Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

At present, the therapeutic drugs for have serious side effects and limitations in application, so it is urgent to develop low-toxicity and high-efficiency drugs.

Objective

A series of new derivatives based on arctigenin were designed and synthesized, aiming to obtain target derivatives with superior anti- activity.

Methods

A series of quinoline groups were introduced into the phenolic hydroxyl group of arctigenin compound, and 29 novel arctigenin derivatives were designed and synthesized. The chemical structures were confirmed by 1H NMR, 13C NMR, and HRMS spectra. The cytotoxicity of all compounds to host cells (HeLa) and the half inhibitory concentration of HeLa cells infected with were determined by the MTT assay, and the selectivity index (SI) was calculated.

Results

The selectivity index of compounds and was 1.45, indicating the anti activity of compound and to be higher than that of the lead compound arctigenin (SI= 0.99) and the positive control drug spiramycin (SI= 0.92).

Conclusion

Compounds and demonstrated the most potent anti- activity, with an SI value of 1.45. This offers valuable guidance for the subsequent screening of more effective anti- drugs.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808359715250117092439
2025-01-20
2025-08-21
Loading full text...

Full text loading...

References

  1. WeissL.M. DubeyJ.P. Toxoplasmosis: A history of clinical observations.Int. J. Parasitol.200939889590110.1016/j.ijpara.2009.02.004 19217908
    [Google Scholar]
  2. InnesE.A. A brief history and overview of Toxoplasma gondii.Zoonoses Public Health20105711710.1111/j.1863‑2378.2009.01276.x 19744303
    [Google Scholar]
  3. EissaM.M. BarakatA.M.A. AmerE.I. YounisL.K. Could miltefosine be used as a therapy for toxoplasmosis?Exp. Parasitol.2015157122210.1016/j.exppara.2015.06.005 26112396
    [Google Scholar]
  4. BarrattJ.L.N. HarknessJ. MarriottD. EllisJ.T. StarkD. Importance of nonenteric protozoan infections in immunocompromised people.Clin. Microbiol. Rev.201023479583610.1128/CMR.00001‑10 20930074
    [Google Scholar]
  5. AldayH. DoggettJ. Drugs in development for toxoplasmosis: Advances, challenges, and current status.Drug Des. Devel. Ther.20171127329310.2147/DDDT.S60973 28182168
    [Google Scholar]
  6. HillD.E. ChirukandothS. DubeyJ.P. Biology and epidemiology of Toxoplasma gondii in man and animals.Anim. Health Res. Rev.200561416110.1079/AHR2005100 16164008
    [Google Scholar]
  7. WalkerD.M. OghumuS. GuptaG. McGwireB.S. DrewM.E. SatoskarA.R. Mechanisms of cellular invasion by intracellular parasites.Cell. Mol. Life Sci.20147171245126310.1007/s00018‑013‑1491‑1 24221133
    [Google Scholar]
  8. PittmanK.J. KnollL.J. Long-term relationships: The complicated interplay between the host and the developmental stages of Toxoplasma gondii during acute and chronic infections.Microbiol. Mol. Biol. Rev.201579438740110.1128/MMBR.00027‑15 26335719
    [Google Scholar]
  9. DubeyJ. JonesJ. Toxoplasma gondii infection in humans and animals in the United States.Int. J. Parasitol.200838111257127810.1016/j.ijpara.2008.03.007 18508057
    [Google Scholar]
  10. CouzinetS. DubremetzJ.F. Buzoni-GatelD. JeminetG. PrensierG. In vitro activity of the polyether ionophorous antibiotic monensin against the cyst form of Toxoplasma gondii.Parasitology2000121435936510.1017/S0031182099006605 11072898
    [Google Scholar]
  11. FicheraM.E. RoosD.S. A plastid organelle as a drug target in apicomplexan parasites.Nature1997390665840740910.1038/37132 9389481
    [Google Scholar]
  12. RaffiF. AboulkerJ.P. MicheletC. ReliquetV. PellouxH. HuartA. Poizot-MartinI. MorlatP. DupasB. MussiniJ.M. LeportC. A prospective study of criteria for the diagnosis of toxoplasmic encephalitis in 186 AIDS patients.AIDS199711217718410.1097/00002030‑199702000‑00007 9030364
    [Google Scholar]
  13. AyazE. Aydin TurkogluS. OrallarH. Toxoplasma gondii and epilepsy.Turkiye Parazitol. Derg.2016402909610.5152/tpd.2016.4708 27594290
    [Google Scholar]
  14. MattaS.K. RinkenbergerN. DunayI.R. SibleyL.D. Toxoplasma gondii infection and its implications within the central nervous system.Nat. Rev. Microbiol.202119746748010.1038/s41579‑021‑00518‑7 33627834
    [Google Scholar]
  15. RodgersC.A. HarrisJ.R.W. Ocular toxoplasmosis in HIV infection.Int. J. STD AIDS19967530730810.1258/0956462961918068 8894817
    [Google Scholar]
  16. OsunkaluV. Akanmu sulaimon; Onyiaorah, I.; Ofomah Nkolika; Adediran, A.A.; Akinde, R.O.; Onwuezobe, I.A. Seroprevalence of Toxoplasma gondii IgG antibody in HIV-infected patients at the Lagos University Teaching Hospital.HIV AIDS 2011310110510.2147/HIV.S15532 22096412
    [Google Scholar]
  17. YarovinskyF. Innate immunity to Toxoplasma gondii infection.Nat. Rev. Immunol.201414210912110.1038/nri3598 24457485
    [Google Scholar]
  18. SarahJ.R. DixonB.R. Toxoplasma gondii: How an Amazonian parasite became an Inuit health issue.Can. Commun. Dis. Rep.2019457-818319010.14745/ccdr.v45i78a03
    [Google Scholar]
  19. LangC. GroßU. LüderC.G.K. Subversion of innate and adaptive immune responses by Toxoplasma Gondii.Parasitol. Res.2007100219120310.1007/s00436‑006‑0306‑9 17024357
    [Google Scholar]
  20. de Lima BessaG. de Almeida VitorR.W. dos Santos Martins-DuarteE. Toxoplasma gondii in South America: A differentiated pattern of spread, population structure and clinical manifestations.Parasitol. Res.202112093065307610.1007/s00436‑021‑07282‑w 34390383
    [Google Scholar]
  21. LópezD.A. OtsukaK.S. ApostolA.C. PosadaJ. Sánchez-ArcilaJ.C. JensenK.D.C. BeaudinA.E. Both maternal IFNγ exposure and acute prenatal infection with Toxoplasma gondii activate fetal hematopoietic stem cells.EMBO J.20234214e11269310.15252/embj.2022112693 37259639
    [Google Scholar]
  22. GarnaudC. Fricker-HidalgoH. EvengårdB. Álvarez-MartínezM.J. PetersenE. KortbeekL.M. Robert-GangneuxF. VillenaI. CostacheC. PaulM. MeroniV. GuyE. ChiodiniP.L. Brenier-PinchartM.P. PellouxH. Toxoplasma gondii-specific IgG avidity testing in pregnant women.Clin. Microbiol. Infect.202026911551160
    [Google Scholar]
  23. GaoX. ZhongY. LiuY. DingR. ChenJ. The role and function of regulatory T cells in Toxoplasma gondii-induced adverse pregnancy outcomes.J. Immunol. Res.2021202111110.1155/2021/8782672 34458378
    [Google Scholar]
  24. HollandG. Ocular toxoplasmosis: A global reassessment *1part II: Disease manifestations and management.Am. J. Ophthalmol.2004137111710.1016/S0002‑9394(03)01319‑9 14700638
    [Google Scholar]
  25. Alessandra GonçalvesC. MelissaA.C. SundarN. Luiz VicenteR. RubensB. MichaelE.G. ElevatedToxoplasma gondiiInfection rates for retinas from eye banks, Southern Brazil. Emerg. Infect. Dis.,2016
    [Google Scholar]
  26. CostaD.F. NascimentoH. SutiliA. NobregaF.A.J. FowlerF. NobregaM.J. GarridoC. de Oliveira DiasJ. AdánC.B.D. RizzoL.V. SilveiraC. BelfortR.Jr CommodaroA.G. Frequency of Toxoplasma gondii in the retina in eye banks in Brazil.Parasitol. Res.201711672031203310.1007/s00436‑017‑5474‑2 28508165
    [Google Scholar]
  27. Bosch-DriessenL.E.H. BerendschotT.T.J.M. OngkosuwitoJ.V. RothovaA. Ocular toxoplasmosis.Ophthalmology2002109586987810.1016/S0161‑6420(02)00990‑9 11986090
    [Google Scholar]
  28. DaherD. ShaghlilA. SobhE. HamieM. HassanM.E. MoumnehM.B. ItaniS. El HajjR. TawkL. El SabbanM. El HajjH. Comprehensive overview of Toxoplasma gondii-induced and associated diseases.Pathogens20211011135110.3390/pathogens10111351 34832507
    [Google Scholar]
  29. LüderC.G.K. BohneW. SoldatiD. Toxoplasmosis: A persisting challenge.Trends Parasitol.2001171046046310.1016/S1471‑4922(01)02093‑1 11587941
    [Google Scholar]
  30. Ana PatríciaL. SaraG. AnaO. HugoB. DubeyJ.P. LuísC. HugoV. Toxoplasmosis in dogs: First report ofToxoplasma gondiiinfection in any animal species in Angola.Pathog. Glob. Health2014108734434610.1179/2047773214Y.0000000160 25392293
    [Google Scholar]
  31. DunayI.R. GajurelK. DhakalR. LiesenfeldO. MontoyaJ.G. Treatment of toxoplasmosis: Historical perspective, animal models, and current clinical practice.Clin. Microbiol. Rev.2018314e00057e1710.1128/CMR.00057‑17 30209035
    [Google Scholar]
  32. AhmadpourE. RahimiM.T. GhojoghiA. RezaeiF. Hatam-NahavandiK. OliveiraS.M.R. de Lourdes PereiraM. MajidianiH. SiyadatpanahA. ElhamiradS. CongW. PaghehA.S. Toxoplasma gondii infection in marine animal species, as a potential source of food contamination: A systematic review and meta-analysis.Acta Parasitol.202267259260510.1007/s11686‑021‑00507‑z 35038109
    [Google Scholar]
  33. EylesD.E. ColemanN. Synergistic effect of sulfadiazine and daraprim against experimental toxoplasmosis in the mouse.Antibiot. Chemother. 195335483490 24542412
    [Google Scholar]
  34. ZhangX. JinL. CuiZ. ZhangC. WuX. ParkH. QuanH. JinC. Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondiiin vitro and in vivo.Exp. Parasitol.20161659510210.1016/j.exppara.2016.03.020 26993085
    [Google Scholar]
  35. NevilleA.J. ZachS.J. WangX. LarsonJ.J. JudgeA.K. DavisL.A. VennerstromJ.L. DavisP.H. Clinically available medicines demonstrating anti-toxoplasma activity.Antimicrob. Agents Chemother.201559127161716910.1128/AAC.02009‑15 26392504
    [Google Scholar]
  36. PetersP.J. ThigpenM.C. PariseM.E. NewmanR.D. Safety and toxicity of sulfadoxine/pyrimethamine: Implications for malaria prevention in pregnancy using intermittent preventive treatment.Drug Saf.200730648150110.2165/00002018‑200730060‑00003 17536875
    [Google Scholar]
  37. MuiE.J. JacobusD. MilhousW.K. SchiehserG. HsuH. RobertsC.W. KirisitsM.J. McLeodR. Triazine inhibits Toxoplasma gondii tachyzoites in vitro and in vivo.Antimicrob. Agents Chemother.20054983463346710.1128/AAC.49.8.3463‑3467.2005 16048961
    [Google Scholar]
  38. Schoondermark-van de VenE. VreeT. MelchersW. CampsW. GalamaJ. In vitro effects of sulfadiazine and its metabolites alone and in combination with pyrimethamine on Toxoplasma gondii.Antimicrob. Agents Chemother.199539376376510.1128/AAC.39.3.763 7793889
    [Google Scholar]
  39. BorkowskiP.K. Brydak-GodowskaJ. BasiakW. Olszyńska-KrowickaM. RabczenkoD. Adverse reactions in antifolate-treated toxoplasmic retinochoroiditis.Adv. Exp. Med. Biol.20181108374810.1007/5584_2018_262 30191431
    [Google Scholar]
  40. AdeyemiO.S. MurataY. SugiT. KatoK. Inorganic nanoparticles kill Toxoplasma gondiivia changes in redox status and mitochondrial membrane potential.Int. J. Nanomedicine2017121647166110.2147/IJN.S122178 28280332
    [Google Scholar]
  41. RodriguezJ.B. SzajnmanS.H. New antibacterials for the treatment of toxoplasmosis; A patent review.Expert Opin. Ther. Pat.201222331133310.1517/13543776.2012.668886 22404108
    [Google Scholar]
  42. InnesE.A. Vaccination against Toxoplasma gondii: An increasing priority for collaborative research?Expert Rev. Vaccines20109101117111910.1586/erv.10.113 20923261
    [Google Scholar]
  43. Gui-RongC. Li-PingC. De-QiangD. Ting-GuoK. Hong-FuL. Fu-RuiL. NingJ. Synthesis of (–)-arctigenin derivatives and their anticancer activity.Nat. Prod. Res.201226217718110.1080/14786419.2010.541874 21867457
    [Google Scholar]
  44. HyamS.R. LeeI.A. GuW. KimK.A. JeongJ.J. JangS.E. HanM.J. KimD.H. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.Eur. J. Pharmacol.20137081-3212910.1016/j.ejphar.2013.01.014 23375938
    [Google Scholar]
  45. ZhaoF. WangL. LiuK. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway.J. Ethnopharmacol.2009122345746210.1016/j.jep.2009.01.038 19429312
    [Google Scholar]
  46. GaoQ. YangM. ZuoZ. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L.Acta Pharmacol. Sin.201839578780110.1038/aps.2018.32 29698388
    [Google Scholar]
  47. ShenY.F. LiuL. ChenW.C. HuY. ZhuB. WangG.X. Evaluation on the antiviral activity of arctigenin against spring viraemia of carp virus.Aquaculture201848325226210.1016/j.aquaculture.2017.09.001 32287458
    [Google Scholar]
  48. GuangluL. WenkeD. ChunjieW. ZhongweiF. NaL. WanyuW. YahongC. Antiviral innovations in largemouth bass aquaculture: Unveiling the potential of arctigenin derivatives against Micropterus Salmoides rhabdovirus.Aquaculture2024
    [Google Scholar]
  49. LüH. SunZ. ShanH. SongJ. Microwave-assisted extraction and purification of arctiin and arctigenin from Fructus arctii by high-speed countercurrent chromatography.J. Chromatogr. Sci.2016543472478 26590235
    [Google Scholar]
  50. WuR. SunY. ZhouT. ZhuZ. ZhuangJ. TangX. ChenJ. HuL. ShenX. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways.Acta Pharmacol. Sin.201435101274128410.1038/aps.2014.70 25152028
    [Google Scholar]
  51. WangY. LiX. PuS. WangX. GuoL. ZhangL. WangZ. Ameliorative effects of arctigenin on pulmonary fibrosis induced by bleomycin via the antioxidant activity.Oxid. Med. Cell. Longev.2022202211010.1155/2022/3541731 35847593
    [Google Scholar]
  52. HeY. FanQ. CaiT. HuangW. XieX. WenY. ShiZ. Molecular mechanisms of the action of Arctigenin in cancer.Biomed. Pharmacother.2018108403407
    [Google Scholar]
  53. ShabgahA.G. SuksatanW. AchmadM.H. BokovD.O. AbdelbassetW.K. EzzatifarF. HemmatiS. MohammadiH. SoleimaniD. Jadidi-NiaraghF. AhmadiM. NavashenaqJ.G. Arctigenin, an anti-tumor agent; A cutting-edge topic and up-to-the-minute approach in cancer treatment.Eur. J. Pharmacol.202190917441910.1016/j.ejphar.2021.174419 34391770
    [Google Scholar]
  54. YaoX. ZhuF. ZhaoZ. LiuC. LuoL. YinZ. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.J. Cell. Biochem.2011112102837284910.1002/jcb.23198 21608020
    [Google Scholar]
  55. LuY.N. ZhaoX.D. XuX. PiaoJ. AosaiF. LiY.B. ShenL.X. ShiS.Y. XuG.H. MaJ. PiaoH.N. JinX. PiaoL.X. Arctigenin exhibits hepatoprotective activity in Toxoplasma gondii-infected host through HMGB1/TLR4/NF-κB pathway.Int. Immunopharmacol.20208410653910.1016/j.intimp.2020.106539 32361192
    [Google Scholar]
  56. ChengJ.H. XuX. LiY.B. ZhaoX.D. AosaiF. ShiS.Y. JinC.H. PiaoJ.S. MaJ. PiaoH.N. JinX.J. PiaoL.X. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways.Int. Immunopharmacol.20208210630210.1016/j.intimp.2020.106302 32086097
    [Google Scholar]
  57. ZhangH. ShenQ.K. WangH. JinC. JinC.M. QuanZ.S. Synthesis and evaluation of novel arctigenin derivatives as potential anti-Toxoplasma gondii agents.Eur. J. Med. Chem.201815841442710.1016/j.ejmech.2018.08.087 30237124
    [Google Scholar]
  58. KucharskiD.J. JaszczakM.K. BoratyńskiP.J. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)chloroquine.Molecules2022273100310.3390/molecules27031003 35164267
    [Google Scholar]
  59. XhamlaN. TobekaN. BlessingA.A. Quinoline-based hybrid compounds with antimalarial activity.Molecules20172212226810.3390/molecules22122268
    [Google Scholar]
  60. HuY.Q. GaoC. ZhangS. XuL. XuZ. FengL.S. WuX. ZhaoF. Quinoline hybrids and their antiplasmodial and antimalarial activities.Eur. J. Med. Chem.2017139224710.1016/j.ejmech.2017.07.061 28800458
    [Google Scholar]
  61. Yuan-YuanF. ChangE.D. RuiL. XiaoqingZ. WeiW. Xing-RuiZ. WeiweiL. Da‐HuaS. Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents.J. Mol. Struct.20231271013398213398210.1016/j.molstruc.2022.133982
    [Google Scholar]
  62. MedapiB. RenukaJ. SaxenaS. SrideviJ.P. MedishettiR. KulkarniP. YogeeswariP. SriramD. Design and synthesis of novel quinoline–aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors.Bioorg. Med. Chem.20152392062207810.1016/j.bmc.2015.03.004 25801151
    [Google Scholar]
  63. KaurR. KumarK. Synthetic and medicinal perspective of quinolines as antiviral agents.Eur. J. Med. Chem.202121511322010.1016/j.ejmech.2021.113220 33609889
    [Google Scholar]
  64. SunJ. ZhuH. YangZ.M. ZhuH.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent.Eur. J. Med. Chem.201360232810.1016/j.ejmech.2012.11.039 23279864
    [Google Scholar]
  65. FengL. LvK. LiuM. WangS. ZhaoJ. YouX. LiS. CaoJ. GuoH. Synthesis and in vitro antibacterial activity of gemifloxacin derivatives containing a substituted benzyloxime moiety.Eur. J. Med. Chem.20125512513610.1016/j.ejmech.2012.07.010 22841282
    [Google Scholar]
  66. MusiolR. SerdaM. Hensel-BielowkaS. PolanskiJ. Quinoline-based antifungals.Curr. Med. Chem.201017181960197310.2174/092986710791163966 20377510
    [Google Scholar]
  67. MantoaniS. ChierritoT. VilelaA. CardosoC. MartínezA. CarvalhoI. Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors.Molecules201621219310.3390/molecules21020193 26861273
    [Google Scholar]
  68. BekhitA.A. NasrallaS.N. El-AgroudyE.J. HamoudaN. El-FattahA.A. BekhitS.A. AmagaseK. IbrahimT.M. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative.EUR. J. PHARM. SCI2022168106080
    [Google Scholar]
  69. SmithA.T. LivingstonM.R. MaiA. FileticiP. QueenerS.F. SullivanW.J. Jr Quinoline derivative MC1626, a putative GCN5 histone acetyltransferase (HAT) inhibitor, exhibits HAT-independent activity against Toxoplasma gondii.Antimicrob. Agents Chemother.20075131109111110.1128/AAC.01256‑06 17178801
    [Google Scholar]
  70. StroblJ.S. SeibertC.W. LiY. NagarkattiR. MitchellS.M. RosypalA.C. RathoreD. LindsayD.S. Inhibition of Toxoplasma gondii and Plasmodium falciparum infections in vitro by NSC3852, a redox active antiproliferative and tumor cell differentiation agent.J. Parasitol.200995121522310.1645/GE‑1608.1 18837587
    [Google Scholar]
  71. RamseierJ. ImhofD. AnghelN. HänggeliK. BeteckR.M. BalmerV. Ortega-MoraL.M. Sanchez-SanchezR. FerreI. HaynesR.K. HemphillA. Assessment of the activity of decoquinate and its Quinoline-O-Carbamate Derivatives against Toxoplasma gondiiin vitro and in pregnant mice infected with T. gondii Oocysts.Molecules20212621639310.3390/molecules26216393 34770802
    [Google Scholar]
  72. Vazquez-RodriguezS. Lama LópezR. MatosM.J. Armesto-QuintasG. SerraS. UriarteE. SantanaL. BorgesF. Muñoz CregoA. SantosY. Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis.Bioorg. Med. Chem.201523217045705210.1016/j.bmc.2015.09.028 26433630
    [Google Scholar]
  73. LuanT. CaoL.H. DengH. ShenQ.K. TianY.S. QuanZ.S. Design and synthesis of C-19 isosteviol derivatives as potent and highly selective antiproliferative agents.Molecules201824112110.3390/molecules24010121 30598028
    [Google Scholar]
  74. GuoH.Y. JinC. ZhangH.M. JinC.M. ShenQ.K. QuanZ.S. Synthesis and biological evaluation of (+)-Usnic acid derivatives as potential anti- Toxoplasma gondii agents.J. Agric. Food Chem.201967349630964210.1021/acs.jafc.9b02173 31365255
    [Google Scholar]
  75. DengH. HuangX. JinC. JinC.M. QuanZ.S. Synthesis, in vitro and in vivo biological evaluation of dihydroartemisinin derivatives with potential anti-Toxoplasma gondii agents.Bioorg. Chem.20209410346710.1016/j.bioorg.2019.103467 31791681
    [Google Scholar]
  76. LuanT. JinC. JinC.M. GongG.H. QuanZ.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti- Toxoplasma gondii agents.J. Enzyme Inhib. Med. Chem.201934176177210.1080/14756366.2019.1584622 30836795
    [Google Scholar]
  77. ShangF.F. WangJ.Y. XuQ. DengH. GuoH.Y. JinX. LiX. ShenQ.K. QuanZ.S. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway.Eur. J. Med. Chem.202122011347410.1016/j.ejmech.2021.113474 33930802
    [Google Scholar]
  78. JiangJ.H. JinC.M. KimY.C. KimH.S. ParkW.C. ParkH. Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla.Biol. Pharm. Bull.200831122273227610.1248/bpb.31.2273 19043212
    [Google Scholar]
  79. JinC. KaewintajukK. JiangJ. JeongW. KamataM. KimH.S. WatayaY. ParkH. Toxoplasma gondii: A simple high-throughput assay for drug screening in vitro.Exp. Parasitol.2009121213213610.1016/j.exppara.2008.10.006 18977350
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808359715250117092439
Loading
/content/journals/lddd/10.2174/0115701808359715250117092439
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-Toxoplasma activity; Arctigenin; derivatives; in vitro; selectivity index; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test