Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Echinacea purpurea is a medicinal plant recognized for its rich array of bioactive constituents, making it a valuable resource for drug development. However, the potential antitumor effects and underlying mechanisms of Echinacea remain largely unexplored.

Methods

This study aims to elucidate the active ingredients, targets, and pathways mediating the anti-lung cancer effects of Echinacea through the lens of network pharmacology and to further validate the efficacy of the extract of Echinacea purpurea against lung cancer .

Results

An 'Echinacea-lung cancer-target' network was constructed using network pharmacology, identifying quercetin, β-sitosterol, rutin, dibutyl phthalate, ferulic acid, and protocatechuic acid as the primary active components contributing to Echinacea's anti-lung cancer activity. These components may exert antitumor effects by modulating key targets, including TP53, AKT1, HSP90AA1, JUN, and IL6, through the PI3K-Akt, MAPK, IL-17, HIF-1, and TNF signaling pathways. Subsequently, MEPT was administered to human lung cancer PC-9 cells, revealing that the Echinacea extract inhibited cell proliferation, migration, and the expression of cell cycle proteins in a concentration- and time-dependent manner while also inducing early apoptosis in tumor cells.

Conclusion

These findings suggest that the anti-lung cancer activity of Echinacea operates through a synergistic mechanism involving multiple components, targets, and pathways, potentially leading to cell cycle arrest and the induction of apoptosis.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808354108250123115558
2025-01-27
2025-10-29
Loading full text...

Full text loading...

References

  1. NowrooziA. RoshaniS. GhamariS.H. ShobeiriP. Abbasi-KangevariM. EbrahimiN. RezaeiN. YoosefiM. MalekpourM.R. RashidiM.M. MoghimiM. AminiE. ShabestariA.N. LarijaniB. FarzadfarF. Global and regional quality of care index for prostate cancer: An analysis from the Global Burden of Disease study 1990–2019.Arch. Publ. Heal.20238117010.1186/s13690‑023‑01087‑2 37101304
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. LiY. WuX. YangP. JiangG. LuoY. Machine learning for lung cancer diagnosis, treatment, and prognosis.Genom. Prote. Bioinforma.202220585086610.1016/j.gpb.2022.11.003 36462630
    [Google Scholar]
  5. LiuP. ZhaoQ. XuY. YeJ. TanJ. HouJ. WangY. LiJ. CuiW. WangS. WangX. A Chinese classical prescription Qianjinweijing Decoction in treatment of lung cancer: An overview.Biomed. Pharmacother.202215611391310.1016/j.biopha.2022.113913 36308919
    [Google Scholar]
  6. Abu RousF. SinghiE.K. SridharA. FaisalM.S. DesaiA. Lung cancer treatment advances in 2022.Cancer Invest.2023411122410.1080/07357907.2022.2119479 36036470
    [Google Scholar]
  7. Burlou-NagyC. BănicăF. JurcaT. VicașL.G. MarianE. MuresanM.E. BácskayI. KissR. FehérP. PallagA. Echinacea purpurea (L.) moench: Biological and pharmacological properties. A review.Plants2022119124410.3390/plants11091244 35567246
    [Google Scholar]
  8. JingG. XuW. MaW. YuQ. ZhuH. LiuC. ChengY. GuoY. QianH. Echinacea purpurea polysaccharide intervene in hepatocellular carcinoma via modulation of gut microbiota to inhibit TLR4/NF-κB pathway.Int. J. Biol. Macromol.2024261Pt 212991710.1016/j.ijbiomac.2024.129917 38309407
    [Google Scholar]
  9. MicheliL. MagginiV. CiampiC. GalloE. BoganiP. FaniR. PistelliL. GhelardiniC. Di Cesare MannelliL. De LeoM. FirenzuoliF. Echinacea purpurea against neuropathic pain: Alkamides versus polyphenols efficacy.Phytother. Res.20233751911192310.1002/ptr.7709 36578266
    [Google Scholar]
  10. AhmadiF. KarimanK. MousaviM. RengelZ. Echinacea: Bioactive compounds and agronomy.Plants2024139123510.3390/plants13091235 38732450
    [Google Scholar]
  11. ParkS. LeeM.S. JungS. LeeS. KwonO. KreuterM.H. Perrinjaquet-MoccettiT. MinB. YunS.H. KimY. Echinacea purpurea protects against restraint stress-induced immunosuppression in BALB/c Mice.J. Med. Food201821326126810.1089/jmf.2017.4073 29215298
    [Google Scholar]
  12. GanX.H. ZhangL. HeberD. BonavidaB. Mechanism of activation of human peripheral blood NK cells at the single cell level by Echinacea water soluble extracts: Recruitment of lymphocyte–target conjugates and killer cells and activation of programming for lysis.Int. Immunopharmacol.20033681182410.1016/S1567‑5769(02)00298‑9 12781698
    [Google Scholar]
  13. ChengY.I. GanY.C. LiuD. DaviesM.P.A. LiW.M. FieldJ.K. Potential genetic modifiers for somatic EGFR mutation in lung cancer: A meta-analysis and literature review.BMC Cancer2019191106810.1186/s12885‑019‑6317‑6 31703574
    [Google Scholar]
  14. SimonsE. CamidgeD.R. Lung cancer oncogene-directed therapy, fertility, and pregnancy.J. Thorac. Oncol.202419686687610.1016/j.jtho.2024.01.003 38185202
    [Google Scholar]
  15. GeorgakopoulouV. LempesisI. TrakasN. SklapaniP. HeY. SpandidosD. Lung cancer and obesity: A contentious relationship. [Review]Oncol. Rep.202452515810.3892/or.2024.8817 39497438
    [Google Scholar]
  16. DasD. AgarwalS.K. ChandolaH.M. Protective effect of Yashtimadhu (Glycyrrhiza glabra) against side effects of radiation/chemotherapy in head and neck malignancies.Ayu201132219619910.4103/0974‑8520.92579 22408302
    [Google Scholar]
  17. HuangA.S. WuJ. AminA. FuX.Q. YuZ.L. Traditional Chinese medicine in treating upper digestive tract cancers.Mol. Cancer202423125010.1186/s12943‑024‑02149‑x 39516786
    [Google Scholar]
  18. YuanJ. LiuY. ZhangT. ZhengC. DingX. ZhuC. ShiJ. JingY. Traditional Chinese medicine for breast cancer treatment: A bibliometric and visualization analysis.Pharm. Biol.202462149951210.1080/13880209.2024.2359105 38813803
    [Google Scholar]
  19. WongK.Y. PhanC.M. ChanY.T. YuenA.C.Y. ZhangH. ZhaoD. ChanK.Y. DoC.W. LamT.C. QiaoJ.H. WulffD. HuiA. JonesL. WongM.S. A review of using traditional chinese medicine in the management of glaucoma and cataract.Clin. Exp. Optom.2024107215617010.1080/08164622.2023.2246480 37879342
    [Google Scholar]
  20. ZhouY.M. DongX.R. XuD. TangJ. CuiY.L. Therapeutic potential of traditional Chinese medicine for interstitial lung disease.J. Ethnopharmacol.,2024318Pt A11695210.1016/j.jep.2023.11695237487964
    [Google Scholar]
  21. LiuY. YuX. ShenH. HongY. HuG. NiuW. GeJ. XuanJ. QinJ.J. LiQ. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer.Phytomedicine202413515600310.1016/j.phymed.2024.156003 39305742
    [Google Scholar]
  22. MaX. MaJ. LengT. YuanZ. HuT. LiuQ. ShenT. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention.Ren. Fail.2023451214651210.1080/0886022X.2022.2146512 36762989
    [Google Scholar]
  23. LuoH. VongC.T. ChenH. GaoY. LyuP. QiuL. ZhaoM. LiuQ. ChengZ. ZouJ. YaoP. GaoC. WeiJ. UngC.O.L. WangS. ZhongZ. WangY. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine.Chin. Med.20191414810.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  24. RenW. BanJ. XiaY. ZhouF. YuanC. JiaH. HuangH. JiangM. LiangM. LiZ. YuanY. YinY. WuH. Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating M1 macrophage polarization.Innovation20234210039110.1016/j.xinn.2023.100391 36873268
    [Google Scholar]
  25. MillerS.C. Echinacea: A miracle herb against aging and cancer? Evidence in vivo in mice.Evid. Based Complement. Alternat. Med.20052330931410.1093/ecam/neh118 16136209
    [Google Scholar]
  26. ChiccaA. AdinolfiB. MartinottiE. FogliS. BreschiM.C. PellatiF. BenvenutiS. NieriP. Cytotoxic effects of Echinacea root hexanic extracts on human cancer cell lines.J. Ethnopharmacol.2007110114815310.1016/j.jep.2006.09.013 17052874
    [Google Scholar]
  27. LiZ. DaiY. WuZ. LiG. PuP. HuC. ZhouL. ZhuK. ShuB. WangY.J. CuiX. YaoM. Network pharmacology analysis and animal experiment validation of neuroinflammation inhibition by total ginsenoside in treating CSM.Phytomedicine202412615507310.1016/j.phymed.2023.155073 38417244
    [Google Scholar]
  28. BishtA. TewariD. KumarS. ChandraS. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia.Mol. Divers.20242831743176310.1007/s11030‑023‑10684‑w 37439907
    [Google Scholar]
  29. LazzaraF. ContiF. GiuffridaE. EandiC.M. DragoF. PlataniaC.B.M. BucoloC. Integrating network pharmacology: The next-generation approach in ocular drug discovery.Curr. Opin. Pharmacol.20247410242510.1016/j.coph.2023.102425 38183849
    [Google Scholar]
  30. LiuJ. TangN. LiuN. LeiP. WangF. Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway.J. Mol. Histol.202253249350210.1007/s10735‑022‑10073‑x 35325326
    [Google Scholar]
  31. LiuT. WangJ. TongY. WuL. XieY. HeP. LinS. HuX. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity.J. Transl. Med.20242218610.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
  32. DuanX. WangN. PengD. Application of network pharmacology in synergistic action of Chinese herbal compounds.Theory Biosci.2024143319520310.1007/s12064‑024‑00419‑2 38888845
    [Google Scholar]
  33. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  34. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  35. PengH. HuangZ. LiP. SunZ. HouX. LiZ. SangR. GuoZ. WuS. CaoY. Investigating the efficacy and mechanisms of Jinfu’an decoction in treating non-small cell lung cancer using network pharmacology and in vitro and in vivo experiments.J. Ethnopharmacol.202432111751810.1016/j.jep.2023.117518 38042385
    [Google Scholar]
  36. HomayoonfalM. GilasiH. AsemiZ. Khaksary MahabadyM. AsemiR. YousefiB. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development.Cell. Signal.202310711066710.1016/j.cellsig.2023.110667 37023996
    [Google Scholar]
  37. DingL. DangS. SunM. ZhouD. SunY. LiE. PengS. LiJ. LiG. Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes.Free Radic. Biol. Med.202421315016310.1016/j.freeradbiomed.2024.01.002 38190923
    [Google Scholar]
  38. GolmohammadiM. ElmaghrabyD.A. Ramírez-CoronelA.A. RakhimovN. MohammedS.S. Romero-ParraR.M. JawadM.A. ZamanianM.Y. SoltaniA. TaheriN. KianifarF. VousooghiN. A comprehensive view on the quercetin impact on bladder cancer: Focusing on oxidative stress, cellular, and molecular mechanisms.Fundam. Clin. Pharmacol.202337590090910.1111/fcp.12896 36960597
    [Google Scholar]
  39. LotfiN. YousefiZ. GolabiM. KhalilianP. GhezelbashB. MontazeriM. ShamsM.H. BaghbadoraniP.Z. EskandariN. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update.Front. Immunol.202314107753110.3389/fimmu.2023.1077531 36926328
    [Google Scholar]
  40. WangH. WangZ. ZhangZ. LiuJ. HongL. β-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects.Adv. Nutr.20231451085111010.1016/j.advnut.2023.05.013 37247842
    [Google Scholar]
  41. WangL. SunY. LiuH. YangX. WenZ. TianX. β‐Sitosterol attenuates anlotinib resistance in non‐small cell lung cancer cells by inhibiting miR ‐181a‐3p/SHQ1 signaling.Chem. Biol. Drug Des.20241033e1449310.1111/cbdd.14493 38439529
    [Google Scholar]
  42. ChenY. YangY. WangN. LiuR. WuQ. PeiH. LiW. β‐Sitosterol suppresses hepatocellular carcinoma growth and metastasis via FOXM1‐regulated Wnt/β‐catenin pathway.J. Cell. Mol. Med.2024283e1807210.1111/jcmm.18072 38063438
    [Google Scholar]
  43. LiJ. MengZ.Y. WenH. LuC.H. QinY. XieY.M. ChenQ. LvJ.H. HuangF. ZengZ.Y. β-sitosterol alleviates pulmonary arterial hypertension by altering smooth muscle cell phenotype and DNA damage/cGAS/STING signaling.Phytomedicine202413515603010.1016/j.phymed.2024.156030 39265206
    [Google Scholar]
  44. NouriZ. FakhriS. NouriK. WallaceC.E. FarzaeiM.H. BishayeeA. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach.Cancers (Basel)2020128227610.3390/cancers12082276 32823876
    [Google Scholar]
  45. WeizG. GonzálezA.L. MansillaI.S. Fernandez-ZapicoM.E. MolejónM.I. BrecciaJ.D. Rutinosides-derived from Sarocladium strictum 6-O-α-rhamnosyl-β-glucosidase show enhanced anti-tumoral activity in pancreatic cancer cells.Microb. Cell Fact.202423113310.1186/s12934‑024‑02395‑0 38720294
    [Google Scholar]
  46. MallurD.J. LavanyaB. TemkarS.S. ArunV. PaulB.C. Exploring okra-derived compounds as prospective aromatase inhibitors: A computational study for enhanced breast cancer therapy.J. Biomol. Struct. Dyn.2024171910.1080/07391102.2024.2335301 38887049
    [Google Scholar]
  47. FarhaA.K. GanR.Y. LiH.B. WuD.T. AtanasovA.G. GulK. ZhangJ.R. YangQ.Q. CorkeH. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives.Crit. Rev. Food Sci. Nutr.202262383285910.1080/10408398.2020.1829541 33054344
    [Google Scholar]
  48. HuangH. ShiJ. ChenW. LiuL. Rutin suppresses the malignant biological behavior of gastric cancer cells through the Wnt/β-catenin pathway.Discover. Oncology202415140710.1007/s12672‑024‑01281‑w 39231903
    [Google Scholar]
  49. WangZ. SunY. Targeting p53 for novel anticancer therapy.Transl. Oncol.20103111210.1593/tlo.09250 20165689
    [Google Scholar]
  50. GolubovskayaV.M. CanceW.G. Targeting the p53 pathway.Surg. Oncol. Clin. N. Am.201322474776410.1016/j.soc.2013.06.003 24012397
    [Google Scholar]
  51. LuS. HeT. ZhangY. ZhouB. ZhangQ. YanS. The MyD88 inhibitor, ST2825, induces cell cycle arrest and apoptosis by suppressing the activation of the NF κB/AKT1/p21 pathway in pancreatic cancer.Oncol. Rep.202350214810.3892/or.2023.8585 37326109
    [Google Scholar]
  52. ChenT. XieS. ChengJ. ZhaoQ. WuH. JiangP. DuW. AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis.Nat. Commun.202415168610.1038/s41467‑024‑44772‑8 38263319
    [Google Scholar]
  53. HuangT.T. ChiangC.Y. NairJ.R. WilsonK.M. ChengK. LeeJ.M. AKT1 interacts with DHX9 to mitigate R loop–induced replication stress in ovarian cancer.Cancer Res.202484688790410.1158/0008‑5472.CAN‑23‑1908 38241710
    [Google Scholar]
  54. ZhuB. ZhouX. The study of PI3K/AKT pathway in lung cancer metastasis and drug resistance.Zhongguo Fei Ai Za Zhi2011148689694 21859552
    [Google Scholar]
  55. ZuehlkeA.D. BeebeK. NeckersL. PrinceT. Regulation and function of the human HSP90AA1 gene.Gene2015570181610.1016/j.gene.2015.06.018 26071189
    [Google Scholar]
  56. ZhaoB. LiH. ZhangH. LanX. RenX. ZhangL. MaH. ZhangY. WangY. Inhibition of HSP90AA1 induces abnormalities in bovine oocyte maturation and embryonic development.Reproduction20241675e23041110.1530/REP‑23‑0411 38471304
    [Google Scholar]
  57. HanR. LiangL. QinT. XiaoS. LiangR. Encephalomyocarditis virus 2A protein inhibited apoptosis by interaction with annexin A2 through JNK/c-Jun pathway.Viruses202214235910.3390/v14020359 35215950
    [Google Scholar]
  58. MastronikolisN. ChrysovergisA. PapanikolaouV. DerkaS. AsimakopoulosA.D. MastronikoliS. TsiambasE. ManaiosL. PapouliakosS. RagosV. FotiadesP. PantosP. StathopoulosP. KyrodimosE. C-Jun transcription factor oncogenic activation in oral carcinoma.Maedica (Buchar.)202419235035410.26574/maedica.2024.19.2.350 39188842
    [Google Scholar]
  59. BakiriL. HasenfussS.C. Guío-CarriónA. ThomsenM.K. HasselblattP. WagnerE.F. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc.Proc. Natl. Acad. Sci. U.S.A202412118e240418812110.1073/pnas.2404188121 38657045
    [Google Scholar]
  60. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a016295 25190079
    [Google Scholar]
  61. MehtaN.N. deGomaE. ShapiroM.D. IL-6 and cardiovascular risk: A narrative review.Curr. Atheroscler. Rep.20242711210.1007/s11883‑024‑01259‑7 39589436
    [Google Scholar]
  62. SwaroopA.K. NegiP. KarA. MariappanE. NatarajanJ. NambooriP.K. K.; Selvaraj, J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs.Cytokine Growth Factor Rev.202476487610.1016/j.cytogfr.2023.12.007 38220583
    [Google Scholar]
  63. PoonR.Y.C. Cell cycle control: A system of interlinking oscillators.Methods Mol. Biol.2021232911810.1007/978‑1‑0716‑1538‑6_1 34085211
    [Google Scholar]
  64. NgL.Y. MaH.T. PoonR.Y.C. Cyclin A–CDK1 suppresses the expression of the CDK1 activator CDC25A to safeguard timely mitotic entry.J. Biol. Chem.2023299310295710.1016/j.jbc.2023.102957 36717077
    [Google Scholar]
  65. DesdouetsC. Sobczak-ThépotJ. MurphyM. BréchotC. CyclinA. Function and expression during cell proliferation.Prog. Cell Cycle Res.1995111512310.1007/978‑1‑4615‑1809‑9_9 9552357
    [Google Scholar]
  66. WangZ. FanM. CandasD. ZhangT.Q. QinL. EldridgeA. Wachsmann-HogiuS. AhmedK.M. ChromyB.A. NantajitD. DuruN. HeF. ChenM. FinkelT. WeinsteinL.S. LiJ.J. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression.Dev. Cell201429221723210.1016/j.devcel.2014.03.012 24746669
    [Google Scholar]
  67. ShintomiK. Masahara-NegishiY. ShimaM. TaneS. HiranoT. Recombinant cyclin B-Cdk1-Suc1 capable of multi-site mitotic phosphorylation in vitro.PLoS One2024193e029900310.1371/journal.pone.0299003 38527022
    [Google Scholar]
  68. ChengS. SchuhM. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes.Nat. Commun.20241511004410.1038/s41467‑024‑54161‑w 39567493
    [Google Scholar]
  69. Clemm von HohenbergK. MüllerS. SchleichS. MeisterM. BohlenJ. HofmannT.G. TelemanA.A. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division.Nat. Commun.202213166810.1038/s41467‑022‑28265‑0 35115540
    [Google Scholar]
  70. FanT.J. HanL.H. CongR.S. LiangJ. Caspase family proteases and apoptosis.Acta Biochim. Biophys. Sin. (Shanghai)2005371171972710.1111/j.1745‑7270.2005.00108.x 16270150
    [Google Scholar]
  71. DouH. YuP. LiuY. ZhuY. LiF. WangY. ChenX. XiaoM. Recent advances in caspase-3, breast cancer, and traditional Chinese medicine: A review.J. Chemother.202436537038810.1080/1120009X.2023.2278014 37936479
    [Google Scholar]
  72. KimS.S. SeoS.R. Caspase‐3 targets pro‐interleukin‐1β (IL‐1β) to restrict inflammation.FEBS Lett.2024598111366137410.1002/1873‑3468.14864 38553939
    [Google Scholar]
  73. WilsonC.H. KumarS. Caspases in metabolic disease and their therapeutic potential.Cell Death Differ.20182561010102410.1038/s41418‑018‑0111‑x 29743560
    [Google Scholar]
  74. YuanH. YiN. LiD. XuC. YinG.R. ZhuangC. WangY.J. NiS. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway.Sci. Rep.20241411123710.1038/s41598‑024‑62116‑w 38755283
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808354108250123115558
Loading
/content/journals/lddd/10.2174/0115701808354108250123115558
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): active ingredients; apoptosis; Echinacea purpurea; lung cancer; network pharmacology; target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test