Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

This study aimed to examine the active constituents and therapeutic targets of Ginkgo biloba extract (GBE) through a network pharmacology methodology to elucidate the mechanisms underlying the efficacy of GBE in treating tinnitus.

Methods

The active constituents and potential targets of GBE were identified the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, while tinnitus-related targets were sourced from the GeneCards database. Protein-protein interaction (PPI) data relevant to tinnitus were retrieved from the STRING database. Subsequently, an active constituent-target network was constructed, and Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using Cytoscape 3.7.1.

Results

The analysis identified 27 active constituents and 73 potential therapeutic targets of GBE relevant to tinnitus treatment. A total of 418 GO terms were identified, including 408 biological processes, 4 cellular components, and 6 molecular functions, which were associated with processes, such as cell cycle regulation, apoptosis, inflammatory response, oxidative stress, and angiogenesis. Additionally, 116 KEGG pathways were identified, including pathways involved in cancer, the AGE-RAGE signaling pathway in diabetic complications, human cytomegalovirus infection, and apoptosis, among others.

Conclusion

The treatment of tinnitus with GBE may target several potential therapeutic candidates, including MYC, TNF, AKT1, CXCL8, CASP3, IL6, TP53, VEGFA, PTGS2, EGFR, EGF, JUN, ESR1, MMP9, CCND1, and MAPK1. This approach may involve various mechanisms, such as anti-inflammatory, antioxidant, and anti-apoptotic pathways. Network pharmacology provides a robust framework for further investigation into the pharmacological targets and molecular mechanisms through which GBE may exert its effects in the context of tinnitus.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808345021250115143049
2025-01-17
2025-09-03
Loading full text...

Full text loading...

References

  1. BauerC.A. Tinnitus.N. Engl. J. Med.2018378131224123110.1056/NEJMcp1506631 29601255
    [Google Scholar]
  2. LuT. LiuJ.H. LiG. XiangT. MaY. ZhongJ. ChenJ.M. HeY.R. HuangH.M. ZhangZ.Y. LiuP. ZhengY. Reliability and validity of the mandarin version of the tinnitus primary function questionnaire.Medicine20199825e1610410.1097/MD.0000000000016104 31232954
    [Google Scholar]
  3. PiccirilloJ.F. RodebaughT.L. LenzeE.J. Tinnitus.JAMA2020323151497149810.1001/jama.2020.0697 32176246
    [Google Scholar]
  4. BattsS. StankovicK.M. Tinnitus prevalence, associated characteristics, and related healthcare use in the United States: A population-level analysis.Lancet Reg. Health Am.20242910065910.1016/j.lana.2023.100659 38269207
    [Google Scholar]
  5. ZiaiK. MoshtaghiO. MahboubiH. DjalilianH.R. Tinnitus patients suffering from anxiety and depression: A review.Int. Tinnitus J.2017211687310.5935/0946‑5448.20170013 28723605
    [Google Scholar]
  6. Lefebvre-DemersM. DoyonN. FecteauS. Non-invasive neuromodulation for tinnitus: A meta-analysis and modeling studies.Brain Stimul.202114111312810.1016/j.brs.2020.11.014 33276156
    [Google Scholar]
  7. ChenS. ShenX. YuanJ. WuY. LiY. TongB. QiuJ. WuF. LiuY. Characteristics of tinnitus and factors influencing its severity.Ther. Adv. Chronic Dis.2022132040622322110965610.1177/20406223221109656 35847479
    [Google Scholar]
  8. CardonE. JacqueminL. VermeerschH. JoossenI. MoyaertJ. MertensG. VandervekenO.M. LammersM.J.W. Van de HeyningP. Van RompaeyV. GillesA. Dual-site transcranial direct current stimulation to treat tinnitus: A randomized controlled trial.Brain2022145124222423110.1093/brain/awac263 36450310
    [Google Scholar]
  9. GrewalR. SpielmannP.M. JonesS.E.M. HussainS.S.M. Clinical efficacy of tinnitus retraining therapy and cognitive behavioural therapy in the treatment of subjective tinnitus: A systematic review.J. Laryngol. Otol.2014128121028103310.1017/S0022215114002849 25417546
    [Google Scholar]
  10. KimH. HaJ. ParkH.Y. ChoungY.H. JangJ.H. Efficacy and safety of co-administered St. John’s Wort and Ginkgo biloba extracts in patients with subjective Tinnitus: A preliminary prospective randomized controlled trial.J. Clin. Med.2023129326110.3390/jcm12093261 37176699
    [Google Scholar]
  11. XiaS. SunQ. ZouZ. LiuY. FangX. SunB. WeiS. WangD. ZhangA. LiuQ. Ginkgo biloba extract attenuates the disruption of pro-and anti-inflammatory T-cell balance in peripheral blood of arsenicosis patients.Int. J. Biol. Sci.202016348349410.7150/ijbs.39351 32015684
    [Google Scholar]
  12. KraussP. TziridisK. BuerbankS. SchillingA. SchulzeH. Therapeutic value of ginkgo biloba extract EGb 761® in an animal model (Meriones unguiculatus) for noise trauma induced hearing loss and Tinnitus.PLoS One2016116e015757410.1371/journal.pone.0157574 27315063
    [Google Scholar]
  13. CastañedaR. NatarajanS. JeongS.Y. HongB.N. KangT.H. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery?J. Ethnopharmacol.201923140942810.1016/j.jep.2018.11.016 30439402
    [Google Scholar]
  14. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  15. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
  16. SiddersB. KarlssonA. KitchingL. TorellaR. KarilaP. PhelanA. Network-based drug discovery: Coupling network pharmacology with phenotypic screening for neuronal excitability.J. Mol. Biol.20184301818 Pt A3005301510.1016/j.jmb.2018.07.016 30030026
    [Google Scholar]
  17. LiT. BaochenZ. YueZ. ChengW. YaliW. ZongxiS. WantongZ. YangL. ShouyingD. Network pharmacology-based identification of pharmacological mechanism of SQFZ injection in combination with Docetaxel on lung cancer.Sci. Rep.201991453310.1038/s41598‑019‑40954‑3 30872765
    [Google Scholar]
  18. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  19. ZhouL. WuK. GaoY. QiaoR. TangN. DongD. LiX.Q. NongQ. LuoD. XiaoQ. FanX. DuanQ. CaoW. Piperlonguminine attenuates renal fibrosis by inhibiting TRPC6.J. Ethnopharmacol.202331311656110.1016/j.jep.2023.116561 37121453
    [Google Scholar]
  20. LiT. LiW. GuoX. TanT. XiangC. OuyangZ. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata–Dipsacus asper herb pair: A network pharmacology and experimental study.Front. Pharmacol.202314124219410.3389/fphar.2023.1242194 37849727
    [Google Scholar]
  21. MenninkL.M. AalbersM.W. van DijkP. van DijkJ.M.C. The role of inflammation in Tinnitus: A systematic review and meta-analysis.J. Clin. Med.2022114100010.3390/jcm11041000 35207270
    [Google Scholar]
  22. HuS.S. MeiL. ChenJ.Y. HuangZ.W. WuH. Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats.Inflammation201437236537310.1007/s10753‑013‑9748‑2 24092407
    [Google Scholar]
  23. ChenX.H. ZhengL.L. Expression of pro-inflammatory cytokines in the auditory cortex of rats with salicylate-induced tinnitus.Mol. Med. Rep.20171645643564810.3892/mmr.2017.7235 28849125
    [Google Scholar]
  24. HwangJ.H. ChenJ.C. ChanY.C. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.PLoS One201383e5821510.1371/journal.pone.0058215 23533584
    [Google Scholar]
  25. WeiL. DingD. SalviR. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling.Neuroscience2010168128829910.1016/j.neuroscience.2010.03.015 20298761
    [Google Scholar]
  26. FengH. YinS.H. TangA.Z. TanS.H. Salicylate initiates apoptosis in the spiral ganglion neuron of guinea pig cochlea by activating caspase-3.Neurochem. Res.20113661108111510.1007/s11064‑011‑0455‑9 21451968
    [Google Scholar]
  27. EkinciA. KamasakK. Evaluation of serum prolidase enzyme activity and oxidative stress in patients with tinnitus.Rev. Bras. Otorrinolaringol.2019 30975591
    [Google Scholar]
  28. PetridouA.I. ZagoraE.T. PetridisP. KorresG.S. GazouliM. XenelisI. KyrodimosE. KontothanasiG. KalioraA.C. The effect of antioxidant supplementation in patients with tinnitus and normal hearing or hearing loss: A randomized, double-blind, placebo controlled trial.Nutrients20191112303710.3390/nu11123037 31842394
    [Google Scholar]
  29. GaoG. GeR. LiY. LiuS. Luteolin exhibits anti-breast cancer property through up-regulating miR-203.Artif. Cells Nanomed. Biotechnol.20194713265327110.1080/21691401.2019.1646749 31368817
    [Google Scholar]
  30. GentileD. FornaiM. PellegriniC. ColucciR. BenvenutiL. DurantiE. MasiS. CarpiS. NieriP. NericcioA. GarelliF. VirdisA. PistelliL. BlandizziC. AntonioliL. Luteolin prevents cardiometabolic alterations and vascular dysfunction in mice with HFD-induced obesity.Front. Pharmacol.20189109410.3389/fphar.2018.01094 30319424
    [Google Scholar]
  31. ShiM.L. ChenY.F. WuW.Q. LaiY. JinQ. QiuW.L. YuD.L. LiY.Z. LiaoH.F. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro.Exp. Eye Res.202121010864310.1016/j.exer.2021.108643 34058231
    [Google Scholar]
  32. QianW. FuY. LiuM. ZhangJ. WangW. LiJ. ZengQ. WangT. LiY. Mechanisms of action of luteolin against single- and dual-species of escherichia coli and enterobacter cloacae and its Antibiofilm activities.Appl. Biochem. Biotechnol.202119351397141410.1007/s12010‑020‑03330‑w 33009585
    [Google Scholar]
  33. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.053 29966915
    [Google Scholar]
  34. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  35. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by Quercetin: Counteracting oxidative stress and more.Oxid. Med. Cell. Longev.201620161298679610.1155/2016/2986796 26904161
    [Google Scholar]
  36. OlasB. The antioxidant, anti-platelet and anti-coagulant properties of phenolic compounds, associated with modulation of hemostasis and cardiovascular disease, and their possible effect on COVID-19.Nutrients2022147139010.3390/nu14071390 35406002
    [Google Scholar]
  37. RajavelT. PackiyarajP. SuryanarayananV. SinghS.K. RuckmaniK. Pandima DeviK. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.Sci. Rep.201881207110.1038/s41598‑018‑20311‑6 29391428
    [Google Scholar]
  38. GogoiD. PalA. ChattopadhyayP. PaulS. DekaR.C. MukherjeeA.K. First report of plant-derived β-Sitosterol with antithrombotic, in vivo anticoagulant, and thrombus-preventing activities in a mouse model.J. Nat. Prod.201881112521253010.1021/acs.jnatprod.8b00574 30406661
    [Google Scholar]
  39. AyazM. Anti-Alzheimer’s studies on β-Sitosterol isolated from L.Front. Pharmacol.2017869710.3389/fphar.2017.00697 29056913
    [Google Scholar]
  40. WangS. YeK. ShuT. TangX. WangX.J. LiuS. Enhancement of galloylation efficacy of Stigmasterol and β-Sitosterol followed by evaluation of cholesterol-reducing activity.J. Agric. food chem.201967113179318710.1021/acs.jafc.8b0698330827096
    [Google Scholar]
  41. AntwiA.O. ObiriD.D. OsafoN. ForkuoA.D. EsselL.B. Stigmasterol inhibits lipopolysaccharide-induced innate immune responses in murine models.Int. Immunopharmacol.20175310511310.1016/j.intimp.2017.10.018 29078089
    [Google Scholar]
  42. AntwiA.O. ObiriD.D. OsafoN. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced Asthma.Mediators Inflamm.2017201711110.1155/2017/2953930 28555089
    [Google Scholar]
  43. HaqueM.N. MoonI.S. Stigmasterol promotes neuronal migration via reelin signaling in neurosphere migration assays.Nutr. Neurosci.201823967968910.1080/1028415X.2018.1544970 30433855
    [Google Scholar]
  44. WardM.G. LiG. Barbosa-LorenziV.C. HaoM. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion.Sci. Rep.201771953610.1038/s41598‑017‑10209‑0 28842702
    [Google Scholar]
  45. MajdalawiehA.F. MassriM. NasrallahG.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum).Eur. J. Pharmacol.201781551252110.1016/j.ejphar.2017.10.020 29032105
    [Google Scholar]
  46. DouH. YangS. HuY. XuD. LiuL. LiX. Sesamin induces ER stress-mediated apoptosis and activates autophagy in cervical cancer cells.Life Sci.2018200879310.1016/j.lfs.2018.03.003 29505783
    [Google Scholar]
  47. DengS. ZhouJ.L. FangH.S. NieZ.G. ChenS. PengH. Sesamin protects the femoral head from osteonecrosis by inhibiting ROS-induced osteoblast apoptosis in rat model.Front. Physiol.20189178710.3389/fphys.2018.01787 30618801
    [Google Scholar]
  48. RoustaA.M. MirahmadiS.M.S. ShahmohammadiA. NourabadiD. Khajevand-KhazaeiM.R. BaluchnejadmojaradT. RoghaniM. Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress, inflammation, and apoptosis.Immunopharmacol. Immunotoxicol.201840542342910.1080/08923973.2018.1523926 30488751
    [Google Scholar]
  49. LuX. LiuT. ChenK. XiaY. DaiW. XuS. A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice.Biomed. Pharmacother.2018103800811
    [Google Scholar]
  50. LiuG. JiangC. LiD. YaoL. LinY. WangB. QiuJ. WangW. WangW. Isorhamnetin alleviates esophageal mucosal injury in a chronic model of reflux esophagitis.Eur. J. Pharmacol.201986417272010.1016/j.ejphar.2019.172720 31586635
    [Google Scholar]
  51. LakaK. MbitaZ. P53-related anticancer activities of Drimia calcarata bulb extracts against lung cancer.Front. Mol. Biosci.2022987621310.3389/fmolb.2022.876213 35769912
    [Google Scholar]
  52. ChaoJ.C.J. ChuC.C. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells.World J. Gastroenterol.2004101374110.3748/wjg.v10.i1.37 14695765
    [Google Scholar]
  53. Di MeoF. CucinielloR. MargarucciS. BergamoP. PetilloO. PelusoG. FilosaS. CrispiS. Ginkgo biloba prevents oxidative stress-induced apoptosis blocking p53 activation in neuroblastoma cells.Antioxidants20209427910.3390/antiox9040279 32224984
    [Google Scholar]
  54. YanL. GuoM.S. ZhangY. YuL. WuJ.M. TangY. AiW. ZhuF.D. LawB.Y.K. ChenQ. YuC.L. WongV.K.W. LiH. LiM. ZhouX.G. QinD.L. WuA.G. Dietary plant polyphenols as the potential drugs in neurodegenerative diseases: Current evidence, advances, and opportunities.Oxid. Med. Cell. Longev.2022202214010.1155/2022/5288698 35237381
    [Google Scholar]
  55. TewariD. StankiewiczA.M. MocanA. SahA.N. TzvetkovN.T. HuminieckiL. HorbańczukJ.O. AtanasovA.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs.Front. Aging Neurosci.201810310.3389/fnagi.2018.00003 29483867
    [Google Scholar]
  56. MeltserI. CanlonB. The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma.Neurobiol. Dis.201040132533010.1016/j.nbd.2010.06.006 20598895
    [Google Scholar]
  57. TabuchiK. NishimuraB. NakamagoeM. HayashiK. NakayamaM. HaraA. Ototoxicity: Mechanisms of cochlear impairment and its prevention.Curr. Med. Chem.201118314866487110.2174/092986711797535254 21919841
    [Google Scholar]
  58. MazurekB. HauptH. GeorgiewaP. KlappB.F. ReisshauerA. A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia.Med. Hypotheses200667489289910.1016/j.mehy.2006.03.040 16757123
    [Google Scholar]
  59. LiP. BingD. WangS. ChenJ. DuZ. SunY. QiF. ZhangY. ChuH. Sleep deprivation modifies noise-induced cochlear injury related to the stress hormone and autophagy in female mice.Front. Neurosci.201913129710.3389/fnins.2019.01297 31849600
    [Google Scholar]
  60. HosseinzadehA. KamravaS.K. MooreB.C.J. ReiterR.J. GhaznaviH. KamaliM. MehrzadiS. Molecular aspects of melatonin treatment in Tinnitus: A review.Curr. Drug Targets201920111112112810.2174/1389450120666190319162147 30892162
    [Google Scholar]
  61. HaiderH.F. RibeiroS.F. MartinsC. Tinnitus, hearing loss and inflammatory processes in an older Portuguese population.Int. J. Audiol.201959532333210.1080/14992027.2019.1698775 31829778
    [Google Scholar]
  62. MunS.K. HanK.H. BaekJ.T. AhnS.W. ChoH.S. ChangM.Y. Losartan prevents maladaptive auditory-somatosensory plasticity after hearing loss via transforming growth factor-β signaling suppression.Clin. Exp. Otorhinolaryngol.2019121333910.21053/ceo.2018.00542 30021416
    [Google Scholar]
  63. WangW. ZhangL.S. ZinsmaierA.K. PattersonG. LeptichE.J. ShoemakerS.L. YatskievychT.A. GibboniR. PaceE. LuoH. ZhangJ. YangS. BaoS. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models.PLoS Biol.2019176e300030710.1371/journal.pbio.3000307 31211773
    [Google Scholar]
  64. YiB. WuC. ShiR. HanK. ShengH. LiB. MeiL. WangX. HuangZ. WuH. Long-term administration of salicylate-induced changes in BDNF expression and CREB Phosphorylation in the auditory cortex of rats.Otol. Neurotol.2018393e173e18010.1097/MAO.0000000000001717 29342042
    [Google Scholar]
  65. Orenay-BoyaciogluS. CoskunogluA. DeveciA. BayamM. OnurE. OnanA. CamF. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus.Noise Health2017198814014810.4103/nah.NAH_74_16 28615544
    [Google Scholar]
  66. TangZ.Q. TrussellL.O. Serotonergic regulation of excitability of principal cells of the dorsal cochlear nucleus.J. Neurosci.201535114540455110.1523/JNEUROSCI.4825‑14.2015 25788672
    [Google Scholar]
  67. TangZ.Q. TrussellL.O. Serotonergic modulation of sensory representation in a central multisensory circuit is pathway specific.Cell Rep.20172081844185410.1016/j.celrep.2017.07.079 28834748
    [Google Scholar]
  68. MitreE.I. FigueiraA.S. RochaA.B. AlvesS.M.C. Audiometric and vestibular evaluation in women using the hormonal contraceptive method.Rev. Bras. Otorrinolaringol.200672335035410.1016/S1808‑8694(15)30967‑8 17119770
    [Google Scholar]
  69. NathanC.O. KimT.S. HarrisJ.P. KoutnouyanH.A. RyanA.F. Absence of mRNA encoding estrogen receptor in the rat cochlea.Acta Otolaryngol.1999119885385710.1080/00016489950180162 10728922
    [Google Scholar]
  70. AzevedoA.A. FigueiredoR.R. ElgoyhenA.B. LangguthB. PenidoN.D.O. SchleeW. Tinnitus treatment with Oxytocin: A pilot study.Front. Neurol.2017849410.3389/fneur.2017.00494 28983279
    [Google Scholar]
  71. KlagenbergK.F. ZeigelboimB.S. JurkiewiczA.L. Martins-BassettoJ. Vestibulocochlear manifestations in patients with type I diabetes mellitus.Rev. Bras. Otorrinolaringol.200773335335810.1016/S1808‑8694(15)30079‑3 17684656
    [Google Scholar]
  72. PessinA.B.B. MartinsR.H.G. de Paula PimentaW. SimõesA.C.P. MarsigliaA. AmaralA.V. Auditory evaluation in patients with type 1 diabetes.Ann. Otol. Rhinol. Laryngol.2008117536637010.1177/000348940811700507 18564534
    [Google Scholar]
  73. VijayakumarK.A. ChoG.W. MaharajanN. JangC.H. A review on peripheral tinnitus, causes, and treatments from the perspective of autophagy.Exp. Neurobiol.202231423224210.5607/en22002 36050223
    [Google Scholar]
  74. HeZ. GuoL. ShuY. FangQ. ZhouH. LiuY. LiuD. LuL. ZhangX. DingX. LiuD. TangM. KongW. ShaS. LiH. GaoX. ChaiR. Autophagy protects auditory hair cells against neomycin-induced damage.Autophagy201713111884190410.1080/15548627.2017.1359449 28968134
    [Google Scholar]
  75. MuY. ZouS. LiM. DingY. HuangX. HeZ. KongW. Role and mechanism of FOXG1-related epigenetic modifications in cisplatin-induced hair cell damage.Front. Mol. Neurosci.202316106457910.3389/fnmol.2023.1064579 37181652
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808345021250115143049
Loading
/content/journals/lddd/10.2174/0115701808345021250115143049
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): gene ontology; Ginkgo biloba extract; mechanism; Network pharmacology; targets; tinnitus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test