Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

In recent years, numerous methods have been developed for the synthesis of coumarins Pechmann reaction catalyzed by various catalysts. Although each of the synthetic strategies previously reported has its own merit, most of these methods are associated with certain disadvantages, including the use of commercially unavailable metal catalysts and organic solvents, low yields, and long reaction times. Therefore, the development of a highly efficient, green, and sustainable catalytic methodology for the synthesis of coumarins is still desirable. Humic acid has been found to be an efficient catalyst for the synthesis of coumarins the Pechmann reaction at 80°C under solvent-free conditions. The methodology enables the synthesis of structurally diverse coumarins from phenols and -keto esters within 5-8 min in high yields (91-99%). The green, commercially available, inexpensive organocatalyst can be effectively recycled and reused five times with no significant drop-down in the yield of the product. The method reported has the advantages of high yield, no need for metal catalysts, short reaction time, simple operation, and green and reusable catalyst.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786318539240822112936
2024-09-02
2025-09-04
Loading full text...

Full text loading...

References

  1. TrostB.M. TosteF.D. GreenmanK. J. Am. Chem. Soc.2003125154518452610.1021/ja0286573 12683822
    [Google Scholar]
  2. GageyN. NeveuP. BenbrahimC. GoetzB. AujardI. BaudinJ.B. JullienL. J. Am. Chem. Soc.2007129329986999810.1021/ja0722022 17658803
    [Google Scholar]
  3. SasanoK. TakayaJ. IwasawaN. J. Am. Chem. Soc.201313530109541095710.1021/ja405503y 23865901
    [Google Scholar]
  4. WangC.J. HsiehY.J. ChuC.Y. LinY.L. TsengT.H. Cancer Lett.2002183216316810.1016/S0304‑3835(02)00031‑9 12065091
    [Google Scholar]
  5. LaxmiS.V. KuarmB.S. RajithaB. Med. Chem. Res.201322276877410.1007/s00044‑012‑0078‑y
    [Google Scholar]
  6. ChandraA. JanaK. MoorthyJ.N. ACS Omega20205120721810.1021/acsomega.9b02489 31956767
    [Google Scholar]
  7. GroverJ. JachakS.M. RSC Advances2015549388923890510.1039/C5RA05643H
    [Google Scholar]
  8. ChristieR.M. LuiC.H. Dyes Pigments2000471-2798910.1016/S0143‑7208(00)00066‑8
    [Google Scholar]
  9. AyyangarN.R. SrinivasanK.V. DanielT. Dyes Pigments199116319720410.1016/0143‑7208(91)85010‑6
    [Google Scholar]
  10. YehT.F. LinC.Y. ChangS.T. J. Agric. Food Chem.20146271706171210.1021/jf405312q 24475880
    [Google Scholar]
  11. García-ArandaM.I. Franco-PérezM. Zamudio-MedinaA. J. Chem. Educ.2023100104001400610.1021/acs.jchemed.3c00272
    [Google Scholar]
  12. YavariI. Hekmat-ShoarR. ZonouziA. Tetrahedron Lett.199839162391239210.1016/S0040‑4039(98)00206‑8
    [Google Scholar]
  13. ValizadehH. VaghefiS. Synth. Commun.20093991666167810.1080/00397910802573163
    [Google Scholar]
  14. SrirattanasakunsukP. BoekfaB. TreesukolP. JarussophonN. MaihomT. KongpatpanichK. LimtrakulJ. ACS Omega2023849469044691310.1021/acsomega.3c06624 38107951
    [Google Scholar]
  15. BrufaniG. ValentiniF. SabatelliF. Di ErasmoB. AfanasenkoA.M. LiC.J. VaccaroL. Green Chem.202224239094910010.1039/D2GC03579K
    [Google Scholar]
  16. JadhavN.H. SakateS.S. RasalN.K. ShindeD.R. PawarR.A. ACS Omega2019458522852710.1021/acsomega.9b00257 31459942
    [Google Scholar]
  17. RatherI.A. AliR. ACS Omega2022712106491065910.1021/acsomega.2c00293 35382332
    [Google Scholar]
  18. GorjianH. KhalighN.G. Mol. Divers.20222663047305510.1007/s11030‑021‑10364‑7 34982359
    [Google Scholar]
  19. KlinyodS. BoekfaB. PornsatitworakulS. MaihomT. JarussophonN. TreesukolP. WattanakitC. LimtrakulJ. ChemistrySelect2019436106601066710.1002/slct.201902596
    [Google Scholar]
  20. IbrahimA.A. AliS.L. AdlyM.S. El-HakamS.A. SamraS.E. AhmedA.I. RSC Advances20211159372763728910.1039/D1RA07160B 35496434
    [Google Scholar]
  21. SalamaR.S. HassanS.M. AhmedA.I. El-YazeedW.S.A. MannaaM.A. RSC Advances20201036211152112810.1039/D0RA03591B 35518723
    [Google Scholar]
  22. Soleimani-AmiriS. SalemiY. New J. Chem.20244852299231010.1039/D3NJ04912D
    [Google Scholar]
  23. KeriR.S. HosamaniK.M. Seetharama ReddyH.R. Catal. Lett.20091311-232132710.1007/s10562‑009‑9940‑z
    [Google Scholar]
  24. BahekarS.S. ShindeD.B. Tetrahedron Lett.200445437999800110.1016/j.tetlet.2004.09.013
    [Google Scholar]
  25. KaramiB. KianiM. J. Chin. Chem. Soc.201461221321610.1002/jccs.201200610
    [Google Scholar]
  26. BoseD.S. RudradasA.P. BabuM.H. Tetrahedron Lett.200243509195919710.1016/S0040‑4039(02)02266‑9
    [Google Scholar]
  27. PrajapatiD. GohainM. Catal. Lett.20071191-2596310.1007/s10562‑007‑9186‑6
    [Google Scholar]
  28. SharmaG.V.M. Janardhan ReddyJ. Sree LakshmiP. Radha KrishnaP. Tetrahedron Lett.200546366119612110.1016/j.tetlet.2005.06.166
    [Google Scholar]
  29. DasB. VenkateswarluK. MahenderG. HollaH. J. Chem. Res.200420041283683710.3184/0308234043431258
    [Google Scholar]
  30. MoeiniN. AlemiA. RezvaniZ. ChemistrySelect2022746e20220027510.1002/slct.202200275
    [Google Scholar]
  31. YaghoobiM. ZareyeeD. KhalilzadehM.A. Appl. Organomet. Chem.2020349e578710.1002/aoc.5787
    [Google Scholar]
  32. DabiriM. BaghbanzadehM. KianiS. VakilzadehY. Monatsh. Chem.20071381099799910.1007/s00706‑007‑0666‑6
    [Google Scholar]
  33. TyagiB. MishraM.K. JasraR.V. J. Mol. Catal. Chem.20072761-2475610.1016/j.molcata.2007.06.003
    [Google Scholar]
  34. HegedüsA. HellZ. Catal. Lett.20061121-210510810.1007/s10562‑006‑0171‑2
    [Google Scholar]
  35. WuY. ChenX. HuangD. ZhangL. RenY. TangG. ChenX. YueB. HeH. Catal. Sci. Technol.202010123985399310.1039/D0CY00892C
    [Google Scholar]
  36. ZhangY. ZhuA. LiQ. LiL. ZhaoY. WangJ. RSC Advances2014444229462295010.1039/C4RA02227K
    [Google Scholar]
  37. HanB. HeX.H. LiuY.Q. HeG. PengC. LiJ.L. Chem. Soc. Rev.20215031522158610.1039/D0CS00196A 33496291
    [Google Scholar]
  38. SaravananS. KhanN.H. KureshyR.I. AbdiS.H.R. BajajH.C. ACS Catal.20133122873288010.1021/cs400742d
    [Google Scholar]
  39. MaligresP.E. ChungC.K. DanceZ.E.X. MatternK.A. PhillipsE.M. PoirierM. SirkK.M. WrightT.J. Org. Process Res. Dev.202226373074410.1021/acs.oprd.1c00186
    [Google Scholar]
  40. LiuZ. ZhuL. HuC. Ind. Eng. Chem. Res.20205939172181722710.1021/acs.iecr.0c01044
    [Google Scholar]
  41. BlancoV. LeighD.A. MarcosV. Morales-SernaJ.A. NussbaumerA.L. J. Am. Chem. Soc.2014136134905490810.1021/ja501561c 24649824
    [Google Scholar]
  42. WangL. NelsonG.A. TolandJ. HolbreyJ.D. ACS Sustain. Chem.& Eng.2020835133621336810.1021/acssuschemeng.0c04108
    [Google Scholar]
  43. WangZ. JinY. WangY. TangZ. WangS. XiaoG. SuH. ACS Sustain. Chem.& Eng.202210247965797310.1021/acssuschemeng.2c01235
    [Google Scholar]
  44. MitraB. GhoshP. ChemistrySelect202161688110.1002/slct.202004245
    [Google Scholar]
  45. WangH. WangY. HanY. ZhaoW. WangX. RSC Advances202010278478910.1039/C9RA08523H 35494449
    [Google Scholar]
  46. XiM. DuanC. ChiJ. FuT. SuX. WangH. Youji Huaxue20234393312331810.6023/cjoc202301024
    [Google Scholar]
  47. FuY. FuT. DuanC. ChiJ. WangH. Synth. Commun.202353141164117210.1080/00397911.2023.2213362
    [Google Scholar]
  48. YusubovM.S. WirthT. Org. Lett.20057351952110.1021/ol047363e 15673279
    [Google Scholar]
  49. MartinsM.A.P. FrizzoC.P. MoreiraD.N. BuriolL. MachadoP. Chem. Rev.200910994140418210.1021/cr9001098 19737022
    [Google Scholar]
  50. RamachandranP.V. ChoudharyS. SinghA. J. Org. Chem.20218654274428010.1021/acs.joc.0c02143 33605720
    [Google Scholar]
  51. PandarusV. CiriminnaR. BélandF. PagliaroM. KaliaguineS. ACS Omega2017273989399610.1021/acsomega.7b00625 31457702
    [Google Scholar]
  52. TanakaK. TodaF. Chem. Rev.200010031025107410.1021/cr940089p 11749257
    [Google Scholar]
  53. KongD. MaD. WuP. BolmC. ACS Sustain. Chem.& Eng.20221092863286710.1021/acssuschemeng.2c00216
    [Google Scholar]
  54. GuoJ. ChenY. ZhangP. LiG. YangX. WangC.F. ChenS. Chin. Chem. Lett.202435310848110.1016/j.cclet.2023.108481
    [Google Scholar]
  55. HuZ. LiaoJ. ZhouJ. ZhaoL. LiuY. ZhangY. ChenW. TangS. Chin. Chem. Lett.202435610998510.1016/j.cclet.2024.109985
    [Google Scholar]
  56. WuC. LiuY. XiaoC. HuC. PangX. ChenX. Chin. Chem. Lett.202435310916310.1016/j.cclet.2023.109163
    [Google Scholar]
  57. GaoL. ZhouC. WangR. LanF. AnB. HuangX. ZhangX. Chin. Chem. Lett.202435410883210.1016/j.cclet.2023.108832
    [Google Scholar]
  58. DongS. LiK. LiS.L. ChenZ. YinG. ChemistrySelect2024921e20240171010.1002/slct.202401710
    [Google Scholar]
  59. Bagheri-HarsiniS. Ghorbani-VagheiR. KharazmiA. ChemistrySelect2023829e20230115710.1002/slct.202301157
    [Google Scholar]
  60. PuG. SongS.Y. YangJ. GuoP. JiaJ. LiuP. LiX. LiuP. HeC.Y. Org. Chem. Front.202411123320332510.1039/D4QO00484A
    [Google Scholar]
  61. JahanbakhshiA. FarahiM. RSC Advances20241423164011641010.1039/D4RA01381F 38779385
    [Google Scholar]
  62. KashyapA. SinghP.P. MurtiY. GahtoriP. MahajanS. KandhariH. SinghP.K. SrivastavaV. Tetrahedron Lett.202414215509910.1016/j.tetlet.2024.155099
    [Google Scholar]
  63. LiJ. ZhouA. ZhangW. WangX. LiN. Org. Biomol. Chem.202321306124612810.1039/D3OB00749A 37477205
    [Google Scholar]
/content/journals/loc/10.2174/0115701786318539240822112936
Loading
/content/journals/loc/10.2174/0115701786318539240822112936
Loading

Data & Media loading...

Supplements

NMR spectra for all compounds are available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): catalysis; Coumarins; green synthesis; humic acid; organocatalyst; Pechmann reaction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test