. Mohan S. Kaleeswarran P. Kadaikunnan S. Khaled J.M. Benelli G. J. Cluster Sci. 2017 28 1 507 517 10.1007/s10876‑016‑1130‑8
    [Google Scholar]
  18. Nagajyothi P.C. Lee S.E. An M. Lee K-D. Bull. Korean Chem. Soc. 2012 33 8 2609 2612 10.5012/bkcs.2012.33.8.2609
    [Google Scholar]
  19. Xin Lee K. Shameli K. Miyake M. Kuwano N. Bt Ahmad Khairudin N.B. Bt Mohamad S.E. Yew Y.P. J. Nanomater. 2016 2016 1 7 10.1155/2016/8489094
    [Google Scholar]
  20. Muniyappan N. Nagarajan N.S. J. Environ. Chem. Eng. 2014 2 4 2037 2044 10.1016/j.jece.2014.03.004
    [Google Scholar]
  21. Nadagouda M.N. Iyanna N. Lalley J. Han C. Dionysiou D.D. Varma R.S. ACS Sustain. Chem.& Eng. 2014 2 7 1717 1723 10.1021/sc500237k
    [Google Scholar]
  22. Andeani J.K. Kazemi H. Mohsenzadeh S. Safavi A. Dig. J. Nanomater. Biostruct. 2011 6 3 1011 1017
    [Google Scholar]
  23. Huang J. Li Q. Sun D. Lu Y. Su Y. Yang X. Wang H. Wang Y. Shao W. He N. Hong J. Chen C. Nanotechnology 2007 18 10 105104 10.1088/0957‑4484/18/10/105104
    [Google Scholar]
  24. Bao Y. He J. Song K. Guo J. Zhou X. Liu S. J. Chem. 2021 2021 1 18 10.1155/2021/6562687
    [Google Scholar]
  25. Thakkar K.N. Mhatre S.S. Parikh R.Y. Nanomedicine 2010 6 2 257 262 10.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  26. Cabrera F.C. Mohan H. dos Santos R.J. Agostini D.L.S. Aroca R.F. Rodríguez-Pérez M.A. Job A.E. J. Nanomater. 2013 2013 1 710902 10.1155/2013/710902
    [Google Scholar]
  27. Ghosh S. Patil S.J. Nanomed. Nanotechnol. 2016 7 2 10.4172/2157‑7439.1000358
    [Google Scholar]
  28. Arunachalam K. Annamalai S. Shanmugasundaram Hari. Int. J. Nanomedicine 2013 8 Mar 1307 1315 10.2147/IJN.S36670 23569372
    [Google Scholar]
  29. Murugan K. Priyadharshini S. Senthamarai Selvi K. Soundarya S. Vasanth S. Int. J. Phytopharm 2018 8 2 27 33 10.7439/ijpp.v8i2.4741
    [Google Scholar]
  30. Parida U.K. Bindhani B.K. Nayak P. World J. Nano Sci. Eng. 2011 1 4 93 98 10.4236/wjnse.2011.14015
    [Google Scholar]
  31. Kumar B. Smita K. Cumbal L. Debut A. Inorganic Nano-Metal Chem. 2017 47 1 138 142 10.1080/15533174.2016.1157817
    [Google Scholar]
  32. Kumar B. Smita K. Cumbal L. IET Nanobiotechnol. 2016 10 3 154 157 10.1049/iet‑nbt.2015.0035 27256896
    [Google Scholar]
  33. Devi G.K. Sathishkumar K. IET Nanobiotechnol. 2017 11 2 143 151 10.1049/iet‑nbt.2015.0054 28476996
    [Google Scholar]
  34. Patil M.P. Jin X. Simeon N.C. Palma J. Kim D. Ngabire D. Kim N.H. Tarte N.H. Kim G.D. Artif. Cells Nanomed. Biotechnol. 2018 46 1 82 88 10.1080/21691401.2017.1293675 28278576
    [Google Scholar]
  35. Yas R. Ghafoor A. Saeed M. Syst. Rev. Pharm. 2021 12 500 505
    [Google Scholar]
  36. Sun B. Hu N. Han L. Pi Y. Gao Y. Chen K. Artif. Cells Nanomed. Biotechnol. 2019 47 1 4012 4019 10.1080/21691401.2019.1575844 31591910
    [Google Scholar]
  37. Vora R. Joshi A.C. JNST 2020 6 3 901 904 10.30799/jnst.309.20060301
    [Google Scholar]
  38. Ahmad T. Bustam M.A. Irfan M. Moniruzzaman M. Asghar H.M.A. Bhattacharjee S. Biotechnol. Appl. Biochem. 2019 66 4 698 708 10.1002/bab.1787 31172593
    [Google Scholar]
  39. Rahimi H.R. Doostmohammadi M. In:Applications of Nanobiotechnology. IntechOpen 2020
    [Google Scholar]
  40. Jamkhande P.G. Ghule N.W. Bamer A.H. Kalaskar M.G. J. Drug Deliv. Sci. Technol. 2019 53 101174 10.1016/j.jddst.2019.101174
    [Google Scholar]
  41. Turkia MAB Salman TA J. Chem. Rev. 2024 2024 1350 10.48309/jcr.2024.468135.1350
    [Google Scholar]
  42. Tepale N. Fernández-Escamilla V.V.A. Carreon-Alvarez C. González-Coronel V.J. Luna-Flores A. Carreon-Alvarez A. Aguilar J. Crystals 2019 9 12 612 10.3390/cryst9120612
    [Google Scholar]
  43. Hassan H. Sharma P. Hasan M.R. Singh S. Thakur D. Narang, J. Mater. Sci. Energy Technol. 2022 5 375 390 10.1016/j.mset.2022.09.004
    [Google Scholar]
  44. Lou-Franco J. Das B. Elliott C. Cao C. Nano-Micro Lett. 2021 13 1 10 10.1007/s40820‑020‑00532‑z 34138170
    [Google Scholar]
  45. Nayak S.P. Ventrapragada L.K. Ramamurthy S.S. Kiran Kumar J.K. Rao A.M. Nano Energy 2022 94 106966 10.1016/j.nanoen.2022.106966
    [Google Scholar]
  46. Lim S.H. Ahn E.Y. Park Y. Nanoscale Res. Lett. 2016 11 1 474 10.1186/s11671‑016‑1694‑0 27783375
    [Google Scholar]
  47. Raheem A.A. Thangasamy P. Sathish M. Praveen C. Nanoscale Adv. 2019 1 8 3177 3191 10.1039/C9NA00240E 36133589
    [Google Scholar]
  48. Choudhary B.C. Paul D. Gupta T. Tetgure S.R. Garole V.J. Borse A.U. Garole D.J. J. Environ. Sci. (China) 2017 55 236 246 10.1016/j.jes.2016.05.044 28477818
    [Google Scholar]
  49. Menon S. S, R.; S, V.K. Resource-Efficient Technol 2017 3 4 516 527 10.1016/j.reffit.2017.08.002
    [Google Scholar]
  50. Ijaz I. Gilani E. Nazir A. Bukhari A. Green Chem. Lett. Rev. 2020 13 3 223 245 10.1080/17518253.2020.1802517
    [Google Scholar]
  51. Khan M.A.R. Al Mamun M.S. Habib M.A. Islam A.B.M.N. Mahiuddin M. Karim K.M.R. Naime J. Saha P. Dey S.K. Ara M.H. Results Chem. 2022 4 100478 10.1016/j.rechem.2022.100478
    [Google Scholar]
  52. Kennedy L.C. Bickford L.R. Lewinski N.A. Coughlin A.J. Hu Y. Day E.S. West J.L. Drezek R.A. Small 2011 7 2 169 183 10.1002/smll.201000134 21213377
    [Google Scholar]
  53. Si P. Razmi N. Nur O. Solanki S. Pandey C.M. Gupta R.K. Malhotra B.D. Willander M. de la Zerda A. Nanoscale Adv. 2021 3 10 2679 2698 10.1039/D0NA00961J 36134176
    [Google Scholar]
  54. Pormohammad A. Monych N.K. Ghosh S. Turner D.L. Turner R. J. Antibiotics. 2021 10 5 473 10.3390/antibiotics10050473 33919072
    [Google Scholar]
  55. Harish V. Ansari M.M. Tewari D. Yadav A.B. Sharma N. Bawarig S. García-Betancourt M-L. Karatutlu A. Bechelany M. Barhoum A. J. Taiwan Inst. Chem. Eng. 2023 149 105010 10.1016/j.jtice.2023.105010
    [Google Scholar]
  56. Shrivastava P. Jain V.K. Nagpal S. Environ. Nanotechnol. Monit. Manag. 2022 17 100667 10.1016/j.enmm.2022.100667
    [Google Scholar]
  57. Castillo-Henríquez L. Alfaro-Aguilar K. Ugalde-Álvarez J. Vega-Fernández L. Montes de Oca-Vásquez G. Vega-Baudrit J.R. Nanomaterials 2020 10 9 1763 10.3390/nano10091763 32906575
    [Google Scholar]
  58. Santhosh P.B. Genova J. Chamati H. Chemistry 2022 4 2 345 369 10.3390/chemistry4020026
    [Google Scholar]
  59. Ghoreishi S.M. Behpour M. Khayatkashani M. Physica E 2011 44 (1) 97 104 10.1016/j.physe.2011.07.008.
  60. Zayed M.F. Eisa W.H. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 121 238 244 10.1016/j.saa.2013.10.092 24247096
    [Google Scholar]
  61. Islam N.U. Jalil K. Shahid M. Rauf A. Muhammad N. Khan A. Shah M.R. Khan M.A. Arab. J. Chem. 2019 12 8 2914 2925 10.1016/j.arabjc.2015.06.025
    [Google Scholar]
  62. Mata R. Bhaskaran A. Sadras S.R. Particuology 2016 24 78 86 10.1016/j.partic.2014.12.014
    [Google Scholar]
  63. Huo Y. Singh P. Kim Y.J. Soshnikova V. Kang J. Markus J. Ahn S. Castro-Aceituno V. Mathiyalagan R. Chokkalingam M. Bae K.S. Yang D.C. Artif. Cells Nanomed. Biotechnol. 2018 46 2 303 312 10.1080/21691401.2017.1307213 28375686
    [Google Scholar]
  64. Anand K. Gengan R.M. Phulukdaree A. Chuturgoon A. J. Ind. Eng. Chem. 2015 21 1105 1111 10.1016/j.jiec.2014.05.021
    [Google Scholar]
  65. Mukherjee S. Dasari M. Priyamvada S. Kotcherlakota R. Bollu V.S. Patra C.R. J. Mater. Chem. B Mater. Biol. Med. 2015 3 18 3820 3830 10.1039/C5TB00244C 32262856
    [Google Scholar]
  66. Lee K.D. Nagajyothi P.C. Sreekanth T.V.M. Park S. J. Ind. Eng. Chem. 2015 26 67 72 10.1016/j.jiec.2014.11.016
    [Google Scholar]
  67. Patil M.P. Ngabire D. Thi H.H.P. Kim M.D. Kim G.D. J. Cluster Sci. 2017 28 1 119 132 10.1007/s10876‑016‑1051‑6
    [Google Scholar]
  68. Kumar P.P.N.V. Shameem U. Kollu P. Kalyani R.L. Pammi S.V.N. Bionanoscience 2015 5 3 135 139 10.1007/s12668‑015‑0171‑z
    [Google Scholar]
  69. Nakkala J.R. Mata R. Bhagat E. Sadras S.R. J. Nanopart. Res. 2015 17 3 151 10.1007/s11051‑015‑2957‑x
    [Google Scholar]
  70. Patra S. Mukherjee S. Barui A.K. Ganguly A. Sreedhar B. Patra C.R. Mater. Sci. Eng. C 2015 53 298 309 10.1016/j.msec.2015.04.048 26042718
    [Google Scholar]
  71. Naraginti S. Li Y. J. Photochem. Photobiol. B 2017 170 225 234 10.1016/j.jphotobiol.2017.03.023 28454046
    [Google Scholar]
  72. Abel E.E. John Poonga P.R. Panicker S.G. Appl. Nanosci. 2016 6 1 121 129 10.1007/s13204‑015‑0422‑x
    [Google Scholar]
  73. Datkhile K.D. Patil S.R. Durgawale P.P. Patil M.N. Hinge D.D. Jagdale N.J. Deshmukh V.N. More A.L. J. Genet. Eng. Biotechnol. 2021 19 1 9 10.1186/s43141‑020‑00113‑y 33443619
    [Google Scholar]
  74. Lakshmanan A. Umamaheswari C. Nagarajan N.J. Nanosci Technol 2016 2 2 76 80
    [Google Scholar]
  75. P, B.; K, M.C.; e. K. Int. J. Appl. Pharm. 2018 10 5 153 10.22159/ijap.2018v10i5.27999
    [Google Scholar]
  76. Perveen K. Husain F.M. Qais F.A. Khan A. Razak S. Afsar T. Alam P. Almajwal A.M. Abulmeaty M.M.A. Biomolecules 2021 11 2 197 10.3390/biom11020197 33573343
    [Google Scholar]
  77. Fazal S. Jayasree A. Sasidharan S. Koyakutty M. Nair S.V. Menon D. ACS Appl. Mater. Interfaces 2014 6 11 8080 8089 10.1021/am500302t 24842534
    [Google Scholar]
  78. Ganesan R.M. Gurumallesh Prabu H. Arab. J. Chem. 2019 12 8 2166 2174 10.1016/j.arabjc.2014.12.017
    [Google Scholar]
  79. Islam N.U. Jalil K. Shahid M. Muhammad N. Rauf A. Arab. J. Chem. 2019 12 8 2310 2319 10.1016/j.arabjc.2015.02.014
    [Google Scholar]
  80. Ganesh Kumar V. Dinesh Gokavarapu S. Rajeswari A. Stalin Dhas T. Karthick V. Kapadia Z. Shrestha T. Barathy I.A. Roy A. Sinha S. Colloids Surf. B Biointerfaces 2011 87 1 159 163 10.1016/j.colsurfb.2011.05.016 21640563
    [Google Scholar]
  81. Jebakumar Immanuel Edison T.N. Sethuraman M.G. 2013 1 (10) 1326 1332 10.1021/sc4001725
  82. Karthika V. Arumugam A. Gopinath K. Kaleeswarran P. Govindarajan M. Alharbi N.S. Kadaikunnan S. Khaled J.M. Benelli G. J. Photochem. Photobiol. B 2017 167 189 199 10.1016/j.jphotobiol.2017.01.008 28076823
    [Google Scholar]
  83. Sundararajan B. Ranjitha Kumari B.D. J. Trace Elem. Med. Biol. 2017 43 187 196 10.1016/j.jtemb.2017.03.008 28341392
    [Google Scholar]
  84. Yang N. WeiHong, L.; Hao, L. Mater. Lett. 2014 134 67 70 10.1016/j.matlet.2014.07.025
    [Google Scholar]
  85. Paul B. Bhuyan B. Purkayastha D.D. Vadivel S. Dhar S.S. Mater. Lett. 2016 185 143 147 10.1016/j.matlet.2016.08.121
    [Google Scholar]
  86. Rajan A. Vilas V. Philip D. J. Mol. Liq. 2015 212 331 339 10.1016/j.molliq.2015.09.013
    [Google Scholar]
  87. Pathania D. Sharma M. Thakur P. Chaudhary V. Kaushik A. Furukawa H. Khosla A. Sci. Rep. 2022 12 1 14249 10.1038/s41598‑022‑15899‑9 35995807
    [Google Scholar]
  88. Vijayashree I.S. Niranjana P. Prabhu G. Sureshbabu V.V. Manjanna J. J. Cluster Sci. 2017 28 1 133 148 10.1007/s10876‑016‑1053‑4
    [Google Scholar]
  89. Vanaraj S. Jabastin J. Sathiskumar S. Preethi K. J. Cluster Sci. 2017 28 1 227 244 10.1007/s10876‑016‑1081‑0
    [Google Scholar]
  90. Chandran S.P. Chaudhary M. Pasricha R. Ahmad A. Sastry M. Biotechnol. Prog. 2006 22 2 577 583 10.1021/bp0501423 16599579
    [Google Scholar]
  91. Mohan Kumar K. Mandal B.K. Sinha M. Krishnakumar V. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 86 490 494 10.1016/j.saa.2011.11.001 22130557
    [Google Scholar]
  92. MubarakAli D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Colloids Surf. B Biointerfaces 2011 85 2 360 365 10.1016/j.colsurfb.2011.03.009 21466948
    [Google Scholar]
  93. Basavegowda N. Idhayadhulla A. Lee Y.R. Ind. Crops Prod. 2014 52 745 751 10.1016/j.indcrop.2013.12.006
    [Google Scholar]
  94. Annamalai A. Christina V.L.P. Sudha D. Kalpana M. Lakshmi P.T.V. Colloids Surf. B Biointerfaces 2013 108 60 65 10.1016/j.colsurfb.2013.02.012 23528605
    [Google Scholar]
  95. G, S.; Jha, P.K.; v, V.; C, R.; M, J.; M, S.; Jha, R.; S, S. J. Mol. Liq. 2016 215 229 236 10.1016/j.molliq.2015.12.043
    [Google Scholar]
  96. Muthuvel A. Adavallan K. Balamurugan K. Krishnakumar N. 2014 4 (2) 325 332 10.1016/j.bionut.2014.03.004
  97. Ramamurthy C. Padma M. mariya samadanam, I.D.; Mareeswaran, R.; Suyavaran, A.; Kumar, M.S.; Premkumar, K.; Thirunavukkarasu, C. Colloids Surf. B Biointerfaces 2013 102 808 815 10.1016/j.colsurfb.2012.09.025 23107960
    [Google Scholar]
  98. Ganeshkumar M. Sathishkumar M. Ponrasu T. Dinesh M.G. Suguna L. Colloids Surf. B Biointerfaces 2013 106 208 216 10.1016/j.colsurfb.2013.01.035 23434714
    [Google Scholar]
  99. Ind. Crops Prod 2013 51 107 115 10.1016/j.indcrop.2013.08.055
    [Google Scholar]
  100. Arockiya Aarthi Rajathi F. Arumugam R. Saravanan S. Anantharaman P. J. Photochem. Photobiol. B 2014 135 75 80 10.1016/j.jphotobiol.2014.03.016 24811828
    [Google Scholar]
  101. Boruah J.S. Devi C. Hazarika U. Bhaskar Reddy P.V. Chowdhury D. Barthakur M. Kalita P. RSC Advances 2021 11 45 28029 28041 10.1039/D1RA02669K 35480751
    [Google Scholar]
  102. Li S. Al-Misned F.A. El-Serehy H.A. Yang L. Arab. J. Chem. 2021 14 2 102931 10.1016/j.arabjc.2020.102931
    [Google Scholar]
  103. Rodríguez-León E. Rodríguez-Vázquez B.E. Martínez-Higuera A. Rodríguez-Beas C. Larios-Rodríguez E. Navarro R.E. López-Esparza R. Iñiguez-Palomares R.A. Nanoscale Res. Lett. 2019 14 1 334 10.1186/s11671‑019‑3158‑9 31654146
    [Google Scholar]
  104. Kumar G. Ghosh M. Pandey D.M. IET Nanobiotechnol. 2019 13 6 626 633 10.1049/iet‑nbt.2018.5410 31432797
    [Google Scholar]
  105. Abootorabi Z. Poorgholami M. Hanafi-Bojd M.Y. Hoshyar R. Mod Care J. 2016 13 (4) 10.5812/modernc.13000
    [Google Scholar]
  106. Ariski R.T. Lee K.K. Kim Y. Lee C.S. RSC Advances 2024 14 21 14582 14592 10.1039/D4RA00614C 38708107
    [Google Scholar]
  107. Datkhile K.D. Durgawale P.P. Chakraborty S. Jagdale N.J. More A.L. Patil S.R. Pharm. Nanotechnol. 2023 11 3 303 314 10.2174/2211738511666230206112537 36744688
    [Google Scholar]
  108. Alghuthaymi M.A. Rajkuberan C. Santhiya T. Krejcar O. Kuča K. Periakaruppan R. Prabukumar S. Plants 2021 10 11 2370 10.3390/plants10112370 34834733
    [Google Scholar]
  109. Venkatachalam M. Govindaraju K. Mohamed Sadiq A. Tamilselvan S. Ganesh Kumar V. Singaravelu G. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 116 331 338 10.1016/j.saa.2013.07.038 23973575
    [Google Scholar]
  110. Nayan V. Onteru S.K. Singh D. Environ. Prog. Sustain. Energy 2018 37 1 283 294 10.1002/ep.12669
    [Google Scholar]
  111. Adongo Odongo S. Oluoch Okumu F. Omwoma Lugasi S. Opiyo Onani M. Gaya Agong S. In. J. Chem. 2022 2022 9034840 10.1155/2022/9034840
    [Google Scholar]
  112. Ijaz M. Fatima M. Anwar R. Uroos M. RSC Advances 2021 11 44 27092 27106 10.1039/D1RA03186D 35480682
    [Google Scholar]
  113. Noruzi M. Zare D. Khoshnevisan K. Davoodi D. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 79 5 1461 1465 10.1016/j.saa.2011.05.001 21616704
    [Google Scholar]
  114. Daniel M.C. Astruc D. Chem. Rev. 2004 104 1 293 346 10.1021/cr030698+ 14719978
    [Google Scholar]
  115. Liao S. Yue W. Cai S. Tang Q. Lu W. Huang L. Qi T. Liao J. Front. Pharmacol. 2021 12 664123 10.3389/fphar.2021.664123 33967809
    [Google Scholar]
  116. Pakravan A. Salehi R. Mahkam M. Photodiagn. Photodyn. Ther. 2021 33 102144 10.1016/j.pdpdt.2020.102144 33307234
    [Google Scholar]
  117. Hlapisi N. Songca S.P. Ajibade. PA. Pharmaceutics. 2024 16 10 1268 10.3390/pharmaceutics16101268 39458600
    [Google Scholar]
  118. Nisha; Sachan, R.S.K.; Singh, A.; Karnwal, A.; Shidiki, A.; Kumar, G. Front Nanotechnol. 2024 6 1490980 10.3389/fnano.2024.1490980
    [Google Scholar]
  119. Abdal Dayem A. Hossain M. Lee S. Kim K. Saha S. Yang G.M. Choi H. Cho S.G. Int. J. Mol. Sci. 2017 18 1 120 10.3390/ijms18010120 28075405
    [Google Scholar]
  120. Feng Z. Jia Y. Cui H. J. Colloid Interface Sci. 2024 672 1 11 10.1016/j.jcis.2024.05.217 38823218
    [Google Scholar]
  121. Campisi S. Schiavoni M. Chan-Thaw C. Villa A. Catalysts 2016 6 12 185 10.3390/catal6120185
    [Google Scholar]
  122. Timoszyk A. Grochowalska R. Pharmaceutics 2022 14 12 2599 10.3390/pharmaceutics14122599 36559093
    [Google Scholar]
  123. He J. Unser S. Bruzas I. Cary R. Shi Z. Mehra R. Aron K. Sagle L. Colloids Surf. B Biointerfaces 2018 163 140 145 10.1016/j.colsurfb.2017.12.019 29291499
    [Google Scholar]
  124. Sidhu A.K. Verma N. Kaushal P. Front Nanotechnol. 2022 3 801620 10.3389/fnano.2021.801620
    [Google Scholar]
/content/journals/loc/10.2174/0115701786395012250721014326
Loading
/content/journals/loc/10.2174/0115701786395012250721014326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test