Skip to content
2000
Volume 22, Issue 12
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

A growing number of applications in the fields of biotechnology, biomedicine, catalysis, and energy storage have resulted from the development of gold nanoparticles (AuNPs), which have garnered considerable attention in recent years due to their unique biochemical, optical, electronic, and catalytic properties. However, the traditional approaches to creating AuNPs, like chemical reduction and physical procedures, frequently call for the use of toxic solvents, dangerous compounds, and large energy inputs, raising questions about environmental sustainability and public health. In recent years, there has been a growing interest in the development of environmentally friendly and sustainable approaches to synthesize AuNPs, often referred to as “green synthesis” or “biogenic synthesis”. Green synthesis of AuNPs involves the use of biocompatible agents, such as plants, microorganisms, and biomolecules, to reduce gold ions and form AuNPs in a single step. Compared to conventional approaches, this strategy has a number of benefits, such as a reduced adverse effect on the environment, cheaper production costs, and better scalability. In this review, we will provide an overview of the current state of green synthesis of AuNPs, highlighting the various biogenic agents and characterization methods that have been employed to date. Furthermore, we shed light on the role of plant-derived biomolecules in the reduction mechanism and stabilization processes. Our review provides researchers with a standard reference for future studies.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786395012250721014326
2025-07-29
2026-01-07
Loading full text...

Full text loading...

References

  1. PrasadP.N. Introduction to Biophotonics.1st edWiley200310.1002/0471465380
    [Google Scholar]
  2. PrasadP.N. Nanophotonics.1st edWiley200410.1002/0471670251
    [Google Scholar]
  3. PrasadP.N. In: Biomedical engineering and multidisciplinary integrated systems.Wiley2012
    [Google Scholar]
  4. JoudehN. LinkeD. J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  5. EdwardsP.P. JohnstonR.L. RaoC.N.R. In: Metal Clusters in Chemistry.Wiley199910.1002/9783527618316.ch4h
    [Google Scholar]
  6. GhoshC.K. In: Introduction to Nano.Springer20157311110.1007/978‑3‑662‑47314‑6_5
    [Google Scholar]
  7. RodunerE. Nanoscopic Materials.The Royal Society of Chemistry2006
    [Google Scholar]
  8. KreibigU. VollmerM. In: Materials Science.SPRINGER199510.1007/978‑3‑662‑09109‑8
    [Google Scholar]
  9. RodunerE. Chem. Soc. Rev.200635758359210.1039/b502142c 16791330
    [Google Scholar]
  10. PooleC.P. OwensF.J. Introduction to nanotechnology.John Wiley and Sons2003
    [Google Scholar]
  11. KongF.Y. ZhangJ.W. LiR.F. WangZ.X. WangW.J. WangW. Molecules2017229144510.3390/molecules22091445 28858253
    [Google Scholar]
  12. YafoutM. OusaidA. KhayatiY. El OtmaniI.S. Sci. Am.202111e00685
    [Google Scholar]
  13. Kus-LiśkiewiczM. FickersP. Ben TaharI. Int. J. Mol. Sci.202122201095210.3390/ijms222010952 34681612
    [Google Scholar]
  14. RajanA. RajanA.R. PhilipD. OpenNano201721810.1016/j.onano.2016.11.002
    [Google Scholar]
  15. OprisR. TatomirC. OlteanuD. MoldovanR. MoldovanB. DavidL. NagyA. DeceaN. KissM.L. FilipG.A. Colloids Surf. B Biointerfaces201715019220010.1016/j.colsurfb.2016.11.033 27914256
    [Google Scholar]
  16. KimH.S. LeeD.Y. Polymers201810996110.3390/polym10090961 30960886
    [Google Scholar]
  17. AlharbiN.S. BhakyarajK. GopinathK. GovindarajanM. KumuraguruS. MohanS. KaleeswarranP. KadaikunnanS. KhaledJ.M. BenelliG. J. Cluster Sci.201728150751710.1007/s10876‑016‑1130‑8
    [Google Scholar]
  18. NagajyothiP.C. LeeS.E. AnM. LeeK-D. Bull. Korean Chem. Soc.20123382609261210.5012/bkcs.2012.33.8.2609
    [Google Scholar]
  19. Xin LeeK. ShameliK. MiyakeM. KuwanoN. Bt Ahmad KhairudinN.B. Bt MohamadS.E. YewY.P. J. Nanomater.201620161710.1155/2016/8489094
    [Google Scholar]
  20. MuniyappanN. NagarajanN.S. J. Environ. Chem. Eng.2014242037204410.1016/j.jece.2014.03.004
    [Google Scholar]
  21. NadagoudaM.N. IyannaN. LalleyJ. HanC. DionysiouD.D. VarmaR.S. ACS Sustain. Chem.& Eng.2014271717172310.1021/sc500237k
    [Google Scholar]
  22. AndeaniJ.K. KazemiH. MohsenzadehS. SafaviA. Dig. J. Nanomater. Biostruct.20116310111017
    [Google Scholar]
  23. HuangJ. LiQ. SunD. LuY. SuY. YangX. WangH. WangY. ShaoW. HeN. HongJ. ChenC. Nanotechnology2007181010510410.1088/0957‑4484/18/10/105104
    [Google Scholar]
  24. BaoY. HeJ. SongK. GuoJ. ZhouX. LiuS. J. Chem.2021202111810.1155/2021/6562687
    [Google Scholar]
  25. ThakkarK.N. MhatreS.S. ParikhR.Y. Nanomedicine20106225726210.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  26. CabreraF.C. MohanH. dos SantosR.J. AgostiniD.L.S. ArocaR.F. Rodríguez-PérezM.A. JobA.E. J. Nanomater.20132013171090210.1155/2013/710902
    [Google Scholar]
  27. GhoshS. PatilS.J. ChopadeN.B. LuikhamS. KittureR. GuravD.D. PatilA.B. PhadatareS.D. SontakkeV. KaleS. ShindeV. BellareJ. ChopadeB.A. Nanomed. Nanotechnol.20167210.4172/2157‑7439.1000358
    [Google Scholar]
  28. ArunachalamK. AnnamalaiS. Shanmugasundaram Hari.Int. J. Nanomedicine201381307131510.2147/IJN.S36670 23569372
    [Google Scholar]
  29. MuruganK. PriyadharshiniS. Senthamarai SelviK. SoundaryaS. VasanthS. Int. J. Phytopharm201882273310.7439/ijpp.v8i2.4741
    [Google Scholar]
  30. ParidaU.K. BindhaniB.K. NayakP. World J. Nano Sci. Eng.201114939810.4236/wjnse.2011.14015
    [Google Scholar]
  31. KumarB. SmitaK. CumbalL. DebutA. Inorganic Nano-Metal Chem.201747113814210.1080/15533174.2016.1157817
    [Google Scholar]
  32. KumarB. SmitaK. CumbalL. IET Nanobiotechnol.201610315415710.1049/iet‑nbt.2015.0035 27256896
    [Google Scholar]
  33. DeviG.K. SathishkumarK. IET Nanobiotechnol.201711214315110.1049/iet‑nbt.2015.0054 28476996
    [Google Scholar]
  34. PatilM.P. JinX. SimeonN.C. PalmaJ. KimD. NgabireD. KimN.H. TarteN.H. KimG.D. Artif. Cells Nanomed. Biotechnol.2018461828810.1080/21691401.2017.1293675 28278576
    [Google Scholar]
  35. YasR. GhafoorA. SaeedM. Syst. Rev. Pharm.202112500505
    [Google Scholar]
  36. SunB. HuN. HanL. PiY. GaoY. ChenK. Artif. Cells Nanomed. Biotechnol.20194714012401910.1080/21691401.2019.1575844 31591910
    [Google Scholar]
  37. VoraR. JoshiA.C. JNST20206390190410.30799/jnst.309.20060301
    [Google Scholar]
  38. AhmadT. BustamM.A. IrfanM. MoniruzzamanM. AsgharH.M.A. BhattacharjeeS. Biotechnol. Appl. Biochem.201966469870810.1002/bab.1787 31172593
    [Google Scholar]
  39. RahimiH.R. DoostmohammadiM. In: Applications of Nanobiotechnology.IntechOpen2020
    [Google Scholar]
  40. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  41. TurkiaM.A.B. SalmanT.A. J. Chem. Rev.20242024135010.48309/jcr.2024.468135.1350
    [Google Scholar]
  42. TepaleN. Fernández-EscamillaV.V.A. Carreon-AlvarezC. González-CoronelV.J. Luna-FloresA. Carreon-AlvarezA. AguilarJ. Crystals201991261210.3390/cryst9120612
    [Google Scholar]
  43. HassanH. SharmaP. HasanM.R. SinghS. ThakurD. Narang, J.Mater. Sci. Energy Technol.2022537539010.1016/j.mset.2022.09.004
    [Google Scholar]
  44. Lou-FrancoJ. DasB. ElliottC. CaoC. Nano-Micro Lett.20211311010.1007/s40820‑020‑00532‑z 34138170
    [Google Scholar]
  45. NayakS.P. VentrapragadaL.K. RamamurthyS.S. Kiran KumarJ.K. RaoA.M. Nano Energy20229410696610.1016/j.nanoen.2022.106966
    [Google Scholar]
  46. LimS.H. AhnE.Y. ParkY. Nanoscale Res. Lett.201611147410.1186/s11671‑016‑1694‑0 27783375
    [Google Scholar]
  47. RaheemA.A. ThangasamyP. SathishM. PraveenC. Nanoscale Adv.2019183177319110.1039/C9NA00240E 36133589
    [Google Scholar]
  48. ChoudharyB.C. PaulD. GuptaT. TetgureS.R. GaroleV.J. BorseA.U. GaroleD.J. J. Environ. Sci. (China)20175523624610.1016/j.jes.2016.05.044 28477818
    [Google Scholar]
  49. MenonS. S, R.; S, V.K.Resource-Efficient Technol20173451652710.1016/j.reffit.2017.08.002
    [Google Scholar]
  50. IjazI. GilaniE. NazirA. BukhariA. Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  51. KhanM.A.R. Al MamunM.S. HabibM.A. IslamA.B.M.N. MahiuddinM. KarimK.M.R. NaimeJ. SahaP. DeyS.K. AraM.H. Results Chem.2022410047810.1016/j.rechem.2022.100478
    [Google Scholar]
  52. KennedyL.C. BickfordL.R. LewinskiN.A. CoughlinA.J. HuY. DayE.S. WestJ.L. DrezekR.A. Small20117216918310.1002/smll.201000134 21213377
    [Google Scholar]
  53. SiP. RazmiN. NurO. SolankiS. PandeyC.M. GuptaR.K. MalhotraB.D. WillanderM. de la ZerdaA. Nanoscale Adv.20213102679269810.1039/D0NA00961J 36134176
    [Google Scholar]
  54. PormohammadA. MonychN.K. GhoshS. TurnerD.L. TurnerR. J. Antibiotics202110547310.3390/antibiotics10050473 33919072
    [Google Scholar]
  55. HarishV. AnsariM.M. TewariD. YadavA.B. SharmaN. BawarigS. García-BetancourtM-L. KaratutluA. BechelanyM. BarhoumA. J. Taiwan Inst. Chem. Eng.202314910501010.1016/j.jtice.2023.105010
    [Google Scholar]
  56. ShrivastavaP. JainV.K. NagpalS. Environ. Nanotechnol. Monit. Manag.20221710066710.1016/j.enmm.2022.100667
    [Google Scholar]
  57. Castillo-HenríquezL. Alfaro-AguilarK. Ugalde-ÁlvarezJ. Vega-FernándezL. Montes de Oca-VásquezG. Vega-BaudritJ.R. Nanomaterials2020109176310.3390/nano10091763 32906575
    [Google Scholar]
  58. SanthoshP.B. GenovaJ. ChamatiH. Chemistry20224234536910.3390/chemistry4020026
    [Google Scholar]
  59. GhoreishiS.M. BehpourM. KhayatkashaniM. Physica E20114419710410.1016/j.physe.2011.07.008
    [Google Scholar]
  60. ZayedM.F. EisaW.H. Spectrochim. Acta A Mol. Biomol. Spectrosc.201412123824410.1016/j.saa.2013.10.092 24247096
    [Google Scholar]
  61. IslamN.U. JalilK. ShahidM. RaufA. MuhammadN. KhanA. ShahM.R. KhanM.A. Arab. J. Chem.20191282914292510.1016/j.arabjc.2015.06.025
    [Google Scholar]
  62. MataR. BhaskaranA. SadrasS.R. Particuology201624788610.1016/j.partic.2014.12.014
    [Google Scholar]
  63. HuoY. SinghP. KimY.J. SoshnikovaV. KangJ. MarkusJ. AhnS. Castro-AceitunoV. MathiyalaganR. ChokkalingamM. BaeK.S. YangD.C. Artif. Cells Nanomed. Biotechnol.201846230331210.1080/21691401.2017.1307213 28375686
    [Google Scholar]
  64. AnandK. GenganR.M. PhulukdareeA. ChuturgoonA. J. Ind. Eng. Chem.2015211105111110.1016/j.jiec.2014.05.021
    [Google Scholar]
  65. MukherjeeS. DasariM. PriyamvadaS. KotcherlakotaR. BolluV.S. PatraC.R. J. Mater. Chem. B Mater. Biol. Med.20153183820383010.1039/C5TB00244C 32262856
    [Google Scholar]
  66. LeeK.D. NagajyothiP.C. SreekanthT.V.M. ParkS. J. Ind. Eng. Chem.201526677210.1016/j.jiec.2014.11.016
    [Google Scholar]
  67. PatilM.P. NgabireD. ThiH.H.P. KimM.D. KimG.D. J. Cluster Sci.201728111913210.1007/s10876‑016‑1051‑6
    [Google Scholar]
  68. KumarP.P.N.V. ShameemU. KolluP. KalyaniR.L. PammiS.V.N. Bionanoscience20155313513910.1007/s12668‑015‑0171‑z
    [Google Scholar]
  69. NakkalaJ.R. MataR. BhagatE. SadrasS.R. J. Nanopart. Res.201517315110.1007/s11051‑015‑2957‑x
    [Google Scholar]
  70. PatraS. MukherjeeS. BaruiA.K. GangulyA. SreedharB. PatraC.R. Mater. Sci. Eng. C20155329830910.1016/j.msec.2015.04.048 26042718
    [Google Scholar]
  71. NaragintiS. LiY. J. Photochem. Photobiol. B201717022523410.1016/j.jphotobiol.2017.03.023 28454046
    [Google Scholar]
  72. AbelE.E. John PoongaP.R. PanickerS.G. Appl. Nanosci.20166112112910.1007/s13204‑015‑0422‑x
    [Google Scholar]
  73. DatkhileK.D. PatilS.R. DurgawaleP.P. PatilM.N. HingeD.D. JagdaleN.J. DeshmukhV.N. MoreA.L. J. Genet. Eng. Biotechnol.2021191910.1186/s43141‑020‑00113‑y 33443619
    [Google Scholar]
  74. LakshmananA. UmamaheswariC. NagarajanN.J. Nanosci Technol2016227680
    [Google Scholar]
  75. P, B.; K, M.C.; e.K. Int. J. Appl. Pharm.201810515310.22159/ijap.2018v10i5.27999
    [Google Scholar]
  76. PerveenK. HusainF.M. QaisF.A. KhanA. RazakS. AfsarT. AlamP. AlmajwalA.M. AbulmeatyM.M.A. Biomolecules202111219710.3390/biom11020197 33573343
    [Google Scholar]
  77. FazalS. JayasreeA. SasidharanS. KoyakuttyM. NairS.V. MenonD. ACS Appl. Mater. Interfaces20146118080808910.1021/am500302t 24842534
    [Google Scholar]
  78. GanesanR.M. Gurumallesh PrabuH. Arab. J. Chem.20191282166217410.1016/j.arabjc.2014.12.017
    [Google Scholar]
  79. IslamN.U. JalilK. ShahidM. MuhammadN. RaufA. Arab. J. Chem.20191282310231910.1016/j.arabjc.2015.02.014
    [Google Scholar]
  80. Ganesh KumarV. Dinesh GokavarapuS. RajeswariA. Stalin DhasT. KarthickV. KapadiaZ. ShresthaT. BarathyI.A. RoyA. SinhaS. Colloids Surf. B Biointerfaces201187115916310.1016/j.colsurfb.2011.05.016 21640563
    [Google Scholar]
  81. Jebakumar Immanuel EdisonT.N. SethuramanM.G. 20131101326133210.1021/sc4001725
  82. KarthikaV. ArumugamA. GopinathK. KaleeswarranP. GovindarajanM. AlharbiN.S. KadaikunnanS. KhaledJ.M. BenelliG. J. Photochem. Photobiol. B201716718919910.1016/j.jphotobiol.2017.01.008 28076823
    [Google Scholar]
  83. SundararajanB. Ranjitha KumariB.D. J. Trace Elem. Med. Biol.20174318719610.1016/j.jtemb.2017.03.008 28341392
    [Google Scholar]
  84. YangN. WeiHong, L.; Hao, L.Mater. Lett.2014134677010.1016/j.matlet.2014.07.025
    [Google Scholar]
  85. PaulB. BhuyanB. PurkayasthaD.D. VadivelS. DharS.S. Mater. Lett.201618514314710.1016/j.matlet.2016.08.121
    [Google Scholar]
  86. RajanA. VilasV. PhilipD. J. Mol. Liq.201521233133910.1016/j.molliq.2015.09.013
    [Google Scholar]
  87. PathaniaD. SharmaM. ThakurP. ChaudharyV. KaushikA. FurukawaH. KhoslaA. Sci. Rep.20221211424910.1038/s41598‑022‑15899‑9 35995807
    [Google Scholar]
  88. VijayashreeI.S. NiranjanaP. PrabhuG. SureshbabuV.V. ManjannaJ. J. Cluster Sci.201728113314810.1007/s10876‑016‑1053‑4
    [Google Scholar]
  89. VanarajS. JabastinJ. SathiskumarS. PreethiK. J. Cluster Sci.201728122724410.1007/s10876‑016‑1081‑0
    [Google Scholar]
  90. ChandranS.P. ChaudharyM. PasrichaR. AhmadA. SastryM. Biotechnol. Prog.200622257758310.1021/bp0501423 16599579
    [Google Scholar]
  91. Mohan KumarK. MandalB.K. SinhaM. KrishnakumarV. Spectrochim. Acta A Mol. Biomol. Spectrosc.20128649049410.1016/j.saa.2011.11.001 22130557
    [Google Scholar]
  92. MubarakAliD. ThajuddinN. JeganathanK. GunasekaranM. Colloids Surf. B Biointerfaces201185236036510.1016/j.colsurfb.2011.03.009 21466948
    [Google Scholar]
  93. BasavegowdaN. IdhayadhullaA. LeeY.R. Ind. Crops Prod.20145274575110.1016/j.indcrop.2013.12.006
    [Google Scholar]
  94. AnnamalaiA. ChristinaV.L.P. SudhaD. KalpanaM. LakshmiP.T.V. Colloids Surf. B Biointerfaces2013108606510.1016/j.colsurfb.2013.02.012 23528605
    [Google Scholar]
  95. G, S.; Jha, P.K.; v, V.; C, R.; M, J.; M, S.; Jha, R.; S, S.J. Mol. Liq.201621522923610.1016/j.molliq.2015.12.043
    [Google Scholar]
  96. MuthuvelA. AdavallanK. BalamuruganK. KrishnakumarN. 20144232533210.1016/j.bionut.2014.03.004
  97. RamamurthyC. PadmaM.; mariya samadanam, I.D.; Mareeswaran, R.; Suyavaran, A.; Kumar, M.S.; Premkumar, K.; Thirunavukkarasu, C.Colloids Surf B Biointerfaces201310280881510.1016/j.colsurfb.2012.09.025 23107960
    [Google Scholar]
  98. GaneshkumarM. SathishkumarM. PonrasuT. DineshM.G. SugunaL. Colloids Surf. B Biointerfaces201310620821610.1016/j.colsurfb.2013.01.035 23434714
    [Google Scholar]
  99. Ind. Crops Prod201351107115.10.1016/j.indcrop.2013.08.055
    [Google Scholar]
  100. Arockiya Aarthi RajathiF. ArumugamR. SaravananS. AnantharamanP. J. Photochem. Photobiol. B2014135758010.1016/j.jphotobiol.2014.03.016 24811828
    [Google Scholar]
  101. BoruahJ.S. DeviC. HazarikaU. Bhaskar ReddyP.V. ChowdhuryD. BarthakurM. KalitaP. RSC Advances20211145280292804110.1039/D1RA02669K 35480751
    [Google Scholar]
  102. LiS. Al-MisnedF.A. El-SerehyH.A. YangL. Arab. J. Chem.202114210293110.1016/j.arabjc.2020.102931
    [Google Scholar]
  103. Rodríguez-LeónE. Rodríguez-VázquezB.E. Martínez-HigueraA. Rodríguez-BeasC. Larios-RodríguezE. NavarroR.E. López-EsparzaR. Iñiguez-PalomaresR.A. Nanoscale Res. Lett.201914133410.1186/s11671‑019‑3158‑9 31654146
    [Google Scholar]
  104. KumarG. GhoshM. PandeyD.M. IET Nanobiotechnol.201913662663310.1049/iet‑nbt.2018.5410 31432797
    [Google Scholar]
  105. AbootorabiZ. PoorgholamiM. Hanafi-BojdM.Y. HoshyarR. Mod Care J.201613410.5812/modernc.13000
    [Google Scholar]
  106. AriskiR.T. LeeK.K. KimY. LeeC.S. RSC Advances20241421145821459210.1039/D4RA00614C 38708107
    [Google Scholar]
  107. DatkhileK.D. DurgawaleP.P. ChakrabortyS. JagdaleN.J. MoreA.L. PatilS.R. Pharm. Nanotechnol.202311330331410.2174/2211738511666230206112537 36744688
    [Google Scholar]
  108. AlghuthaymiM.A. RajkuberanC. SanthiyaT. KrejcarO. KučaK. PeriakaruppanR. PrabukumarS. Plants20211011237010.3390/plants10112370 34834733
    [Google Scholar]
  109. VenkatachalamM. GovindarajuK. Mohamed SadiqA. TamilselvanS. Ganesh KumarV. SingaraveluG. Spectrochim. Acta A Mol. Biomol. Spectrosc.201311633133810.1016/j.saa.2013.07.038 23973575
    [Google Scholar]
  110. NayanV. OnteruS.K. SinghD. Environ. Prog. Sustain. Energy201837128329410.1002/ep.12669
    [Google Scholar]
  111. Adongo OdongoS. Oluoch OkumuF. Omwoma LugasiS. Opiyo OnaniM. Gaya AgongS. In.J. Chem.20222022903484010.1155/2022/9034840
    [Google Scholar]
  112. IjazM. FatimaM. AnwarR. UroosM. RSC Advances20211144270922710610.1039/D1RA03186D 35480682
    [Google Scholar]
  113. NoruziM. ZareD. KhoshnevisanK. DavoodiD. Spectrochim. Acta A Mol. Biomol. Spectrosc.20117951461146510.1016/j.saa.2011.05.001 21616704
    [Google Scholar]
  114. DanielM.C. AstrucD. Chem. Rev.2004104129334610.1021/cr030698+ 14719978
    [Google Scholar]
  115. LiaoS. YueW. CaiS. TangQ. LuW. HuangL. QiT. LiaoJ. Front. Pharmacol.20211266412310.3389/fphar.2021.664123 33967809
    [Google Scholar]
  116. PakravanA. SalehiR. MahkamM. Photodiagn. Photodyn. Ther.20213310214410.1016/j.pdpdt.2020.102144 33307234
    [Google Scholar]
  117. HlapisiN. SongcaS.P. Ajibade.P.A. Pharmaceutics20241610126810.3390/pharmaceutics16101268 39458600
    [Google Scholar]
  118. Nisha; Sachan, R.S.K.; Singh, A.; Karnwal, A.; Shidiki, A.; Kumar, G.Front. Nanotechnol.20246149098010.3389/fnano.2024.1490980
    [Google Scholar]
  119. Abdal DayemA. HossainM. LeeS. KimK. SahaS. YangG.M. ChoiH. ChoS.G. Int. J. Mol. Sci.201718112010.3390/ijms18010120 28075405
    [Google Scholar]
  120. FengZ. JiaY. CuiH. J. Colloid Interface Sci.202467211110.1016/j.jcis.2024.05.217 38823218
    [Google Scholar]
  121. CampisiS. SchiavoniM. Chan-ThawC. VillaA. Catalysts201661218510.3390/catal6120185
    [Google Scholar]
  122. TimoszykA. GrochowalskaR. Pharmaceutics20221412259910.3390/pharmaceutics14122599 36559093
    [Google Scholar]
  123. HeJ. UnserS. BruzasI. CaryR. ShiZ. MehraR. AronK. SagleL. Colloids Surf. B Biointerfaces201816314014510.1016/j.colsurfb.2017.12.019 29291499
    [Google Scholar]
  124. SidhuA.K. VermaN. KaushalP. Front. Nanotechnol.2022380162010.3389/fnano.2021.801620
    [Google Scholar]
/content/journals/loc/10.2174/0115701786395012250721014326
Loading
/content/journals/loc/10.2174/0115701786395012250721014326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test